Making legal knowledge accessible to non-experts is crucial for enhancing general legal literacy and encouraging civic participation in democracy. However, legal documents are often challenging to understand for people without legal backgrounds. In this paper, we present a novel application of large language models (LLMs) in legal education to help non-experts learn intricate legal concepts through storytelling, an effective pedagogical tool in conveying complex and abstract concepts. We also introduce a new dataset LegalStories, which consists of 294 complex legal doctrines, each accompanied by a story and a set of multiple-choice questions generated by LLMs. To construct the dataset, we experiment with various LLMs to generate legal stories explaining these concepts. Furthermore, we use an expert-in-the-loop approach to iteratively design multiple-choice questions. Then, we evaluate the effectiveness of storytelling with LLMs through randomized controlled trials (RCTs) with legal novices on 10 samples from the dataset. We find that LLM-generated stories enhance comprehension of legal concepts and interest in law among non-native speakers compared to only definitions. Moreover, stories consistently help participants relate legal concepts to their lives. Finally, we find that learning with stories shows a higher retention rate for non-native speakers in the follow-up assessment. Our work has strong implications for using LLMs in promoting teaching and learning in the legal field and beyond.
While there has been significant development of models for Plain Language Summarization (PLS), evaluation remains a challenge. PLS lacks a dedicated assessment metric, and the suitability of text generation evaluation metrics is unclear due to the unique transformations involved (e.g., adding background explanations, removing jargon). To address these questions, our study introduces a granular meta-evaluation testbed, APPLS, designed to evaluate metrics for PLS. We identify four PLS criteria from previous work—informativeness, simplification, coherence, and faithfulness—and define a set of perturbations corresponding to these criteria that sensitive metrics should be able to detect. We apply these perturbations to extractive hypotheses for two PLS datasets to form our testbed. Using APPLS, we assess performance of 14 metrics, including automated scores, lexical features, and LLM prompt-based evaluations. Our analysis reveals that while some current metrics show sensitivity to specific criteria, no single method captures all four criteria simultaneously. We therefore recommend a suite of automated metrics be used to capture PLS quality along all relevant criteria. This work contributes the first meta-evaluation testbed for PLS and a comprehensive evaluation of existing metrics.
To ensure that math curriculum is grade-appropriate and aligns with critical skills or concepts in accordance with educational standards, pedagogical experts can spend months carefully reviewing published math problems. Drawing inspiration from this process, our work presents a novel angle for evaluating language models’ (LMs) mathematical abilities, by investigating whether they can discern skills and concepts enabled by math content. We contribute two datasets: one consisting of 385 fine-grained descriptions of K-12 math skills and concepts, or *standards*, from Achieve the Core (*ATC*), and another of 9.9K math problems labeled with these standards (*MathFish*). We develop two tasks for evaluating LMs’ abilities to assess math problems: (1) verifying whether a problem aligns with a given standard, and (2) tagging a problem with all aligned standards. Working with experienced teachers, we find that LMs struggle to tag and verify standards linked to problems, and instead predict labels that are close to ground truth, but differ in subtle ways. We also show that LMs often generate problems that do not fully align with standards described in prompts, suggesting the need for careful scrutiny on use cases involving LMs for generating curricular materials. Finally, we categorize problems in GSM8k using math standards, allowing us to better understand why some problems are more difficult to solve for models than others.
Scientific jargon can confuse researchers when they read materials from other domains. Identifying and translating jargon for individual researchers could speed up research, but current methods of jargon identification mainly use corpus-level familiarity indicators rather than modeling researcher-specific needs, which can vary greatly based on each researcher’s background. We collect a dataset of over 10K term familiarity annotations from 11 computer science researchers for terms drawn from 100 paper abstracts. Analysis of this data reveals that jargon familiarity and information needs vary widely across annotators, even within the same sub-domain (e.g., NLP). We investigate features representing domain, subdomain, and individual knowledge to predict individual jargon familiarity. We compare supervised and prompt-based approaches, finding that prompt-based methods using information about the individual researcher (e.g., personal publications, self-defined subfield of research) yield the highest accuracy, though the task remains difficult and supervised approaches have lower false positive rates. This research offers insights into features and methods for the novel task of integrating personal data into scientific jargon identification.
Access to mobile phones in many low- and middle-income countries has increased exponentially over the last 20 years, providing an opportunity to connect patients with healthcare interventions through mobile phones (known as mobile health). A barrier to large-scale implementation of interactive mobile health interventions is the human effort needed to manage participant messages. In this study, we explore the use of natural language processing to improve healthcare workers’ management of messages from pregnant and postpartum women in Kenya. Using multilingual, low-resource language text messages from the Mobile solutions for Women and Children’s health (Mobile WACh NEO) study, we developed models to assess urgency of incoming messages. We evaluated models using a novel approach that focuses on clinical usefulness in either triaging or prioritizing messages. Our best-performing models did not reach the threshold for clinical usefulness we set, but have the potential to improve nurse workflow and responsiveness to urgent messages.
Unfamiliar terminology and complex language can present barriers to understanding science. Natural language processing stands to help address these issues by automatically defining unfamiliar terms. We introduce a new task and dataset for defining scientific terms and controlling the complexity of generated definitions as a way of adapting to a specific reader’s background knowledge. We test four definition generation methods for this new task, finding that a sequence-to-sequence approach is most successful. We then explore the version of the task in which definitions are generated at a target complexity level. We introduce a novel reranking approach and find in human evaluations that it offers superior fluency while also controlling complexity, compared to several controllable generation baselines.
Human evaluations are typically considered the gold standard in natural language generation, but as models’ fluency improves, how well can evaluators detect and judge machine-generated text? We run a study assessing non-experts’ ability to distinguish between human- and machine-authored text (GPT2 and GPT3) in three domains (stories, news articles, and recipes). We find that, without training, evaluators distinguished between GPT3- and human-authored text at random chance level. We explore three approaches for quickly training evaluators to better identify GPT3-authored text (detailed instructions, annotated examples, and paired examples) and find that while evaluators’ accuracy improved up to 55%, it did not significantly improve across the three domains. Given the inconsistent results across text domains and the often contradictory reasons evaluators gave for their judgments, we examine the role untrained human evaluations play in NLG evaluation and provide recommendations to NLG researchers for improving human evaluations of text generated from state-of-the-art models.
Communicating complex scientific ideas without misleading or overwhelming the public is challenging. While science communication guides exist, they rarely offer empirical evidence for how their strategies are used in practice. Writing strategies that can be automatically recognized could greatly support science communication efforts by enabling tools to detect and suggest strategies for writers. We compile a set of writing strategies drawn from a wide range of prescriptive sources and develop an annotation scheme allowing humans to recognize them. We collect a corpus of 128k science writing documents in English and annotate a subset of this corpus. We use the annotations to train transformer-based classifiers and measure the strategies’ use in the larger corpus. We find that the use of strategies, such as storytelling and emphasizing the most important findings, varies significantly across publications with different reader audiences.
Current story writing or story editing systems rely on human judgments of story quality for evaluating performance, often ignoring the subjectivity in ratings. We analyze the effect of author and reader characteristics and story writing setup on the quality of stories in a short storytelling task. To study this effect, we create and release STORIESINTHEWILD, containing 1,630 stories collected on a volunteer-based crowdsourcing platform. Each story is rated by three different readers, and comes paired with the author’s and reader’s age, gender, and personality. Our findings show significant effects of authors’ and readers’ identities, as well as writing setup, on story writing and ratings. Notably, compared to younger readers, readers age 45 and older consider stories significantly less creative and less entertaining. Readers also prefer stories written all at once, rather than in chunks, finding them more coherent and creative. We also observe linguistic differences associated with authors’ demographics (e.g., older authors wrote more vivid and emotional stories). Our findings suggest that reader and writer demographics, as well as writing setup, should be accounted for in story writing evaluations.