Ana Salgado


2024

pdf bib
CHAMUÇA: Towards a Linked Data Language Resource of Portuguese Borrowings in Asian Languages
Fahad Khan | Ana Salgado | Isuri Anuradha | Rute Costa | Chamila Liyanage | John P. McCrae | Atul Kr. Ojha | Priya Rani | Francesca Frontini
Proceedings of the 9th Workshop on Linked Data in Linguistics @ LREC-COLING 2024

This paper presents the development of CHAMUÇA, a novel lexical resource designed to document the influence of the Portuguese language on various Asian languages, with an initial focus on the languages of South Asia. Through the utilization of linked open data and the OntoLex vocabulary, CHAMUÇA offers structured insights into the linguistic characteristics, and cultural ramifications of Portuguese borrowings across multiple languages. The article outlines CHAMUÇA’s potential contributions to the linguistic linked data community, emphasising its role in addressing the scarcity of resources for lesser-resourced languages and serving as a test case for organising etymological data in a queryable format. CHAMUÇA emerges as an initiative towards the comprehensive catalogization and analysis of Portuguese borrowings, offering valuable insights into language contact dynamics, historical evolution, and cultural exchange in Asia, one that is based on linked data technology.

2020

pdf bib
Challenges of Word Sense Alignment: Portuguese Language Resources
Ana Salgado | Sina Ahmadi | Alberto Simões | John Philip McCrae | Rute Costa
Proceedings of the 7th Workshop on Linked Data in Linguistics (LDL-2020)

This paper reports on an ongoing task of monolingual word sense alignment in which a comparative study between the Portuguese Academy of Sciences Dictionary and the Dicionário Aberto is carried out in the context of the ELEXIS (European Lexicographic Infrastructure) project. Word sense alignment involves searching for matching senses within dictionary entries of different lexical resources and linking them, which poses significant challenges. The lexicographic criteria are not always entirely consistent within individual dictionaries and even less so across different projects where different options may have been assumed in terms of structure and especially wording techniques of lexicographic glosses. This hinders the task of matching senses. We aim to present our annotation workflow in Portuguese using the Semantic Web technologies. The results obtained are useful for the discussion within the community.

pdf bib
Modelling Etymology in LMF/TEI: The Grande Dicionário Houaiss da Língua Portuguesa Dictionary as a Use Case
Fahad Khan | Laurent Romary | Ana Salgado | Jack Bowers | Mohamed Khemakhem | Toma Tasovac
Proceedings of the Twelfth Language Resources and Evaluation Conference

In this article we will introduce two of the new parts of the new multi-part version of the Lexical Markup Framework (LMF) ISO standard, namely part 3 of the standard (ISO 24613-3), which deals with etymological and diachronic data, and Part 4 (ISO 24613-4), which consists of a TEI serialisation of all of the prior parts of the model. We will demonstrate the use of both standards by describing the LMF encoding of a small number of examples taken from a sample conversion of the reference Portuguese dictionary Grande Dicionário Houaiss da Língua Portuguesa, part of a broader experiment comprising the analysis of different, heterogeneously encoded, Portuguese lexical resources. We present the examples in the Unified Modelling Language (UML) and also in a couple of cases in TEI.

pdf bib
A Multilingual Evaluation Dataset for Monolingual Word Sense Alignment
Sina Ahmadi | John Philip McCrae | Sanni Nimb | Fahad Khan | Monica Monachini | Bolette Pedersen | Thierry Declerck | Tanja Wissik | Andrea Bellandi | Irene Pisani | Thomas Troelsgård | Sussi Olsen | Simon Krek | Veronika Lipp | Tamás Váradi | László Simon | András Gyorffy | Carole Tiberius | Tanneke Schoonheim | Yifat Ben Moshe | Maya Rudich | Raya Abu Ahmad | Dorielle Lonke | Kira Kovalenko | Margit Langemets | Jelena Kallas | Oksana Dereza | Theodorus Fransen | David Cillessen | David Lindemann | Mikel Alonso | Ana Salgado | José Luis Sancho | Rafael-J. Ureña-Ruiz | Jordi Porta Zamorano | Kiril Simov | Petya Osenova | Zara Kancheva | Ivaylo Radev | Ranka Stanković | Andrej Perdih | Dejan Gabrovsek
Proceedings of the Twelfth Language Resources and Evaluation Conference

Aligning senses across resources and languages is a challenging task with beneficial applications in the field of natural language processing and electronic lexicography. In this paper, we describe our efforts in manually aligning monolingual dictionaries. The alignment is carried out at sense-level for various resources in 15 languages. Moreover, senses are annotated with possible semantic relationships such as broadness, narrowness, relatedness, and equivalence. In comparison to previous datasets for this task, this dataset covers a wide range of languages and resources and focuses on the more challenging task of linking general-purpose language. We believe that our data will pave the way for further advances in alignment and evaluation of word senses by creating new solutions, particularly those notoriously requiring data such as neural networks. Our resources are publicly available at https://github.com/elexis-eu/MWSA.