
Re-Pair in small space

Dominik Köppl
Tomohiro I
Isamu Furuya
Yoshimasa Takabatake
Kensuke Sakai 　　
Keisuke Goto 　　　

S

Cf

B

A

u z

y

w iC A

z

PSC 2020

2

grammar compression

text

3

grammar compression

text grammar
grammar
compression

4

grammar compression

text grammar
grammar
compression

fuzzywuzzyuzi

5

grammar compression

text grammar
grammar
compression

fuzzywuzzyuzi

A → uz
B → Az
C → By
S → fCwCAi

6

grammar compression

text grammar
grammar
compression

fuzzywuzzyuzi

A → uz
B → Az
C → By
S → fCwCAi

non-terminals

7

restore text

A → uz
B → Az
C → By
S → fCwCAi

8

restore text

A → uz
B → Az
C → By
S → fCwCAi

start symbol

9

restore text

A → uz
B → Az
C → By
S → fCwCAi

start symbol A → uz
B → uzz
C → uzzy
S → fCwCAi

expand

10

restore text

fuzzywuzzyuzi

A → uz
B → Az
C → By
S → fCwCAi

restore

start symbol A → uz
B → uzz
C → uzzy
S → fCwCAi

expand

11

SLP: Straight Line Program

fuzzywuzzyuzi

A → uz
B → Az
C → Bi
S → fCwCAi

restore

12

SLP: Straight Line Program
● only one start symbol

fuzzywuzzyuzi

A → uz
B → Az
C → Bi
S → fCwCAi

restore
S

13

SLP: Straight Line Program
● only one start symbol

● right hand side of each rule has length two
(except start symbol)

fuzzywuzzyuzi

A → uz
B → Az
C → Bi
S → fCwCAi

restore
S

S

A

B

C

14

SLP: Straight Line Program
● only one start symbol

● right hand side of each rule has length two
(except start symbol)

● no cycles

fuzzywuzzyuzi

A → uz
B → Az
C → Bi
S → fCwCAi

restore
S

S

A

B

C

Cz

15

SLP: Straight Line Program
● only one start symbol

● right hand side of each rule has length two
(except start symbol)

● no cycles

● every non-terminal has exactly one rule

fuzzywuzzyuzi

A → uz
B → Az
C → Bi
S → fCwCAi

restore
S

S

A

B

C

Cz

A → zz

16

bigram

given : text T
● bigram : pair of characters
● bigram frequency: number of

non-overlapping bigrams in T
● #(b) := frequency of bigram b

fuzzywuzzzyuziT =

17

bigram

given : text T
● bigram : pair of characters
● bigram frequency: number of

non-overlapping bigrams in T
● #(b) := frequency of bigram b

fuzzywuzzzyuzi #(zz) = 2
#(fu) = 1fuzzywuzzzyuziT =

18

Re-Pair
● is an SLP

fuzzywuzzyuzi

19

Re-Pair
● is an SLP
● takes bigram with highest

frequency and replaces it with
new non-terminal

fuzzywuzzyuzi

#(uz) = 3

fuzzywuzzyuzi

20

Re-Pair
● is an SLP
● takes bigram with highest

frequency and replaces it with
new non-terminal

fuzzywuzzyuzi

fA_zywA_zyA_i

#(uz) = 3
A → uz

fuzzywuzzyuzi

21

Re-Pair
● is an SLP
● takes bigram with highest

frequency and replaces it with
new non-terminal

● recurses fuzzywuzzyuzi

fA_zywA_zyA_i

#(uz) = 3
A → uz

fuzzywuzzyuzi

22

T1=fA_zywA_zyA_i

23

T1=fA_zywA_zyA_i

T1=fAzywAzyAi
#(Az) = 2

shrink text

24

T1=fA_zywA_zyA_i

T1=fAzywAzyAi
T2=fB_ywB_yAi

#(Az) = 2
B → Az

shrink text

25

T1=fA_zywA_zyA_i

T1=fAzywAzyAi
T2=fB_ywB_yAi

#(Az) = 2
B → Az

T2=fBywByAi
#(By) = 2

shrink text

26

T1=fA_zywA_zyA_i

T1=fAzywAzyAi
T2=fB_ywB_yAi

#(Az) = 2
B → Az

T2=fBywByAi
T3=fC_wC_Ai

#(By) = 2
C → By

shrink text

27

T1=fA_zywA_zyA_i

T1=fAzywAzyAi
T2=fB_ywB_yAi

#(Az) = 2
B → Az

T2=fBywByAi
T3=fC_wC_Ai

T3=fCwCAi

#(By) = 2
C → By

shrink text

28

T1=fA_zywA_zyA_i

T1=fAzywAzyAi
T2=fB_ywB_yAi

#(Az) = 2
B → Az

T2=fBywByAi
T3=fC_wC_Ai

T3=fCwCAi

#(By) = 2
C → By

terminate when
all bigram
frequencies are
at most 1

shrink text

29

#(Az) = 2
B → Az

#(By) = 2
C → By

T3=fCwCAi

A → uz
B → Az
C → By
S → fCwCAi

final string T3
becomes start
symbol

30

Larson, Moffat'00:

5n + 4σ2 + 4π +
n½ words

Bille+'17:

εn + n½ words

both run in expected
linear time

known algorithms
● n: text length

● σ: alphabet size

● π: # non-terminals

● ε > 0 constant

space is additional to
the rewritable input
text of n words

31

target space:
● n lg (σ+π) +

O(lg n) bits
● input as

rewritable part
included

our algorithms
● n: text length

● σ: alphabet size

● π: # non-terminals

32

in O(n3) time

find bigram b with highest
frequency:
● given b = T [i] T [i+1]
● #(b) = #(T [i] T [i+1])

　　 = max1⩽j⩽n #(T [j] T [j+1])

● can find b in O(n2) time

33

in O(n3) time
● can find b in O(n2) time
● replace all occurrences of b in T

within O(n) time
● number of all distinct bigrams is

at most n (π ≤ n)

⇒ O(πn2) = O(n3) time

34

if σ+π = O(1)
● σ+π : # symbols that can appear in T at

any time
● if σ+π is constant:

– maintain frequencies of all bigrams in
O((σ+π)2) = O(1) space in a binary search
tree

– all operations on the tree: O(1) time
– total time: O(πn) = O(n)

● what if σ+π = ω(1), such as σ+π = Θ(n) ?

35

general approach

aim in this talk: O(n2) time

input text T

n

36

general approach

aim in this talk: O(n2) time

input text T

n

...

one cell takes O(1) words
 (for lg σ bits cells : consult the paper)

37

assumption

can store bigram + frequency in one cell

one cell takes O(1) words
 (for lg σ bits cells : consult the paper)

input text T...

38

idea
● bigram replacement frees up space

⇒ can maintain more frequencies
● for that: divide algorithm into rounds
● at beginning of k-th round :

– fk : number of frequencies we can maintain

– task: compute the frequencies of the fk
most frequent bigrams

39

#(zb) = 33
#(wy) = 33
#(cx) = 31

...
#(ao) = 21

Ti fk

fk

k-th round, number of rules: i

40

#(zb) = 33
#(wy) = 33
#(cx) = 31

...
#(ao) = 21

Ti fk

fk

maintain
frequencies

k-th round, number of rules: i

41

#(zb) = 33
#(wy) = 33
#(cx) = 31

...
#(ao) = 21

Ti fk

fk

#(da) = 20

maintain
frequencies

the most frequent bigram
among those we did not store

k-th round, number of rules: i

42

#(zb) = 33
#(wy) = 33
#(cx) = 31

...
#(ao) = 21

fk

#(ao) = 19
#(bv) = 17
#(cy) = 13

...
fk

after creating
j rules

#(da) = 20

Ti+j

the most frequent bigram
among those we did not store

k-th round, number of rules: i+j

43

#(zb) = 33
#(wy) = 33
#(cx) = 31

...
#(ao) = 21

fk

#(ao) = 19
#(bv) = 17
#(cy) = 13

...
fk

after creating
j rules

#(da) = 20

Ti+j

 table becomes useless

the most frequent bigram
among those we did not store

k-th round, number of rules: i+j

44

#(zb) = 33
#(wy) = 33
#(cx) = 31

...
#(ao) = 21

 fk+1

fk
after creating

j rules

#(da) = 20

Ti+j fk+1

the most frequent bigram
among those we did not store

k+1-th round, number of rules ： i+j

45

start of algorithm
● first round: f1 = O(1) = constant

● maintain the f1 most frequent
bigrams

● replace the most frequent bigram
● update the maintained

frequencies

46

why updating?

fuzzywuzzyuzi

47

why updating?

fuzzywuzzyuzi #(uz) = 3
#(zz) = 2
#(zy) = 2

48

why updating?

fuzzywuzzyuzi #(uz) = 3
#(zz) = 2
#(zy) = 2

fuzzywuzzyuzi

49

why updating?

fuzzywuzzyuzi

fAzywAzyAi

A → uz

#(uz) = 3
#(zz) = 2
#(zy) = 2

fuzzywuzzyuzi

50

why updating?

fuzzywuzzyuzi

fAzywAzyAi

A → uz

#(uz) = 3
#(zz) = 2
#(zy) = 2
#(Az) = 2

0
fuzzywuzzyuzi

fAzywAzyAi

51

● for each replaced
occurrence:
– the frequencies of at

most two bigrams are
decremented by one

52

● for each replaced
occurrence:
– the frequencies of at

most two bigrams are
decremented by one

fuzz

#(fu) = 1
#(zz) = 2

53

● for each replaced
occurrence:
– the frequencies of at

most two bigrams are
decremented by one

fuzz

#(fu) = 1
#(zz) = 2

fA_z

0
1

54

● for each replaced
occurrence:
– the frequencies of at

most two bigrams are
decremented by one

⇒at end of k-th round:
fk+1 ≥ fk+½fk

fuzz

#(fu) = 1
#(zz) = 2

fA_z

0
1

55

● for each replaced
occurrence:
– the frequencies of at

most two bigrams are
decremented by one

⇒at end of k-th round:
fk+1 ≥ fk+½fk

⇔ fk+1≥ (1.5)k f1

– for large k = O(lg n)
fk=Θ(n)

fuzz

#(fu) = 1
#(zz) = 2

fA_z

0
1

can maintain
a constant
fraction of

all frequencies ！

56

● for each replaced
occurrence:
– the frequencies of at

most two bigrams are
decremented by one

⇒at end of k-th round:
fk+1 ≥ fk+½fk

⇔ fk+1≥ (1.5)k f1

– for large k = O(lg n)
fk=Θ(n)

fuzz

#(fu) = 1
#(zz) = 2

fA_z

0
1

can maintain
a constant
fraction of

all frequencies ！

⇒ there are O(lg n) rounds

57

time: summary
● computing frequencies of fk bigrams:

O(n2) time + sort(fk) time

= O(n2) time (since fk ⩽ n)

● compute frequencies O(lg n) times

⇒ O(n2 lg n) time
● how do we get O(n2) time?

58

in-place sorting
● fk : length of input integer array

● result:
– O(fk) space (including input)

– O(fk lg fk) time

[Williams'64: heapsort]

59

O(n2) time
● speed up frequency computation

Ti

T

text after creating i-th rule

60

O(n2) time
● speed up frequency computation
● have fk space

Ti fk

T

61

O(n2) time
● speed up frequency computation
● have fk space

● divide in blocks Bj with |Bj| = ½fk

Ti fk

B1 B4B3B2

½fk ½fk ½fk ½fk

T

62

Ti fk

B1 B4B3B2

½fk ½fk ½fk ½fk

63

Ti fk

B1 B4B3B2

½fk ½fk ½fk ½fk

compute frequencies of bigrams in Ti that appear in B1

64

Ti fk

B1 B4B3B2

½fk ½fk ½fk ½fk

compute frequencies of bigrams in Ti that appear in B1

compute frequencies of bigrams in Ti that appear in B2

65

Ti fk

B1 B4B3B2

½fk ½fk ½fk ½fk

compute frequencies of bigrams in Ti that appear in B1

compute frequencies of bigrams in Ti that appear in B2

merge

store

the ½ fk most
frequent bigrams

66

Ti fk

B1 B4B3B2

½fk ½fk ½fk ½fk

merge

compute frequencies of bigrams in Ti that appear in B3

store

the ½ fk most
frequent bigrams

67

Ti fk

B1 B4B3B2

½fk ½fk ½fk ½fk

merge

compute frequencies of bigrams in Ti that appear in B3

● # merge = # Bj - 1 ⩽ n / fk , |Ti| ⩽ |T| = n

store
the ½ fk most

frequent bigrams

68

Ti fk

B1 B4B3B2

½fk ½fk ½fk ½fk

merge

compute frequencies of bigrams in Ti that appear in B3

● # merge = # Bj - 1 ⩽ n / fk , |Ti| ⩽ |T| = n
● time for bigrams in Bj ： O(n lg fk) (binary search)
● time for each merge: O(fk lg fk)

● total time: O((n (n+fk) lg fk)/ fk) = O((n2 lg fk)/ fk)

store
the ½ fk most

frequent bigrams

69

total time

70

total time

have at most O(lg n) rounds

71

total time

have at most O(lg n) rounds

fk= 1.5k-1 f1=O(1.5k)

72

total time

have at most O(lg n) rounds

fk= 1.5k-1 f1=O(1.5k)

 ⇒ lg fk= O(k)

73

total time

have at most O(lg n) rounds

fk= 1.5k-1 f1=O(1.5k)

 ⇒ lg fk= O(k)

can we get o(n2) time ？

74

bit-parallel algorithm
● machine word size: Θ(lg n) bits
● popcount: O(lg lg lg n) time per word
● total time:

O(n2 lg logτ n lg lg lg n / logτ n)

where τ := σ+π : # symbols

⇒ o(n2) time for τ = O(polylog n)

original
algorithm

penalty word packing

75

arxiv paper

additional content:
● parallel computation
● external memory computation

... in-place or in small space

76

summary
● can compute Re-Pair in-place

– O(n3) time ： trivial
– O(n2) time

● in-place sorting
● batch computing frequencies
● assumed that σ = Θ(n)

● general σ: need max(n/c lg n, n lg τ) + O(lg n) bits for c > 1

● future work:

– n lg τ + O(lg n) bits

– o(n2 lg n) time and τ between ω(1) and o(n) ?

thanks for listening - any questions are welcome!

	Slide: 1
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 2 (4)
	Slide: 2 (5)
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 3 (3)
	Slide: 3 (4)
	Slide: 4 (1)
	Slide: 4 (2)
	Slide: 4 (3)
	Slide: 4 (4)
	Slide: 4 (5)
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 6 (4)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 7 (4)
	Slide: 7 (5)
	Slide: 7 (6)
	Slide: 7 (7)
	Slide: 8
	Slide: 9
	Slide: 10
	Slide: 11
	Slide: 12
	Slide: 13
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 15
	Slide: 16
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 17 (3)
	Slide: 17 (4)
	Slide: 17 (5)
	Slide: 17 (6)
	Slide: 18
	Slide: 19 (1)
	Slide: 19 (2)
	Slide: 19 (3)
	Slide: 19 (4)
	Slide: 19 (5)
	Slide: 20 (1)
	Slide: 20 (2)
	Slide: 20 (3)
	Slide: 20 (4)
	Slide: 20 (5)
	Slide: 20 (6)
	Slide: 21
	Slide: 22
	Slide: 23 (1)
	Slide: 23 (2)
	Slide: 23 (3)
	Slide: 24 (1)
	Slide: 24 (2)
	Slide: 24 (3)
	Slide: 24 (4)
	Slide: 24 (5)
	Slide: 24 (6)
	Slide: 24 (7)
	Slide: 25 (1)
	Slide: 25 (2)
	Slide: 25 (3)
	Slide: 25 (4)
	Slide: 25 (5)
	Slide: 26
	Slide: 27
	Slide: 28

