@inproceedings{deyi-2023-da,
title = "大语言模型对齐:概念、挑战、路线、评测及趋势(Large Language Model Alignment: Concepts, Challenges, Roadmaps, Evaluations and Trends)",
author = "Deyi, Xiong",
editor = "Zhang, Jiajun",
booktitle = "Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 2: Frontier Forum)",
month = aug,
year = "2023",
address = "Harbin, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2023.ccl-2.7/",
pages = "77--87",
language = "zho",
abstract = "通用智能的{\textquotedblright}智能-目标{\textquotedblright}正交性及{\textquotedblright}工具性趋同{\textquotedblright}论点均要求通用智能的发展要智善结合。目前大语言模型在能力(智)方面发展迅速,但在更具挑战性的价值对齐(善)方面研究相对滞后。本综述将概述对齐的基本概念和必要性,简述其存在的社会和技术挑战,分析大语言模型对齐的主要技术路线和方法,探讨如何对大语言模型对齐进行评测,并对未来趋势进行展望。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="deyi-2023-da">
<titleInfo>
<title>大语言模型对齐:概念、挑战、路线、评测及趋势(Large Language Model Alignment: Concepts, Challenges, Roadmaps, Evaluations and Trends)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiong</namePart>
<namePart type="family">Deyi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 2: Frontier Forum)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiajun</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Harbin, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>通用智能的”智能-目标”正交性及”工具性趋同”论点均要求通用智能的发展要智善结合。目前大语言模型在能力(智)方面发展迅速,但在更具挑战性的价值对齐(善)方面研究相对滞后。本综述将概述对齐的基本概念和必要性,简述其存在的社会和技术挑战,分析大语言模型对齐的主要技术路线和方法,探讨如何对大语言模型对齐进行评测,并对未来趋势进行展望。”</abstract>
<identifier type="citekey">deyi-2023-da</identifier>
<location>
<url>https://aclanthology.org/2023.ccl-2.7/</url>
</location>
<part>
<date>2023-08</date>
<extent unit="page">
<start>77</start>
<end>87</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 大语言模型对齐:概念、挑战、路线、评测及趋势(Large Language Model Alignment: Concepts, Challenges, Roadmaps, Evaluations and Trends)
%A Deyi, Xiong
%Y Zhang, Jiajun
%S Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 2: Frontier Forum)
%D 2023
%8 August
%I Chinese Information Processing Society of China
%C Harbin, China
%G zho
%F deyi-2023-da
%X 通用智能的”智能-目标”正交性及”工具性趋同”论点均要求通用智能的发展要智善结合。目前大语言模型在能力(智)方面发展迅速,但在更具挑战性的价值对齐(善)方面研究相对滞后。本综述将概述对齐的基本概念和必要性,简述其存在的社会和技术挑战,分析大语言模型对齐的主要技术路线和方法,探讨如何对大语言模型对齐进行评测,并对未来趋势进行展望。”
%U https://aclanthology.org/2023.ccl-2.7/
%P 77-87
Markdown (Informal)
[大语言模型对齐:概念、挑战、路线、评测及趋势(Large Language Model Alignment: Concepts, Challenges, Roadmaps, Evaluations and Trends)](https://aclanthology.org/2023.ccl-2.7/) (Deyi, CCL 2023)
ACL