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ABSTRACT

A 3-D ensemble variational (3DEnVar) data assimilation method has been implemented and tested for

oceanographic data assimilation of sea surface temperature (SST), sea surface salinity (SSS), sea ice concentration

(SIC), and salinity and temperature profiles. To damp spurious long-range correlations in the ensemble statistics,

horizontal and vertical localisationwas implemented using empirical orthogonal functions. The results show that

the 3DEnVar method is indeed possible to use in oceanographic data assimilation. So far, only a seasonally

dependent ensemble has been used, based on historical model simulations. Near-surface experiments showed that

the ensemble statistics gave inhomogeneous and anisotropic horizontal structure functions, and assimilation

of real SST and SIC fields gave smooth, realistic increment fields. The implementation was multivariate, and

results showed that the cross-correlations between variables work in an intuitive way, for example, decreasing

SSTwhere SICwas increased and vice versa. The profile data assimilation also gave good results. The results from

a 25-year reanalysis showed that the vertical salinity and temperature structure were significantly improved,

compared to both dependent and independent data.
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1. Introduction

The Baltic Sea is a large estuary with positive water balance,

which means that precipitation exceeds evaporation. High-

saline water from the North Sea can only be imported

through the narrow and shallow Danish straits (see the map

in Fig. 1). This implies that the dense deepwater in the Baltic

proper interior is only exchanged intermittently, leading to

stagnation periods in the Baltic proper with lengths up to

about 10 yr. Due to intermittent inflows of high-saline water

as well as annual variability of river runoff, the salinity of

the Baltic Sea varies on many time scales. Furthermore,

due to the stratification in the Baltic Sea, the spatial scales

are usually much smaller than in the open ocean, as the

internal Rossby radius is about 2�11 km (Alenius et al.,

2003; Osinski et al., 2010).

The near-surface temperature in the Baltic is highly

dependent on the atmospheric forcing and its natural

variability on many time scales. Furthermore, the tempera-

ture in the deepwater and at intermediate depths also

depends on the temperature of the intermittent, inflowing

water through the Danish Straits, also leading to variability

on many time scales. The atmospheric forcing also leads to

upwelling situations near coasts, wind and wave-induced

near-surface mixing as well as convection at night-time and

during autumn and winter, tending to redistribute the heat

and salt of the Baltic. For a more thorough description

of the oceanography of the Baltic Sea, see, for example,

Leppäranta and Myrberg (2009).

From a climatological point of view, it is both important

and interesting to analyse the decadal changes of, for

example, temperature and salinity (T/S) distributions in

any water body, including the Baltic Sea. National measur-

ing programmes over many decades have accumulated an

important data set of T/S profiles, sea surface temperature

(SST) and sea surface salinity (SSS) from many locations in

the Baltic Sea, as well as other variables such as sea surface

height (SSH) along coasts and sea ice concentration (SIC)

in terms of ice charts and satellite measurements. As a

complement, model simulations have been made covering

the last decades, usually forced by down-scaled atmospheric

model runs of varying quality.

The advantage of observations is that they represent

the true state of the ocean, within measurement errors, but

there is always an uncertainty regarding how representative
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each measurement is for the local area. To make statements

about the Baltic Sea as a whole (e.g. mean temperature), it

is necessary to interpolate over long distances, between

measurement locations and also interpolate in time. It is

not uncommon that a measurement station is visited only

once a month and is located more than 100 km from

neighbouring measurement stations. Some areas may even

lack observations for very long time periods. On the other

hand, model simulations are usually good at exactly the

things that observations are bad at, namely the resolution

in time and space, whereas in a model simulation there

is no guarantee that the model does not deviate rather far

from reality, due to errors and limitations in the model

and the atmospheric forcing. Therefore, it is preferable to

combine the two, to make a synthesis of model data and

observation data, and to get the best out of the two worlds:

a homogeneous data set with high resolution in time and

space simultaneously following a model trajectory reason-

ably close to observations. This can be achieved with a

process called data assimilation, in which observations

are used to update the circulation model to keep it from

deviating too far away from reality.

Data assimilation is applied at many operational oceano-

graphic centres in the world, to create high-quality ocean

forecasts. This has resulted in valuable data sets covering

the last 10�15 yr or so. However, there are some disadvan-

tages of operational data sets. First, over a 10- to 15-yr

period, the resolution of the circulation model is likely to

have changed (improved) at least once, due to continuous

efforts to always giving the best possible product. Second,

the quality (resolution, etc.) of the atmospheric forcing has

probably improved as well during the same period, for

similar reasons. Third, it is also possible that the data

assimilation system being applied has changed too, as well

as other factors like the number of forecasts per day which

may have been increased. All these factors imply that

although the operational data sets are of high value, having

high resolution and staying relatively close to reality, they

are not perfectly homogeneous in the sense that the system

has changed, typically many times, over the time period.

Furthermore, some observations cannot be used in opera-

tional forecasts, simply because they are not yet available at

the start of the forecast. Finally, the typical time period of

an operational forecast data set (using data assimilation),

being 10�15 yr, is not long enough to be used for climate

studies.

For these reasons, it has become common to make so-

called reanalyses of longer time periods, often stretching

back to the time before operational forecasts using data

assimilation were available. In meteorology this has been

done many times for the global atmosphere, for example,

the 40-yr NCEP/NCAR data set (Kalnay et al., 1996); the

ECMWF data sets � ERA-15 (Gibson et al., 1997), ERA-40

(Uppala et al., 2005) and ERA-interim (Dee et al., 2011);

the Japanese data sets � JRA-25 (Onogi et al., 2007) and

JRA-55 (Ebita et al., 2011); and the international effort

leading to the 140-yr data set � 20CR (Compo et al., 2011).

Higher resolution atmospheric reanalyses for the Baltic

region have also been made. The BaltAn65� reanalysis

(Luhamaa et al., 2011) has 11 km grid resolution and covers

the Baltic Sea, but only the eastern part of the North Sea.

The recent project Euro4M has resulted in a data set of

22 km grid resolution and covers a larger domain for the

time period 1979�2013 (Dahlgren et al., 2014).

Oceanographic reanalysis work typically started much

later. The first one for the Baltic Sea was BSRA-15,

made by one of the present authors in 2005 (Axell, 2013)

using the successive corrections data assimilation method

(e.g. Daley, 1991), covering the period 1990�2004. It was
then followed by two 20-yr reanalyses made during the

MyOcean-1 project, both covering 1990�2009. The first

one of these, by Fu et al. (2012), used 3-D variational

(3DVar) data assimilation, and the second one, by one of

the present authors, used univariate optimal interpolation

(OI) as data assimilation method (e.g. Daley, 1991).

Recently, a 30-yr reanalysis covering 1970�1999 was

made by Liu et al. (2013), using multivariate ensemble

optimal interpolation (EnOI) in the data assimilation (Oke

et al., 2002; Evensen, 2003). Hence, there is a tendency not

only for the lengths of the Baltic reanalyses to increase

but also for the use of more advanced data assimilation

methods.

Apart from the EnOI method mentioned above, other

ensemble methods include, for example, the ensemble

Kalman filter (EnKF) introduced by Evensen (1994,

2003), the singular evolutive extended Kalman (SEEK)

filter (Pham et al., 1998), the ensemble transform Kalman

filter (ETKF) introduced by Wang and Bishop (2003) and
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Fig. 1. Model domain, showing depth in metres, names of sub-

regions and the location of the hydrographic stations BY5 and BY15.
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the singular evolutive interpolated Kalman (SEIK) filter

(Nerger et al., 2005). In traditional 3DVar (Parrish and

Derber, 1992; Courtier et al., 1998), however, the back-

ground error covariances (BECs) are often homogeneous

and isotropic as well as static (Gustafsson et al., 2001;

Buehner et al., 2010a; Liu and Xiao, 2013), even though in

reality they should be flow dependent (Hamill et al., 2002).

However, several 3DVar implementations have been made

with more realistic BECs. Examples include not only the

approaches by Fisher and Courtier (1995) and Buehner et al.

(2010a), Buehner et al. (2010b) but also the approaches using

so-called hybrid schemes, for example, a mixture between

EnKF and 3DVar (Hamill and Snyder, 2000), a mixture

between ETKF and 3DVar (Wang et al., 2008), or schemes

in which the BEC term in the cost function in 3DVar

is replaced by a linear combination of the original BEC

term and a new BEC term based on ensemble covariances

(Buehner, 2005; Gustafsson et al., 2014).

The merits of using EnKF (which has flow-dependent

BECs) and traditional 4-D variational (4DVar) (which has

stationary but full rank BECs and allows for direct assi-

milation of, for example, satellite irradiances) have been

discussed by several authors (e.g. Lorenc, 2003; Gustafsson,

2007) and will not be repeated here. Suffice it to say that

a combination of both methods would be preferable

(Gustafsson and Bojarova, 2014).

A rather new data assimilation method, 4-D ensemble

variational (4DEnVar) data assimilation, was recently

developed and tested by Liu et al. (2008, 2009) in simplified

atmospheric experiments. Large-scale atmospheric experi-

ments using real observations were done later by, e.g.

Buehner et al. (2010b), Liu and Xiao (2013), Gustafsson

and Bojarova (2014) and Wang and Lei (2014). These

authors compared the results with other methods (EnKF,

3DVar, 3DVar-FGAT, Ensemble-based 3DVar, 4DVar,

Hybrid 4DVar). The general result was that 4DEnVar was

comparable or sometimes superior to the other methods.

However, the important points are that (1) in 4DEnVar, no

tangent linear or adjoint versions of the model code have to

be used, which are both difficult and laborious to obtain

and maintain, and that, as a result, (2) the computational

cost compared to 4DVar is decreased (Gustafsson and

Bojarova, 2014).

The intention of the present paper is to describe an

implementation of 3DEnVar in a full operational oceano-

graphic forecasting system and test it by applying it on a

25-yr Baltic Sea reanalysis experiment. To the best of our

knowledge, 3DEnVar (or 4DEnVar) has never been

applied in oceanography before. Furthermore, the oceano-

graphic case is different than the atmospheric case because

of the presence of sea ice, which is a very difficult variable

to assimilate. The reason is that sea ice variables are

very nonlinear, the associated length scales are very short

compared to, for example, temperature, and that the fre-

quency distribution is bimodal rather than Gaussian as it is

constrained by nature to be in the range 0�1. The ensemble

we will use in this paper is stationary and will be based on

model states from previous years but from the same season

as the analysis. In this way, the BECs will vary slowly with

the seasons. The long-term goal, however, is to implement

4DEnVar and use BECs based on an updated ensemble

forecast, but this has not been done in this paper. The

method has several interesting properties which may be

important in operational forecasts as well as in reanalyses.

First, it is by default a multivariate method, which means

that one single observation may affect many different

variables simultaneously. This may be important in, for

example, assimilation of sea ice, in cases where many ice

variables cannot be observed. This was also the case in the

EnOI method employed by Liu et al. (2013) mentioned

above. Second, just like in EnOI, an ensemble of model

states is used to calculate statistics for the BECs, which

is important to be able to spread the influence of each

observation to other points in space as well as to other

variables. In addition, being a variational method (like

traditional 3DVar and 4DVar, but unlike, for example,

EnOI and EnKF), the updated initial field (the analysis) is

obtained by minimizing a cost function. This implies that it

is possible to assimilate also quantities that are not model

variables, for example, integrated quantities such as the

transport through a section or radial velocities. This is not

easily done with, for example, the OI or EnOI methods.

This paper is organized as follows. First, a description of

the circulation model is given in Section 2, followed by a

summary of the data assimilation method in Section 3,

including the minimization technique, localization and

choice of ensemble. In Section 4, we present results from

some assimilation experiments including a 25-yr reanalysis

experiment. Then the paper concludes with a summary and

a discussion of the results in Section 5.

2. The circulation model: HIROMB

The implementation of 3DEnVar described in this paper

has so far been adapted for use with two different ocean

models. One of them is Nucleus for European Modelling

of the Ocean (NEMO), described by Madec and the

NEMO team (2008), and the other one is High-Resolution

Operational Model for the Baltic (HIROMB). In this

paper, we have used HIROMB as the circulation model.

HIROMB is the operational ocean forecasting model

in use today at our institute, the Swedish Meteorological

and Hydrological Institute (SMHI), and has been since

the mid-1990s. Version 2.0 of the model was described

by Wilhelmsson (2002) and Funkquist and Kleine (2007),

and the changes leading to version 3.0 was described

APPLICATION OF 3D ENSEMBLE VARIATIONAL DATA ASSIMILATION 3



by Axell (2013). In this study, we have used the latest

version of HIROMB, v4.6, which compared to v3.0 has

improved air�sea interaction, ice dynamics and thermo-

dynamics, and has a rotated grid implemented.

The region covered by the HIROMB configuration used

in this study is the North Sea and the Baltic Sea with 5.5 km

horizontal grid resolution (see Fig. 1). It has 50 vertical

layers (z coordinates) with a cell thickness of 4m in the

upper 80m of the water column, then slowly increasing to

a maximum of 40m below 360m depth. The boundary

conditions necessary are SSH, salinity and temperature

(S/T) profiles, and ice variables. At the open boundaries, a

sponge layer is used for all tracers (salinity, temperature,

ice) between the inner model grid and the prescribed values

at the boundary. For velocities, a radiation condition is

applied at the boundary. The open boundary is located in

the western English Channel and the northern North Sea

(see Fig. 1). SSH is extracted from a storm-surge model

called NOAMOD run at SMHI, covering the north-eastern

part of the North Atlantic with 44 km grid resolution. The

S/T profiles are just climatology in these experiments, and

the ice variables are all assumed to be zero (no ice).

The meteorological forcing used in the experiments

described here was High-Resolution Limited Area Model

(HIRLAM) with 22 km grid resolution, from the recent

reanalysis project Euro4M (Dahlgren et al., 2014). The

meteorological variables used as forcing are air pressure,

wind components, air temperature, humidity and total

cloudiness. In HIROMB, precipitation is assumed to be

balanced by evaporation. This implies an underestimate of

the freshwater forcing of about 10 % (e.g. Omstedt and

Axell, 1998) which needs to be corrected by data assimila-

tion in longer simulations.

River runoff to the model is specified using hindcast data

from the hydrological forecast model E-HYPE (Arheimer

et al., 2012), run operationally at SMHI. The number of

rivers is of the order of a few hundred along the model

coast line.

The turbulence model is a state-of-the-art two-equation

model of the type k - v (Wilcox, 1998), which has been

adapted for ocean applications by Umlauf et al. (2003). For

the HIROMB implementation, see Axell (2013). It includes

parameterizations of extra source terms of turbulent kinetic

energy due to breaking internal waves as well as Langmuir

circulation (Axell, 2002).

3. Data assimilation method

3.1. Background

The theory of the 3DEnVar data assimilation system as it is

described and used here originates from two papers by Liu

et al. (2008, 2009). They described a 4-D ensemble-based

variational (4DEnVar) data assimilation system applied to

the atmosphere, but here we will restrict ourselves to the

3-D case, as we for simplicity in this paper do not take the

time dimension into account. Also, in contrast with Liu

et al. (2008, 2009), we will apply the method to oceano-

graphic data assimilation, in a full-scale ocean fore-

cast model, and make a longer test run. The simplified

3DEnVar system we will use is described below.

The analysis xa is calculated from the background field

xb by adding a data assimilation increment dx:

xa ¼ xb þ dx; (1)

where

dx ¼ X0bw: (2)

In the above, Xb
? is a model state perturbation matrix and w

is the so-called control vector (see below). The size of dx

is n, the size of Xb
? is n�N and the size of w is N, where n is

the length of the full state vector (of the order of 106 in a

typical operational system including both surface variables

and 3-D variables such as T/S) and N is the number of

ensemble members (of the order of 102). For comparison,

in traditional 3DVar, Xb
? would have been replaced by a

precondition matrix U of the size n�n, and the size of w

would have been n. This implies that the 3DEnVar system

used here has a reduced rank compared to traditional

3DVar.

As in EnOI theory, the 3DEnVar system depends on

an ensemble of model states (Evensen, 2003). If the state

vector of a (first guess) background field is denoted xb (as

before), then an ensemble of background fields could be

denoted

xb1; xb2; :::; xbN:

If the ensemble mean state vector is denoted xb then the

model state perturbation matrix Xb
? encountered in eq. (2)

may be calculated as

Xb
0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p ðxb1 � xb; xb2 � xb; :::; xbN � xbÞ: (3)

Hence, Xb
? is a matrix with N columns, where each column

contains the perturbations from the ensemble mean of each

ensemble state vector.

Next, we make a transformation to observation space:

HXb0 �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p

�ðHxb1 �Hxb;Hxb2 �Hxb; :::;HxbN �HxbÞ:
(4)

Here H is the observation operator transforming from

model space to observation space (in its simplest form, it

represents an interpolation in space). Note that whereas the

4 L. AXELL AND Y. LIU



dimension of Xb
? is n�N, the dimension of HXb

? is only

m�N which is much smaller (where m is the number of

observations).

An innovation vector d is calculated as the difference

between the observations in vector y and the corresponding

first guess (in observation space), according to

d ¼ y�Hxb: (5)

The elements of the control vector w encountered in (2)

are set to zero to begin with, and the solution is obtained by

minimizing a cost function J whose value depends on the

control vector w:

JðwÞ ¼ 1

2
wwT þ 1

2
ðHXb

0w � dÞTO�1ðHX0bw � dÞ; (6)

where ()T denotes the transpose of a vector or matrix andO

is the observation error covariance matrix. Here we make

the common assumption that the observation errors are

uncorrelated, which implies that all off-diagonal values

of O are zero and that the matrix inversion becomes trivial

(it can be done element-wise along the diagonal).

The gradient of (6) is needed to find the minimum of

J and is given by

rwJ ¼ w þ ðHX0bÞTO�1ðHX0bw � dÞ: (7)

In eqs. (6) and (7), the matrix HXb
? is calculated with the

right hand side of eq. (4), that is, using ensemble statistics.

3.2. Minimization technique

The forecast grid resolution is of 5.5 km in this setup, but to

save computer time the data assimilation was carried out at

reduced resolution, 11 km instead, and then interpolated

back to 5.5 km. The minimization of the cost function J is

made using a steepest decent algorithm. Starting from the

background field as a first guess, the gradient (7) is used to

find the direction of the search in each iteration. As long as

the value of J is lower than the previous one, the step length

doubles in each iteration step. Whenever the new value

exceeds the previous one, the step length is halved a number

of times until the new value becomes lower than in the

previous step. After typically 30�100 iterations, the mini-

mization routine finds the minimum of the cost function

with an accuracy in dx which is determined a priori (a small,

non-dimensional number). Using this procedure, the num-

ber of iterations can be kept sufficiently small not to

dominate the computational time of the data assimilation.

3.3. Localization

The data assimilation increment dx in eq. (2) can be seen

mathematically as a linear combination of the columns of

Xb
? , where the coefficients are stored in w (Liu et al., 2008).

As the dimension of w in eq. (2) is N, compared with n

in dx, it is easy to understand that there are fewer degrees

of freedom in 3DEnVar and 4DEnVar compared with

the traditional 3DVar and 4DVar, respectively (where the

dimension of the control vector is n rather than N). In other

words, we are doing the minimization in a lower dimen-

sional space. As we cannot afford to have the size of N

anywhere near n, analysis noise will occur (Liu et al., 2009)

due to spurious error correlations in our ensemble statis-

tics, especially notable over longer distances where we

expect small error correlations. This problem is usually

solved by a procedure called localization. Its main purpose

is to damp spurious long-range error correlations that

occur because NBBn. The localization technique we will

use here follows the method by Liu et al. (2009). We will

start by discussing only horizontal localization.

The classical BEC matrix B is in 3DEnVar related to the

perturbation matrix Xb? according to

B ¼ X0bX0b
T
: (8)

The elements of B may be called Bij, where i is the row

number and j is the column number. Hence, Bij is the

covariance between the ith and jth elements in B, which

could mean the covariance between one variable at one

location in space with another (or the same) variable at

another (or the same) location in space. The idea with

horizontal localization is tomodify the values of the elements

Bij, to reduce their magnitude depending on the horizontal

distance between location i and j. This can be written

P ¼ Ch � B (9)

(Houtekamer and Mitchell, 2001), where the symbol �
denotes the Schur product (element-wise multiplication)

and P replaces B if horizontal localization is applied.

In this paper, the elements in Ch have been calculated

using the horizontal localization function of Counillon and

Bertino (2009), according to

qðsÞ ¼
1 ; s � Lh=2;
1
2

1þ cos 2pðs�Lh=2Þ
Lh

h in o
; Lh=2BsBLh;

0 ; s � Lh;

8><
>:

(10)

who used it with the EnOI method.

In eq. (10), s is the horizontal distance (in km) and Lh is

the horizontal localization length scale (in km), which is

also a cut-off distance. It should be slightly larger than the

horizontal error correlation length scale, which is often of

the order of 50�100 km. Here, we will set LH�50 km, but

in practice, with the empirical orthogonal functions (EOFs)

approach we will be using (see below) in combination with

a limited number of EOF modes, the length scale will be, in

practice, larger than 50 km.

APPLICATION OF 3D ENSEMBLE VARIATIONAL DATA ASSIMILATION 5



One problem which arises is that B does not occur

explicitly in our equations, but Xb
? does. So instead of

replacing B with P, we want to replace Xb
? with Pb

?

according to

P0b ¼ C0h � X0b1;C
0
h � X0b2; . . . ;C0h � X0bN ; (11)

where Xb1
? is an n�n matrix in which every column is

identical and also identical to the first column in Xb
? .

Furthermore, in Xb2
? every column is identical to the second

column in Xb
? , etc.

Ch
? in (11) is related to Ch as

Ch ¼ C0hC0h
T : (12)

Now, to reduce computational costs, we again follow Liu

et al. (2009) and note that Ch may be decomposed into

EOFs according to

Ch ¼ EhkhET
h ; (13)

where Eh is an n�rh matrix containing the eigenvectors, lh

is a diagonal rh�rh matrix whose diagonal elements are the

eigenvalues and rh is the number of horizontal EOF modes

we choose to retain. Hence, Ch
? can be written

C0h ¼ Ehk
1=2
h (14)

and inserted in eq. (11).

To take also the important vertical localization into

account, we assume that the horizontal and vertical localiza-

tions can be separated as

P ¼ Cv � ðCh � BÞ: (15)

The elements in the vertical localization matrix Cv

are calculated using the function by Zhang et al. (2004),

given by

qðDzÞ ¼ 1

1þ ðDz
Lv
Þ2
; (16)

where Dz is the vertical distance in vertical grid units

between two layers and Lv is a vertical length scale, here set

to 1 grid cell unit. Similarly to the horizontal localization,

vertical EOF modes will also have to be calculated and

implemented similarly to the horizontal localization.

The calculation of the horizontal EOF modes is done

on a lower resolution grid, in this setup at 22 km grid

resolution, to speed up the computation. The horizontal

EOF data are calculated only once and are stored on disk

the first time, and can be read very fast in subsequent runs

by the data assimilation code. Then the modes are

interpolated to the data assimilation grid resolution, which

in this case is 11 km. A cross-section of the analytical

function in eq. (10) is shown in Fig. 2 along with its EOF

counterpart using rh�100 EOF modes. The figure shows

the lower resolution grid, that is, 22 km grid resolution.

It is clear that the EOF representation works as intended,

but the localization function has in practice become slightly

wider than the analytical function due to the limited

number of EOF modes. Also, the centre-point value is

smaller compared to the analytical function, but in the

figure it has been rescaled to be 1.0 in the centre.

The vertical EOF modes are very fast to calculate on line.

So, for simplicity, they are not stored on disk but recalcu-

lated each time they are needed, that is, once for each data

assimilation cycle. Figure 3 shows the shape of the vertical

localization function, with examples from the two vertical

levels 1 and 10 as a reference (2 and 38m depth, respec-

tively), and how big the damping of adjacent layers becomes.

The EOF representations of the functions have a maximum

slightly smaller than unity, but in the figure it has been

rescaled to be 1.0 as a maximum. The figure shows the result

when using rv�15 vertical EOF modes, which explains

61 % of the variance. This is the number of modes we have

chosen to use in this paper. Using rv�25 vertical EOF

modes instead, the analytical function would be even better

reproduced with 80 % explained variance. Using rv�50

vertical EOFmodes, we explain 100% of the variance (i.e. a

perfect match), because we only have 50 vertical layers in the

model. In contrast, using 100 horizontal EOF modes only

explained about 26 % of the variance in the horizontal

localization. The reason why so many horizontal modes are

required is that we try to represent a very sharp localization

function which should be valid over a very large computa-

tional domain (see Fig. 1).

Using a larger number of modes helps to keep the EOF

approximations closer to the analytical functions, but that

increases the computational cost. In fact, the computational
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Fig. 2. Analytical and EOF approximation of the horizontal

localization function. The figure shows a cross-section through the

centre point. The number of horizontal EOF modes is 100.
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time t of the most time-consuming part of the 3DEnVar

code is proportional to rv, rh, N and m:

s / rvrhNm: (17)

See Liu et al. (2009) for more discussions on computational

costs, especially regarding the introduction of EOFs.

The net result of the localization is that the n�N matrix

Xb
? is replaced by a 4-D matrix of the size n�N�rh�rv.

Similarly, the control vector w in (2), originally of the

dimension N�1, is replaced by a 3-D matrix of the size

N�rh�rv. Hence, the need for localization increases

the computational demands both in terms of computer

memory and speed. However, using localization without

the EOF approach (or a similar approach), the dimensions

of Xb
? and w would have been much larger.

3.4. Choosing an ensemble

The success of an ensemble-based data assimilation system

depends strongly on the choice of ensemble. A cheap, yet

efficient, way of creating an ensemble is to use a few years

long free model run. Here, we follow the method of Xie and

Zhu (2010) to pick the samples: Depending on the assi-

milation date, we pick ensemble members from the same

season (say, within a 3-month window) from the static

ensemble, but for previous years. The free run thus works

as a library from which we pick ensemble members.

It is not necessary to pick ensemble members every day.

Instead, we could choose to use every few days, or make

averages over a few days. As we pick ensemble members

from the same season as the assimilation date, the ensemble

changes slowly over the year, to match the seasons. Hence,

even though the library itself is static, the ensemble changes

with the seasons.

In the following experiments, we used ensemble data for

the period 2006�2011. For each ensemble year, we used a

time window of 75 d, centred around the assimilation date,

from which we calculated 15 five-day mean values. Hence,

with this setup the total number of ensemble members

becomes 6�15 �90.
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As can be seen in eq. (3), the elements of the perturbation

matrix Xb
? are supposed to be in the form of perturbations

from some mean state. However, simply subtracting an

arithmetic mean is not a good choice. The reason is that if

the time window is long enough, there may very well be a

seasonal signal in the ensemble data which should be

removed (Oke et al., 2005). This is done in two steps. First,

a straight line is fitted using the data from each calendar

year. Then the fitted values are subtracted from each

calendar day to obtain deviations from the seasonal signal

that the straight line represents, and this is then done for all

calendar years in the ensemble. Using this procedure, each

ensemble member is just a deviation from a low-frequency

signal based on the ensemble data.

For a given ensemble, the perturbation matrix Xb
? has a

certain variability. As the variability will affect the data

assimilation increments directly, through eq. (2), it may be

necessary to inflate or deflate the variability of Xb
? . That is

done by multiplying the whole matrix Xb
? by an inflation

factor. In our case, experiments revealed that good results

were obtained from simple tunings of the observation

errors while keeping the inflation factor equal to 1.0.

However, this is not a general result. Given a certain choice

of ensemble, the inflation factor may be considered a tun-

ing parameter and may even be automatically corrected

depending on the variance of Xb
? (Evensen, 2009).

The elements in the observation error covariance matrix

O need to be specified. As stated before, we assume the

observation errors to be uncorrelated which implies that

the off-diagonal elements are all zero. Hence, we only need

to specify the squares of the expected observation errors in

the diagonal of O. After some tests, we set the observation

error for temperature to 0.50K, for salinity to 0.25 and for

SIC to 0.10, which are all reasonable values. For example,

Xie and Zhu (2010) assumed an observation error of 0.50K

near the surface (decreasing with depth), and 0.12 for sali-

nity (also decreasing with depth) in their Pacific experi-

ments, i.e. slightly smaller than in this study. Further, Liu

et al. (2013) assumed observation errors of approximately

0.9K for temperature and 0.09 for salinity. Regarding SIC,

Lisaeter et al. (2003) assumed an observation error of 0.05,

again slightly smaller than we do here.

The implementation of the 3DEnVar code allows switch-

ing on and off the assimilation of (and effect on) all

implemented variables. These are SSH, ice variables (for

HIROMB: ice concentration, level ice thickness, ridged ice

thickness, ridge sail height, ridge density and ice drift

components; for NEMO: ice concentration, total ice thick-

ness and ice drift components), salinity, temperature and

current velocity components. All variables that are ‘switched

on’ are affected by all observations through cross correla-

tions between the variables in the ensemble statistics (the

multivariate feature in the implementation), so care must be

taken before switching on, for example, SSH when assim-

ilating other variables unless previous tests have shown a

benefit from this. In this paper, the following variables were

included in the data assimilation (including cross correla-

tions): (1) SIC, (2) level ice thickness, (3) temperature and (4)

salinity. Assimilation of surface currents from HF radars

has also recently been tested in short experiments with good

results using the 3DEnVar system, but those results will be

reported elsewhere. Furthermore, assimilation of sea level

anomalies will also be tested in the future.

4. Results

4.1. Single-surface observations of salinity and

temperature

To test the assimilation system we will start by making

experiments similar to so-called single-observation experi-

ments. The difference is that we will use six observations at

the same time, but distributed in space sufficiently far away

from each other. Hence, for a certain region the result

would be more or less identical if it had been a single-

observation experiment. The benefit of assimilating more

than one at a time in this way is simply that it lets us see the

effect of single observations in many regions at the same

time on a single map.

We will start with salinity. The first-guess field is from

a real simulation, valid at 00 UTC on 4 January 2011,

but the observations are synthetic and chosen to have

values exactly 1.0 above the first guess in each location.

The observation locations are chosen from all over the

model domain, from the Bothnian Bay, the Bothnian Sea,

the Gulf of Finland, the Baltic proper, the Skagerrak and

the North Sea (see Fig. 1). The locations are deliberately

chosen to be near the coast in some cases and further from

the coast in other cases. All observations are assumed to be

at the surface in this experiment.

Figure 4a shows the result from the experiment in terms

of the data assimilation increment dx. First, we notice that

in some locations, in particular in the north, the increment

maxima are much smaller than unity, despite the fact that

the innovations (observation minus first guess) were exactly

�1.0 in all locations. The reason is that in ensemble

methods such as 3DEnVar, the increments depend not only

on the local innovation, but also on the ensemble statistics

(representing the error in the first guess). If the ensemble

spread is small in a certain region, the increment will also

be relatively small (unless a very small observation error

has been assumed). This is the case in the northern test

locations, which explains the surprisingly small increments.

In the other locations, the variability in surface salinity is

higher, resulting in increments much closer to unity. At the

six observation locations, the increments are in the range
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�0.41 to �1.00. The next thing we may notice is that the

structures of the increments are rather non-isotropic. The

reason is that persistent local currents (e.g. near a coast)

affect the ensemble statistics in a way that the increment

structures often seem to follow coasts and form ellipses, for

example, the location in the North Sea. Surprisingly, the

structures in the Baltic proper location are also elongated,

despite the relatively long distance to the coast. This may

be due to recurring current directions in this area.

Next, we will make a similar experiment but with SST

instead. The observation locations are identical to the

salinity experiment and the innovations (observation minus

first guess) were chosen to be exactly �1.0 8C. The result in
terms of assimilation increment is shown in Fig. 4b. In this

case, the values in the local maxima of the increments have

a smaller spread, in the range �0.96 to �1.00 8C. The
difference to the salinity experiment in this respect is that

the variability of SST is much larger. In addition, we see

that the regions affected by each observation are larger

in the temperature experiment compared with the salinity

experiment. The interpretation is that the horizontal

correlation length scales are larger for temperature in this

region. Regarding the shapes of the structures, we see an

ellipse-shaped structure in the Gulf of Finland, whereas in

the central Baltic proper we see a more circular shape.

Summarizing the differences between the surface sali-

nity and temperature experiments, there is a tendency for

smaller length scales and more elliptical structures for

the salinity increments compared with the temperature

increments.

The horizontal localization should ideally suppress all

long-distance correlation, but we see some non-zero fea-

tures away from the observation locations. This is because

we only use a limited number of horizontal EOF modes.

However, the amplitudes of these long-range structures

are probably small enough not to give us any problems,

otherwise we need to increase the number of horizontal

EOF modes which increases the computational cost.

4.2. Assimilation of SST

Now it is time to test the data assimilation with real

observations. We choose an analysed SST field from the

Swedish Ice Service at SMHI produced using the so-called

IceMap system (digitized data based on hand-drawn charts),

valid at 00 UTC on 4 January 1989. The SST data set had a

resolution of 11 km.

Figure 5a shows the innovation field (observation minus

first guess) in each observation point, which reveals that the

first-guess field was too warm except in the Kattegat�
Skagerrak region and the south-western part of the Baltic

proper. Comparing the innovation with the data assimila-

tion increment in Fig. 5b we see many similarities, even in

the details. The signs of the innovation and the increment

are in general the same, and so are the magnitudes. In fact,

the increment field is almost a perfect copy of the

innovation field, only slightly smoothed and having slightly

smaller amplitude, as expected. The smooth data assimila-

tion increment field in Fig. 5b is a result of overlapping

BECs and localization functions. Nevertheless, it has

certain horizontal structures, for example, cooling along

the eastern Bothnian Sea and the southern Baltic proper

and in the central Kattegat, whereas there is warming in the

south-western Baltic proper, the Danish straits and the

Skagerrak.
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Fig. 4. Result from assimilating six synthetic observations of (a) SSS and (b) SST. The observation locations are indicated with crosses (�).
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Panels (c) and (d) inFig. 5 show the observed SST field and

the resulting analysis SST field, respectively. We see that

many small-scale features in the first-guess field (not shown)

have survived and are still present in the analysis in Fig. 5d,

e.g. in the Skagerrak and the southern Baltic proper.

4.3. Assimilation of SIC

Next we will make an experiment in which we assimilate a

real SIC field. The data is again from the IceMap system,

just like the SST data above, and also valid on 4 January

1989. Again, the first guess field is from a free model run

without data assimilation, valid on the same date. The SIC

data had a resolution of 5.5 km.

Figure 6a shows the SIC innovation field, which reveals

that the first guess had too little ice in the Bothnian Bay and

the Gulf of Finland. The increment field in panel (b) shows a

good correspondence with the innovation field, but as

expected the increment field is smoother and slightly damped.

The analysis field in panel (d) reveals some noise in terms

of small regions having non-zero ice concentration values,

e.g. in the central Bothnian Bay, where we expect open water.

Comparing with the observation field in panel (c) we under-

stand that the noise is a result of the data assimilation itself

and is due to the fact that even small levels of noise in the

increment field, result in small but positive ice concentration

values in the analysis. Some additional noise has already been

removed artificially by comparing with the SST field and

assuming a threshold value of SST (here set to �1 8C) above
which SIC and other ice variables are set to zero.

It is also interesting to see how other variables have

changed during the process of assimilating SIC data.

Remember, the 3DEnVar system as it is implemented

here is multivariate, which implies that many variables are
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Fig. 5. Experiment of assimilating a real SST field, in terms of (a) innovation, (b) assimilation increment, and (c) observations and (d) analysis.
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affected simultaneously. The SST increment in Fig. 7a

reveals that almost everywhere where the data assimilation

adds ice, the SST decreases as could be expected. This is

physically sound and is a direct result of the covariances

between temperature and ice concentration in the ensemble

used here. This helps keeping the ice�ocean model from

regenerating ice immediately where we just removed it

through data assimilation. However, the SST increments

are rather large and negative in some places. This could

potentially lead to problems, depending on how the ice ther-

modynamics in the circulation model works. In HIROMB,

any negative heat content (relative to the freezing tempera-

ture) is converted to equivalent ice volume.Hence, this needs

to be checked in longer reanalysis runs. Figure 7b shows the

corresponding SSS increments, which are rather small (less

than 1) and of varying signs. However, as the salinity is of the

order of 1 near some river mouths, the circulation model

must be able to keep the salinity from becoming negative,

artificially if needed.

4.4. Deep single-observation experiments: salinity

and temperature

So far we have only considered the 2-D ocean surface.

In a reanalysis system it is also important to be able to

assimilate vertical profiles of salinity and temperature. The

test location was 50m depth at the standard measuring

station BY5 (see the map in Fig. 1), located at 55 815? N,

15 859? E. The first-guess field was from 25 January 1989.

A synthetic observation with a salinity exactly 1.0 above

the first guess was used. The result is shown in Fig. 8. In the

left panel we see that the increment profile has a maximum

of 0.78 and that the profile is very smooth. The increment

is halved about 5m above and below the observation

depth, and at a vertical distance of 15m the increment is

practically zero. The right panel in Fig. 8 shows the

resulting salinity profile. The profile looks unrealistic as it

is unstable, but this is just a test of the assimilation

properties.
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The corresponding temperature experiment, with a

synthetic observation exactly 1.0 8C above the first guess,

is shown in Fig. 9. In the left panel we see that the

maximum increment is �0.96 8C. The increment profile is

slightly broader than in the salinity case, but other-

wise very similar. The right panel in Fig. 9 shows the

end result, with a clear change in temperature near 50m

depth.
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Fig. 7. Changes in (a) SST and (b) SSS as a result of assimilating SIC.

−1 0 1

0

10

20

30

40

50

60

70

80

90

Vertical innovation / increment

D
ep

th
 (

m
)

 

 
Innovation

Increment

7 8 9 10

0

10

20

30

40

50

60

70

80

90

Salinity

D
ep

th
 (

m
)

 

 
Observations

First guess
Analysis

Fig. 8. The result of a single-observation experiment for salinity at 50m depth with an innovation of �1.0.

12 L. AXELL AND Y. LIU



4.5. Assimilation of real salinity and temperature

profiles

Now it is time to test real, observed salinity and tem-

perature profiles, both made at station BY5 (see the map in

Fig. 1). The observations and first-guess fields were both

from 25 January 1989.

The result from the salinity profile experiment is shown in

Fig. 10. The left panel shows the innovation as well as the

increment, and the right panel shows the observations, the

first guess and the analysis. We see that in this experiment

the first guess slightly underestimates the salinity in the

surface layer, and grossly underestimates it in the deep layer

to the extent that the two-layer structure is almost absent

(see the ‘First guess’ in Fig. 10). The data assimilation

succeeds in improving the model field to a very high degree.

The profile changes from an almost linear stratification to

a two-layer structure, as observed. The bottom salinity

becomes very close to the observed value, about 15. The

increment profile is rather successful in the sense that it

mimics the innovation profile, even though there is a slight

overshooting at 50m depth. This may be due to overlapping

correlation and localization functions, i.e. contributions

from observations at other levels, or possibly to oscillations

in the EOF representation of the horizontal localization

function.

The corresponding results from the temperature profile

experiment are shown in Fig. 11. We see that the innovation

profile changes sign in the upper half of the water column,

and that the increment does not always have the correct

sign. The values of the innovations and the increments are

rather small, however, so the errors are also small. In the

bottom layer, the increments are larger, almost �4 8C at

the maximum, and the increment profile manages to mimic

the shape rather well, also in terms of magnitude.

4.6. Sanity test of the system in a 25-yr reanalysis

test run

Finally we tested the system (circulation model�3DEnVar)

in a longer test run. We simulated the 25-yr period January

1989 to December 2013, both with and without data

assimilation (DA). Instead of spinning up the model before
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Fig. 9. The result of a single-observation experiment for temperature at 50m depth with an innovation of �1.0 8C.
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the start, the initial condition was taken from an earlier

simulation valid on January 1st of the randomly chosen year

2008. The observations used in the assimilated run were

SST, SIC and SIT (Sea Ice Thickness) (all available at least

twice a week during Jan�May and December) from the

IceMap system, and S/T profiles from the ICES data base

(almost daily, but spread out over the domain). Analyses

with 3DEnVar were made every 6 hours, which implies a

data assimilation window of 6 hours. However, all T/S data

for each calendar day were assumed to be valid at 12 UTC,

which in practice implies a window length of 24 hours for

these variables. SST and ice variables were valid at 00 UTC.

The assimilation increments were applied at the first time

step in the model. A full documentation of the results of the

reanalysis will be published elsewhere, but some results will

be shown here.

Figure 12 shows the improvement in the vertical salinity

structure at station BY15 (see map in Fig. 1), which is

representative of the Baltic proper. The observations in

panel (a) are the same as used in the data assimilation in the

reanalysis, i.e. from the ICES data base. The free run in

panel (b) shows how the current setup with HIROMB has

great problems with salt-water inflows over longer time

scales, which results in almost unstratified water (from a

salinity point of view) after about 15 yr. The reanalysis run

in panel (c), however, shows how the 3DEnVar data

assimilation system is able to maintain the stratification.

Figure 13 shows the corresponding result for the vertical

temperature structure at BY15 (see map in Fig. 1). The

surface layer (upper 50m) is well simulated by both the free

run in panel (b) and in the reanalysis in panel (c), compared

to the ICES observations in panel (a). However, the free

run has problems with the subsurface layer (below 50m),

due to the lack of deep inflows, whereas the reanalysis run

using 3DEnVar shows a much improved result. Similar

results (not shown) are found in other subbasins, for both

salinity and temperature.

The above results were obtained using dependent obser-

vations, i.e. the same observations that were used in the data

assimilation (from the ICES data base) are used for the

verification. There is another data base called SHARK

(SvensktHavsarkiv, or SwedishOceanArchive), maintained
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by SMHI, which also contains in-situ observations. ICES

and SHARKoverlap to a high degree, but with an automatic

search algorithm it was possible to find observations in the

SHARK data base that were not present in the ICES data

base. These observations were thus independent as they had

not been used in the reanalysis and could therefore be used to

calculate error statistics. The data were from the Baltic Sea

only and spread over time and space. The observation

operator in the 3DEnVar code was used to interpolate

from model space to observation space for each available

independent observation, for the free run (‘No DA’) as well

as for the reanalysis (‘With DA’).

The results are shown in Fig. 14 in terms of annual mean

values of bias errors and as rms errors. We see in panel (a)

that in the surface layer (0�50m deep), both the bias errors

and the rms errors were reduced in the reanalysis compared

to the free run, for almost all years. In the deeper layers

(50�500m), the improvement is even larger; see panel (b).

The results for temperature in the surface layer are shown

in Fig. 14c, which indicates that the bias errors and rms

errors are only slightly reduced in the reanalysis compared

to the free run, whereas in the deeper layers the errors are

greatly reduced; see panel (d).

For SSH, the results were almost identical between the

free run and the reanalysis experiment and rather good

compared to coastal tidal gauges (not shown). For ice

variables (not shown), some noise (as discussed above) was

sometimes detected which tended to deteriorate the results

in some situations.

5. Summary and discussion

The 4DEnVar data assimilation system for meteorological

data assimilation described by Liu et al. (2008) and Liu

et al. (2009) has been implemented in a 3-D form

(3DEnVar) for ocean and sea ice data assimilation. It has
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been adapted for use with the ocean circulation models

HIROMB (e.g. Funkquist and Kleine, 2007; Axell, 2013)

and NEMO (Madec and the NEMO team, 2008), which are

both run at SMHI today. In this paper we chose to use

HIROMB as the circulation model.

The data assimilation system relies on ensemble statis-

tics from previous model runs, and the result is very much

dependent on that statistics. A semi-static ensemble was

used (Xie and Zhu, 2010), based on a 6-yr free model run

and 5-day mean values calculated from a time window of

75 d centred around the assimilation window, which results

in 90 ensemble members.

To avoid spurious long-range correlations, horizontal

and vertical localization was applied. The length scale of

the former was chosen to be 50 km and the latter to one

vertical grid cell unit, or about 4m near the surface. Due

to the use of a limited number of horizontal EOF modes in

the localization implementation, the length scales were in

practice somewhat larger than this, however. If smaller

length scales should be used in the future, more EOF

modes must be used which increases the computational

costs.

The results from surface experiments showed that SST

had relatively long BEC length scales in the tested region, at

least of the order of 100 km. In contrast, SSS had much

shorter BEC length scales in the same region, less than

25 km (except along coasts). The results were realistic for

both temperature and salinity. It was found that near the

coasts the assimilation structure functions tended to be

oriented along the coast, especially for salinity. In the open

ocean, salinity also had somewhat elongated structures,

whereas temperature had more isotropic structures.

The experiments with real SST and SIC fields also gave

realistic results. Rather smooth increment fields were

produced, and the increment fields changed sign whenever

the innovation field changed sign, as far as can be expected.

The analysis fields looked realistic, except for some noise in

the SIC field for concentrations close to zero; see Fig. 6d.

This problem has many reasons. First, the noise seems to

occur in regions where the innovation field is zero. Very

close to observation locations, we should expect non-zero

increments due to the BEC length scales for SIC. If these

length scales are too long due to bad ensemble statistics, the in-

crements should be dampened by the horizontal localization.
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However, in this case it seems that this is not enough.

The SIC values in the analysis are very small, however, so

the problem may not be so large in terms of heat in the

ocean. To make the localization more efficient, we must

increase the number of horizontal EOF modes, but we are

already using 100 modes which is very expensive.

Second, the problem is partly related to the fact that SIC

does not have a Gaussian distribution. Rather, it is bimodal

as it is constrained by Nature to be in the range 0�1
(0�100 %), in many locations often resulting in SIC values

close to either zero or one. The problem arises in locations

where we initially have SST above the freezing point, and

hence zero SIC. Small positive increments in SIC in these

locations result in positive SIC in the analysis, even though

the SST is above the freezing point. Hence, it is the

incremental approach we are using in the data assimilation

(where we add an increment to a first guess) that is failing in

this case. The reason is that SST and SIC are strongly linked

to each other and should perhaps not be treated separately

as we are doing here.

One possible way to solve the problem would be to

assimilate the heat content of the ocean instead. Given a

certain surface water temperature and a certain sea ice

volume, we can easily calculate the heat content, both for

model data and for observations (if we have observations

or estimates of the ice thickness as well). After the

assimilation step we need to calculate the ice thickness

and concentration from a heat deficit, which is not trivial

due to an ambiguity. A certain ice volume could be either in

the form of thin ice covering the whole grid cell, or rather

thick ice covering only part of the grid cell. Despite

expected problems with this ambiguity, this assimilation

approach for sea ice should be investigated in the future.

Another obvious approach to improve the ice data

assimilation would be to improve the ensemble. In these

experiments we used ensemble members from a historical

simulation and picked members from the same season as

the analysis. A better choice would be to use ensemble

members from a real ensemble forecast, in which all

members are valid at the analysis time. This approach

would probably reduce the problems with the near-surface

data assimilation, including SST and SSS. This is an

obvious candidate to test in future experiments.

The assimilation of the salinity and temperature pro-

files gave realistic results in the test location BY5. This is a

rather active area with lots of variability, both in Nature
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and in free model runs (and hence in Xb
? ). In other regions

(or seasons) where the variability is smaller, we have seen

worse results (not shown here) with rather small incre-

ments.

It should be noted that as Xb
? represents the spread of the

ensemble, it is implicitly assumed that it is related to the

uncertainty in the first guess (the background error).

Hence, if Xb
? is small in a certain region, for a certain

variable, we also assume the background error is small

here, and vice versa. For each location, it is the ratio

between the observation error and the model error which is

important, together with the innovations (observations

minus the first guess in observation space).

If the ensemble spread is too small it is difficult to update

the model correctly, because the assimilation system

interprets this as relatively small errors in the first guess.

This is a dilemma and an important problem to solve in the

future. On the one hand, small perturbations in the

ensemble statistics means we are relatively confident that

the first guess has small errors and that we should not let

observations with large innovations ruin the analysis. In

this respect, it is only natural that the data assimilation

system gives only a small increment. On the other hand, it

is often the case that oceanographic models underestimate

the variability due to limitations in the physics and

resolution, which may also result in biases. How should

we correct these biases if the assimilation system is

confident the errors in the first guess are small? One way

forward could be to artificially increase the variability (in

Xb
? ) in certain regions, to allow for larger assimilation

increments. This can be justified from the point of view that

the model error is often larger than the ensemble spread

indicates. This method of inflating the ensemble spread for

certain depth levels has been tested by the present authors,
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with some success in the sense that it works from a

technical point of view, but not in longer simulations.

Above we suggested to use an ensemble based on an

ensemble forecast to improve the data assimilation of

surface variables. Unfortunately, that kind of ensemble

would likely fail for deep T/S profiles. The reason is that

the ensemble spread in deep layers from such a forecast is

much too small to be representative of forecast background

errors, unless specific care is taken to avoid this. So perhaps

the best way forward is to use an ensemble based on an

ensemble forecast for surface variables (SST, SSS, ice) and

an ensemble based on a historic free run (like the one used

in this paper) for T/S profiles.

Nevertheless, the 25-yr test of the system gave reasonable

results and the conclusion is that the 3DEnVar data

assimilation method can indeed be used in both reanalysis

work and operational forecasting. However, the problem of

finding an ensemble of model runs (to calculate ensemble

statistics from) which is perfect in all respects should not

be underestimated. In the future, the task of creating an

improved ensemble will be revisited.
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