Speech-to-text (S2T) generation systems frequently face challenges in low-resource scenarios, primarily due to the lack of extensive labeled datasets. One emerging solution is constructing virtual training samples by interpolating inputs and labels, which has notably enhanced system generalization in other domains. Despite its potential, this technique’s application in S2T tasks has remained under-explored. In this paper, we delve into the utility of interpolation augmentation, guided by several pivotal questions. Our findings reveal that employing an appropriate strategy in interpolation augmentation significantly enhances performance across diverse tasks, architectures, and data scales, offering a promising avenue for more robust S2T systems in resource-constrained settings.
Recently, Large Language Models (LLMs) have demonstrated a superior ability to serve as ranking models. However, concerns have arisen as LLMs will exhibit discriminatory ranking behaviors based on users’ sensitive attributes (gender). Worse still, in this paper, we identify a subtler form of discrimination in LLMs, termed implicit ranking unfairness, where LLMs exhibit discriminatory ranking patterns based solely on non-sensitive user profiles, such as user names. Such implicit unfairness is more widespread but less noticeable, threatening the ethical foundation. To comprehensively explore such unfairness, our analysis will focus on three research aspects: (1) We propose an evaluation method to investigate the severity of implicit ranking unfairness. (2) We uncover the reasons for causing such unfairness. (3) To mitigate such unfairness effectively, we utilize a pair-wise regression method to conduct fair-aware data augmentation for LLM fine-tuning. The experiment demonstrates that our method outperforms existing approaches in ranking fairness, achieving this with only a small reduction in accuracy. Lastly, we emphasize the need for the community to identify and mitigate the implicit unfairness, aiming to avert the potential deterioration in the reinforced human-LLMs ecosystem deterioration.
Combining end-to-end speech translation (ST) and non-autoregressive (NAR) generation is promising in language and speech processing for their advantages of less error propagation and low latency. In this paper, we investigate the potential of connectionist temporal classification (CTC) for non-autoregressive speech translation (NAST).In particular, we develop a model consisting of two encoders that are guided by CTC to predict the source and target texts, respectively. Introducing CTC into NAST on both language sides has obvious challenges: 1) the conditional independent generation somewhat breaks the interdependency among tokens, and 2) the monotonic alignment assumption in standard CTC does not hold in translation tasks. In response, we develop a prediction-aware encoding approach and a cross-layer attention approach to address these issues. We also use curriculum learning to improve convergence of training. Experiments on the MuST-C ST benchmarks show that our NAST model achieves an average BLEU score of 29.5 with a speed-up of 5.67×, which is comparable to the autoregressive counterpart and even outperforms the previous best result of 0.9 BLEU points.
Pre-training and fine-tuning is a paradigm for alleviating the data scarcity problem in end-to-end speech translation (E2E ST). The commonplace ”modality gap” between speech and text data often leads to inconsistent inputs between pre-training and fine-tuning. However, we observe that this gap occurs in the early stages of fine-tuning, but does not have a major impact on the final performance. On the other hand, we find that there has another gap, which we call the ”capacity gap”: high resource tasks (such as ASR and MT) always require a large model to fit, when the model is reused for a low resource task (E2E ST), it will get a sub-optimal performance due to the over-fitting. In a case study, we find that the regularization plays a more important role than the well-designed modality adaption method, which achieves 29.0 for en-de and 40.3 for en-fr on the MuST-C dataset.
This paper describes the NiuTrans end-to-end speech translation system submitted for the IWSLT 2023 English-to-Chinese offline task. Our speech translation models are composed of pre-trained ASR and MT models under the SATE framework. Several pre-trained models with diverse architectures and input representations (e.g., log Mel-filterbank and waveform) were utilized. We proposed an IDA method to iteratively improve the performance of the MT models and generate the pseudo ST data through MT systems. We then trained ST models with different structures and data settings to enhance ensemble performance. Experimental results demonstrate that our NiuTrans system achieved a BLEU score of 29.22 on the MuST-C En-Zh tst-COMMON set, outperforming the previous year’s submission by 0.12 BLEU despite using less MT training data.
Commonsense generation aims to generate a plausible sentence containing all given unordered concept words. Previous methods focusing on this task usually directly concatenate these words as the input of a pre-trained language model (PLM). However, in PLMs’ pre-training process, the inputs are often corrupted sentences with correct word order. This input distribution discrepancy between pre-training and fine-tuning makes the model difficult to fully utilize the knowledge of PLMs. In this paper, we propose a two-stage framework to alleviate this issue. Firstly, in pre-training stage, we design a new format of input to endow PLMs the ability to deal with masked sentences with incorrect word order. Secondly, during fine-tuning, we insert the special token [MASK] between two consecutive concept words to make the input distribution more similar to the input distribution in pre-training. We conduct extensive experiments and provide thorough analysis to demonstrate the effectiveness of our proposed method.
While Transformer has become the de-facto standard for speech, modeling upon the fine-grained frame-level features remains an open challenge of capturing long-distance dependencies and distributing the attention weights. We propose Progressive Down-Sampling (PDS) which gradually compresses the acoustic features into coarser-grained units containing more complete semantic information, like text-level representation. In addition, we develop a representation fusion method to alleviate information loss that occurs inevitably during high compression. In this way, we compress the acoustic features into 1/32 of the initial length while achieving better or comparable performances on the speech recognition task. And as a bonus, it yields inference speedups ranging from 1.20x to 1.47x.By reducing the modeling burden, we also achieve competitive results when training on the more challenging speech translation task.
Significant improvements in end-to-end speech translation (ST) have been achieved through the application of multi-task learning. However, the extent to which auxiliary tasks are highly consistent with the ST task, and how much this approach truly helps, have not been thoroughly studied. In this paper, we investigate the consistency between different tasks, considering different times and modules. We find that the textual encoder primarily facilitates cross-modal conversion, but the presence of noise in speech impedes the consistency between text and speech representations. Furthermore, we propose an improved multi-task learning (IMTL) approach for the ST task, which bridges the modal gap by mitigating the difference in length and representation. We conduct experiments on the MuST-C dataset. The results demonstrate that our method attains state-of-the-art results. Moreover, when additional data is used, we achieve the new SOTA result on MuST-C English to Spanish task with 20.8% of the training time required by the current SOTA method.
This paper describes NiuTrans’s submission to the IWSLT22 English-to-Chinese (En-Zh) offline speech translation task. The end-to-end and bilingual system is built by constrained English and Chinese data and translates the English speech to Chinese text without intermediate transcription. Our speech translation models are composed of different pre-trained acoustic models and machine translation models by two kinds of adapters. We compared the effect of the standard speech feature (e.g. log Mel-filterbank) and the pre-training speech feature and try to make them interact. The final submission is an ensemble of three potential speech translation models. Our single best and ensemble model achieves 18.66 BLEU and 19.35 BLEU separately on MuST-C En-Zh tst-COMMON set.
Studies have shown that the sentence’s syntactic structures are important for semantic sentence matching. A typical approach is encoding each sentence’s syntactic structure into an embedding vector, which can be combined with other features to predict the final matching scores. Though successes have been observed, embedding the whole syntactic structures as one vector inevitably overlooks the fine-grained syntax matching patterns, e.g. the alignment of specific term dependencies relations in the two inputted sentences. In this paper, we formalize the task of semantic sentence matching as a problem of graph matching in which each sentence is represented as a directed graph according to its syntactic structures. The syntax matching patterns (i.e. similar syntactic structures) between two sentences, therefore, can be extracted as the sub-graph structure alignments. The proposed method, referred to as Interacted Syntax Graphs (ISG), represents two sentences’ syntactic alignments as well as their semantic matching signals into one association graph. After that, the neural quadratic assignment programming (QAP) is adapted to extract syntactic matching patterns from the association graph. In this way, the syntactic structures fully interact in a fine granularity during the matching process. Experimental results on three public datasets demonstrated that ISG can outperform the state-of-the-art baselines effectively and efficiently. The empirical analysis also showed that ISG can match sentences in an interpretable way.
Encoder pre-training is promising in end-to-end Speech Translation (ST), given the fact that speech-to-translation data is scarce. But ST encoders are not simple instances of Automatic Speech Recognition (ASR) or Machine Translation (MT) encoders. For example, we find that ASR encoders lack the global context representation, which is necessary for translation, whereas MT encoders are not designed to deal with long but locally attentive acoustic sequences. In this work, we propose a Stacked Acoustic-and-Textual Encoding (SATE) method for speech translation. Our encoder begins with processing the acoustic sequence as usual, but later behaves more like an MT encoder for a global representation of the input sequence. In this way, it is straightforward to incorporate the pre-trained models into the system. Also, we develop an adaptor module to alleviate the representation inconsistency between the pre-trained ASR encoder and MT encoder, and develop a multi-teacher knowledge distillation method to preserve the pre-training knowledge. Experimental results on the LibriSpeech En-Fr and MuST-C En-De ST tasks show that our method achieves state-of-the-art BLEU scores of 18.3 and 25.2. To our knowledge, we are the first to develop an end-to-end ST system that achieves comparable or even better BLEU performance than the cascaded ST counterpart when large-scale ASR and MT data is available.
This paper describes the submission of the NiuTrans end-to-end speech translation system for the IWSLT 2021 offline task, which translates from the English audio to German text directly without intermediate transcription. We use the Transformer-based model architecture and enhance it by Conformer, relative position encoding, and stacked acoustic and textual encoding. To augment the training data, the English transcriptions are translated to German translations. Finally, we employ ensemble decoding to integrate the predictions from several models trained with the different datasets. Combining these techniques, we achieve 33.84 BLEU points on the MuST-C En-De test set, which shows the enormous potential of the end-to-end model.
Large amounts of data has made neural machine translation (NMT) a big success in recent years. But it is still a challenge if we train these models on small-scale corpora. In this case, the way of using data appears to be more important. Here, we investigate the effective use of training data for low-resource NMT. In particular, we propose a dynamic curriculum learning (DCL) method to reorder training samples in training. Unlike previous work, we do not use a static scoring function for reordering. Instead, the order of training samples is dynamically determined in two ways - loss decline and model competence. This eases training by highlighting easy samples that the current model has enough competence to learn. We test our DCL method in a Transformer-based system. Experimental results show that DCL outperforms several strong baselines on three low-resource machine translation benchmarks and different sized data of WMT’16 En-De.
This paper describes the submissions of the NiuTrans Team to the WMT 2020 Quality Estimation Shared Task. We participated in all tasks and all language pairs. We explored the combination of transfer learning, multi-task learning and model ensemble. Results on multiple tasks show that deep transformer machine translation models and multilingual pretraining methods significantly improve translation quality estimation performance. Our system achieved remarkable results in multiple level tasks, e.g., our submissions obtained the best results on all tracks in the sentence-level Direct Assessment task.
One approach to matching texts from asymmetrical domains is projecting the input sequences into a common semantic space as feature vectors upon which the matching function can be readily defined and learned. In real-world matching practices, it is often observed that with the training goes on, the feature vectors projected from different domains tend to be indistinguishable. The phenomenon, however, is often overlooked in existing matching models. As a result, the feature vectors are constructed without any regularization, which inevitably increases the difficulty of learning the downstream matching functions. In this paper, we propose a novel match method tailored for text matching in asymmetrical domains, called WD-Match. In WD-Match, a Wasserstein distance-based regularizer is defined to regularize the features vectors projected from different domains. As a result, the method enforces the feature projection function to generate vectors such that those correspond to different domains cannot be easily discriminated. The training process of WD-Match amounts to a game that minimizes the matching loss regularized by the Wasserstein distance. WD-Match can be used to improve different text matching methods, by using the method as its underlying matching model. Four popular text matching methods have been exploited in the paper. Experimental results based on four publicly available benchmarks showed that WD-Match consistently outperformed the underlying methods and the baselines.
This paper described NiuTrans neural machine translation systems for the WMT 2019 news translation tasks. We participated in 13 translation directions, including 11 supervised tasks, namely EN↔{ZH, DE, RU, KK, LT}, GU→EN and the unsupervised DE↔CS sub-track. Our systems were built on Deep Transformer and several back-translation methods. Iterative knowledge distillation and ensemble+reranking were also employed to obtain stronger models. Our unsupervised submissions were based on NMT enhanced by SMT. As a result, we achieved the highest BLEU scores in {KK↔EN, GU→EN} directions, ranking 2nd in {RU→EN, DE↔CS} and 3rd in {ZH→EN, LT→EN, EN→RU, EN↔DE} among all constrained submissions.