@inproceedings{nishikawa-etal-2022-multilingual,
title = "A Multilingual Bag-of-Entities Model for Zero-Shot Cross-Lingual Text Classification",
author = "Nishikawa, Sosuke and
Yamada, Ikuya and
Tsuruoka, Yoshimasa and
Echizen, Isao",
editor = "Fokkens, Antske and
Srikumar, Vivek",
booktitle = "Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.conll-1.1/",
doi = "10.18653/v1/2022.conll-1.1",
pages = "1--12",
abstract = "We present a multilingual bag-of-entities model that effectively boosts the performance of zero-shot cross-lingual text classification by extending a multilingual pre-trained language model (e.g., M-BERT). It leverages the multilingual nature of Wikidata: entities in multiple languages representing the same concept are defined with a unique identifier. This enables entities described in multiple languages to be represented using shared embeddings. A model trained on entity features in a resource-rich language can thus be directly applied to other languages. Our experimental results on cross-lingual topic classification (using the MLDoc and TED-CLDC datasets) and entity typing (using the SHINRA2020-ML dataset) show that the proposed model consistently outperforms state-of-the-art models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nishikawa-etal-2022-multilingual">
<titleInfo>
<title>A Multilingual Bag-of-Entities Model for Zero-Shot Cross-Lingual Text Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sosuke</namePart>
<namePart type="family">Nishikawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ikuya</namePart>
<namePart type="family">Yamada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoshimasa</namePart>
<namePart type="family">Tsuruoka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isao</namePart>
<namePart type="family">Echizen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Antske</namePart>
<namePart type="family">Fokkens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a multilingual bag-of-entities model that effectively boosts the performance of zero-shot cross-lingual text classification by extending a multilingual pre-trained language model (e.g., M-BERT). It leverages the multilingual nature of Wikidata: entities in multiple languages representing the same concept are defined with a unique identifier. This enables entities described in multiple languages to be represented using shared embeddings. A model trained on entity features in a resource-rich language can thus be directly applied to other languages. Our experimental results on cross-lingual topic classification (using the MLDoc and TED-CLDC datasets) and entity typing (using the SHINRA2020-ML dataset) show that the proposed model consistently outperforms state-of-the-art models.</abstract>
<identifier type="citekey">nishikawa-etal-2022-multilingual</identifier>
<identifier type="doi">10.18653/v1/2022.conll-1.1</identifier>
<location>
<url>https://aclanthology.org/2022.conll-1.1/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>1</start>
<end>12</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Multilingual Bag-of-Entities Model for Zero-Shot Cross-Lingual Text Classification
%A Nishikawa, Sosuke
%A Yamada, Ikuya
%A Tsuruoka, Yoshimasa
%A Echizen, Isao
%Y Fokkens, Antske
%Y Srikumar, Vivek
%S Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F nishikawa-etal-2022-multilingual
%X We present a multilingual bag-of-entities model that effectively boosts the performance of zero-shot cross-lingual text classification by extending a multilingual pre-trained language model (e.g., M-BERT). It leverages the multilingual nature of Wikidata: entities in multiple languages representing the same concept are defined with a unique identifier. This enables entities described in multiple languages to be represented using shared embeddings. A model trained on entity features in a resource-rich language can thus be directly applied to other languages. Our experimental results on cross-lingual topic classification (using the MLDoc and TED-CLDC datasets) and entity typing (using the SHINRA2020-ML dataset) show that the proposed model consistently outperforms state-of-the-art models.
%R 10.18653/v1/2022.conll-1.1
%U https://aclanthology.org/2022.conll-1.1/
%U https://doi.org/10.18653/v1/2022.conll-1.1
%P 1-12
Markdown (Informal)
[A Multilingual Bag-of-Entities Model for Zero-Shot Cross-Lingual Text Classification](https://aclanthology.org/2022.conll-1.1/) (Nishikawa et al., CoNLL 2022)
ACL