@inproceedings{kobayashi-etal-2023-pairspanbert,
title = "{P}air{S}pan{BERT}: An Enhanced Language Model for Bridging Resolution",
author = "Kobayashi, Hideo and
Hou, Yufang and
Ng, Vincent",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.383/",
doi = "10.18653/v1/2023.acl-long.383",
pages = "6931--6946",
abstract = "We present PairSpanBERT, a SpanBERT-based pre-trained model specialized for bridging resolution. To this end, we design a novel pre-training objective that aims to learn the contexts in which two mentions are implicitly linked to each other from a large amount of data automatically generated either heuristically or via distance supervision with a knowledge graph. Despite the noise inherent in the automatically generated data, we achieve the best results reported to date on three evaluation datasets for bridging resolution when replacing SpanBERT with PairSpanBERT in a state-of-the-art resolver that jointly performs entity coreference resolution and bridging resolution."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kobayashi-etal-2023-pairspanbert">
<titleInfo>
<title>PairSpanBERT: An Enhanced Language Model for Bridging Resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hideo</namePart>
<namePart type="family">Kobayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yufang</namePart>
<namePart type="family">Hou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present PairSpanBERT, a SpanBERT-based pre-trained model specialized for bridging resolution. To this end, we design a novel pre-training objective that aims to learn the contexts in which two mentions are implicitly linked to each other from a large amount of data automatically generated either heuristically or via distance supervision with a knowledge graph. Despite the noise inherent in the automatically generated data, we achieve the best results reported to date on three evaluation datasets for bridging resolution when replacing SpanBERT with PairSpanBERT in a state-of-the-art resolver that jointly performs entity coreference resolution and bridging resolution.</abstract>
<identifier type="citekey">kobayashi-etal-2023-pairspanbert</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.383</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.383/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>6931</start>
<end>6946</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PairSpanBERT: An Enhanced Language Model for Bridging Resolution
%A Kobayashi, Hideo
%A Hou, Yufang
%A Ng, Vincent
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F kobayashi-etal-2023-pairspanbert
%X We present PairSpanBERT, a SpanBERT-based pre-trained model specialized for bridging resolution. To this end, we design a novel pre-training objective that aims to learn the contexts in which two mentions are implicitly linked to each other from a large amount of data automatically generated either heuristically or via distance supervision with a knowledge graph. Despite the noise inherent in the automatically generated data, we achieve the best results reported to date on three evaluation datasets for bridging resolution when replacing SpanBERT with PairSpanBERT in a state-of-the-art resolver that jointly performs entity coreference resolution and bridging resolution.
%R 10.18653/v1/2023.acl-long.383
%U https://aclanthology.org/2023.acl-long.383/
%U https://doi.org/10.18653/v1/2023.acl-long.383
%P 6931-6946
Markdown (Informal)
[PairSpanBERT: An Enhanced Language Model for Bridging Resolution](https://aclanthology.org/2023.acl-long.383/) (Kobayashi et al., ACL 2023)
ACL