大语言模型对齐:概念、挑战、路线、评测及趋势(Large Language Model Alignment: Concepts, Challenges, Roadmaps, Evaluations and Trends)

Xiong Deyi (德意 熊)


Abstract
通用智能的”智能-目标”正交性及”工具性趋同”论点均要求通用智能的发展要智善结合。目前大语言模型在能力(智)方面发展迅速,但在更具挑战性的价值对齐(善)方面研究相对滞后。本综述将概述对齐的基本概念和必要性,简述其存在的社会和技术挑战,分析大语言模型对齐的主要技术路线和方法,探讨如何对大语言模型对齐进行评测,并对未来趋势进行展望。”
Anthology ID:
2023.ccl-2.7
Volume:
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 2: Frontier Forum)
Month:
August
Year:
2023
Address:
Harbin, China
Editor:
Jiajun Zhang
Venue:
CCL
SIG:
Publisher:
Chinese Information Processing Society of China
Note:
Pages:
77–87
Language:
Chinese
URL:
https://aclanthology.org/2023.ccl-2.7/
DOI:
Bibkey:
Cite (ACL):
Xiong Deyi. 2023. 大语言模型对齐:概念、挑战、路线、评测及趋势(Large Language Model Alignment: Concepts, Challenges, Roadmaps, Evaluations and Trends). In Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 2: Frontier Forum), pages 77–87, Harbin, China. Chinese Information Processing Society of China.
Cite (Informal):
大语言模型对齐:概念、挑战、路线、评测及趋势(Large Language Model Alignment: Concepts, Challenges, Roadmaps, Evaluations and Trends) (Deyi, CCL 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.ccl-2.7.pdf