@inproceedings{zheng-etal-2024-knowcomp,
title = "{KNOWCOMP} {POKEMON} Team at {D}ial{AM}-2024: A Two-Stage Pipeline for Detecting Relations in Dialogue Argument Mining",
author = "Zheng, Zihao and
Wang, Zhaowei and
Zong, Qing and
Song, Yangqiu",
editor = "Ajjour, Yamen and
Bar-Haim, Roy and
El Baff, Roxanne and
Liu, Zhexiong and
Skitalinskaya, Gabriella",
booktitle = "Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.argmining-1.11/",
doi = "10.18653/v1/2024.argmining-1.11",
pages = "110--118",
abstract = "Dialogue Argument Mining(DialAM) is an important branch of Argument Mining(AM). DialAM-2024 is a shared task focusing on dialogue argument mining, which requires us to identify argumentative relations and illocutionary relations among proposition nodes and locution nodes. To accomplish this, we propose a two-stage pipeline, which includes the Two-Step S-Node Prediction Model in Stage 1 and the YA-Node Prediction Model in Stage 2. We also augment the training data in both stages and introduce context in the prediction of Stage 2. We successfully completed the task and achieved good results. Our team KNOWCOMP POKEMON ranked 1st in the ARI Focused score and 4th in the Global Focused score."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zheng-etal-2024-knowcomp">
<titleInfo>
<title>KNOWCOMP POKEMON Team at DialAM-2024: A Two-Stage Pipeline for Detecting Relations in Dialogue Argument Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zihao</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhaowei</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yangqiu</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yamen</namePart>
<namePart type="family">Ajjour</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roy</namePart>
<namePart type="family">Bar-Haim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roxanne</namePart>
<namePart type="family">El Baff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhexiong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriella</namePart>
<namePart type="family">Skitalinskaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Dialogue Argument Mining(DialAM) is an important branch of Argument Mining(AM). DialAM-2024 is a shared task focusing on dialogue argument mining, which requires us to identify argumentative relations and illocutionary relations among proposition nodes and locution nodes. To accomplish this, we propose a two-stage pipeline, which includes the Two-Step S-Node Prediction Model in Stage 1 and the YA-Node Prediction Model in Stage 2. We also augment the training data in both stages and introduce context in the prediction of Stage 2. We successfully completed the task and achieved good results. Our team KNOWCOMP POKEMON ranked 1st in the ARI Focused score and 4th in the Global Focused score.</abstract>
<identifier type="citekey">zheng-etal-2024-knowcomp</identifier>
<identifier type="doi">10.18653/v1/2024.argmining-1.11</identifier>
<location>
<url>https://aclanthology.org/2024.argmining-1.11/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>110</start>
<end>118</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T KNOWCOMP POKEMON Team at DialAM-2024: A Two-Stage Pipeline for Detecting Relations in Dialogue Argument Mining
%A Zheng, Zihao
%A Wang, Zhaowei
%A Zong, Qing
%A Song, Yangqiu
%Y Ajjour, Yamen
%Y Bar-Haim, Roy
%Y El Baff, Roxanne
%Y Liu, Zhexiong
%Y Skitalinskaya, Gabriella
%S Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F zheng-etal-2024-knowcomp
%X Dialogue Argument Mining(DialAM) is an important branch of Argument Mining(AM). DialAM-2024 is a shared task focusing on dialogue argument mining, which requires us to identify argumentative relations and illocutionary relations among proposition nodes and locution nodes. To accomplish this, we propose a two-stage pipeline, which includes the Two-Step S-Node Prediction Model in Stage 1 and the YA-Node Prediction Model in Stage 2. We also augment the training data in both stages and introduce context in the prediction of Stage 2. We successfully completed the task and achieved good results. Our team KNOWCOMP POKEMON ranked 1st in the ARI Focused score and 4th in the Global Focused score.
%R 10.18653/v1/2024.argmining-1.11
%U https://aclanthology.org/2024.argmining-1.11/
%U https://doi.org/10.18653/v1/2024.argmining-1.11
%P 110-118
Markdown (Informal)
[KNOWCOMP POKEMON Team at DialAM-2024: A Two-Stage Pipeline for Detecting Relations in Dialogue Argument Mining](https://aclanthology.org/2024.argmining-1.11/) (Zheng et al., ArgMining 2024)
ACL