@inproceedings{dligach-etal-2022-exploring,
title = "Exploring Text Representations for Generative Temporal Relation Extraction",
author = "Dligach, Dmitriy and
Bethard, Steven and
Miller, Timothy and
Savova, Guergana",
editor = "Naumann, Tristan and
Bethard, Steven and
Roberts, Kirk and
Rumshisky, Anna",
booktitle = "Proceedings of the 4th Clinical Natural Language Processing Workshop",
month = jul,
year = "2022",
address = "Seattle, WA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.clinicalnlp-1.12",
doi = "10.18653/v1/2022.clinicalnlp-1.12",
pages = "109--113",
abstract = "Sequence-to-sequence models are appealing because they allow both encoder and decoder to be shared across many tasks by formulating those tasks as text-to-text problems. Despite recently reported successes of such models, we find that engineering input/output representations for such text-to-text models is challenging. On the Clinical TempEval 2016 relation extraction task, the most natural choice of output representations, where relations are spelled out in simple predicate logic statements, did not lead to good performance. We explore a variety of input/output representations, with the most successful prompting one event at a time, and achieving results competitive with standard pairwise temporal relation extraction systems.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dligach-etal-2022-exploring">
<titleInfo>
<title>Exploring Text Representations for Generative Temporal Relation Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dmitriy</namePart>
<namePart type="family">Dligach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Miller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guergana</namePart>
<namePart type="family">Savova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Clinical Natural Language Processing Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tristan</namePart>
<namePart type="family">Naumann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kirk</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, WA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sequence-to-sequence models are appealing because they allow both encoder and decoder to be shared across many tasks by formulating those tasks as text-to-text problems. Despite recently reported successes of such models, we find that engineering input/output representations for such text-to-text models is challenging. On the Clinical TempEval 2016 relation extraction task, the most natural choice of output representations, where relations are spelled out in simple predicate logic statements, did not lead to good performance. We explore a variety of input/output representations, with the most successful prompting one event at a time, and achieving results competitive with standard pairwise temporal relation extraction systems.</abstract>
<identifier type="citekey">dligach-etal-2022-exploring</identifier>
<identifier type="doi">10.18653/v1/2022.clinicalnlp-1.12</identifier>
<location>
<url>https://aclanthology.org/2022.clinicalnlp-1.12</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>109</start>
<end>113</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring Text Representations for Generative Temporal Relation Extraction
%A Dligach, Dmitriy
%A Bethard, Steven
%A Miller, Timothy
%A Savova, Guergana
%Y Naumann, Tristan
%Y Bethard, Steven
%Y Roberts, Kirk
%Y Rumshisky, Anna
%S Proceedings of the 4th Clinical Natural Language Processing Workshop
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, WA
%F dligach-etal-2022-exploring
%X Sequence-to-sequence models are appealing because they allow both encoder and decoder to be shared across many tasks by formulating those tasks as text-to-text problems. Despite recently reported successes of such models, we find that engineering input/output representations for such text-to-text models is challenging. On the Clinical TempEval 2016 relation extraction task, the most natural choice of output representations, where relations are spelled out in simple predicate logic statements, did not lead to good performance. We explore a variety of input/output representations, with the most successful prompting one event at a time, and achieving results competitive with standard pairwise temporal relation extraction systems.
%R 10.18653/v1/2022.clinicalnlp-1.12
%U https://aclanthology.org/2022.clinicalnlp-1.12
%U https://doi.org/10.18653/v1/2022.clinicalnlp-1.12
%P 109-113
Markdown (Informal)
[Exploring Text Representations for Generative Temporal Relation Extraction](https://aclanthology.org/2022.clinicalnlp-1.12) (Dligach et al., ClinicalNLP 2022)
ACL