@inproceedings{wang-etal-2022-logic,
title = "Logic-Driven Context Extension and Data Augmentation for Logical Reasoning of Text",
author = "Wang, Siyuan and
Zhong, Wanjun and
Tang, Duyu and
Wei, Zhongyu and
Fan, Zhihao and
Jiang, Daxin and
Zhou, Ming and
Duan, Nan",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2022",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-acl.127",
doi = "10.18653/v1/2022.findings-acl.127",
pages = "1619--1629",
abstract = "Logical reasoning of text requires identifying critical logical structures in the text and performing inference over them. Existing methods for logical reasoning mainly focus on contextual semantics of text while struggling to explicitly model the logical inference process. In this paper, we not only put forward a logic-driven context extension framework but also propose a logic-driven data augmentation algorithm. The former follows a three-step reasoning paradigm, and each step is respectively to extract logical expressions as elementary reasoning units, symbolically infer the implicit expressions following equivalence laws and extend the context to validate the options. The latter augments literally similar but logically different instances and incorporates contrastive learning to better capture logical information, especially logical negative and conditional relationships. We conduct experiments on two benchmark datasets, ReClor and LogiQA. The results show that our method achieves state-of-the-art performance on both datasets, and even surpasses human performance on the ReClor dataset.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2022-logic">
<titleInfo>
<title>Logic-Driven Context Extension and Data Augmentation for Logical Reasoning of Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Siyuan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanjun</namePart>
<namePart type="family">Zhong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Duyu</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhongyu</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhihao</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daxin</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nan</namePart>
<namePart type="family">Duan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Logical reasoning of text requires identifying critical logical structures in the text and performing inference over them. Existing methods for logical reasoning mainly focus on contextual semantics of text while struggling to explicitly model the logical inference process. In this paper, we not only put forward a logic-driven context extension framework but also propose a logic-driven data augmentation algorithm. The former follows a three-step reasoning paradigm, and each step is respectively to extract logical expressions as elementary reasoning units, symbolically infer the implicit expressions following equivalence laws and extend the context to validate the options. The latter augments literally similar but logically different instances and incorporates contrastive learning to better capture logical information, especially logical negative and conditional relationships. We conduct experiments on two benchmark datasets, ReClor and LogiQA. The results show that our method achieves state-of-the-art performance on both datasets, and even surpasses human performance on the ReClor dataset.</abstract>
<identifier type="citekey">wang-etal-2022-logic</identifier>
<identifier type="doi">10.18653/v1/2022.findings-acl.127</identifier>
<location>
<url>https://aclanthology.org/2022.findings-acl.127</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>1619</start>
<end>1629</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Logic-Driven Context Extension and Data Augmentation for Logical Reasoning of Text
%A Wang, Siyuan
%A Zhong, Wanjun
%A Tang, Duyu
%A Wei, Zhongyu
%A Fan, Zhihao
%A Jiang, Daxin
%A Zhou, Ming
%A Duan, Nan
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Findings of the Association for Computational Linguistics: ACL 2022
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F wang-etal-2022-logic
%X Logical reasoning of text requires identifying critical logical structures in the text and performing inference over them. Existing methods for logical reasoning mainly focus on contextual semantics of text while struggling to explicitly model the logical inference process. In this paper, we not only put forward a logic-driven context extension framework but also propose a logic-driven data augmentation algorithm. The former follows a three-step reasoning paradigm, and each step is respectively to extract logical expressions as elementary reasoning units, symbolically infer the implicit expressions following equivalence laws and extend the context to validate the options. The latter augments literally similar but logically different instances and incorporates contrastive learning to better capture logical information, especially logical negative and conditional relationships. We conduct experiments on two benchmark datasets, ReClor and LogiQA. The results show that our method achieves state-of-the-art performance on both datasets, and even surpasses human performance on the ReClor dataset.
%R 10.18653/v1/2022.findings-acl.127
%U https://aclanthology.org/2022.findings-acl.127
%U https://doi.org/10.18653/v1/2022.findings-acl.127
%P 1619-1629
Markdown (Informal)
[Logic-Driven Context Extension and Data Augmentation for Logical Reasoning of Text](https://aclanthology.org/2022.findings-acl.127) (Wang et al., Findings 2022)
ACL
- Siyuan Wang, Wanjun Zhong, Duyu Tang, Zhongyu Wei, Zhihao Fan, Daxin Jiang, Ming Zhou, and Nan Duan. 2022. Logic-Driven Context Extension and Data Augmentation for Logical Reasoning of Text. In Findings of the Association for Computational Linguistics: ACL 2022, pages 1619–1629, Dublin, Ireland. Association for Computational Linguistics.