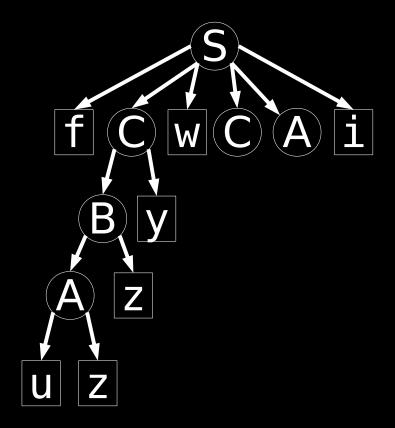
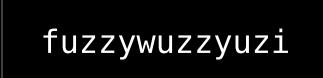
PSC 2020

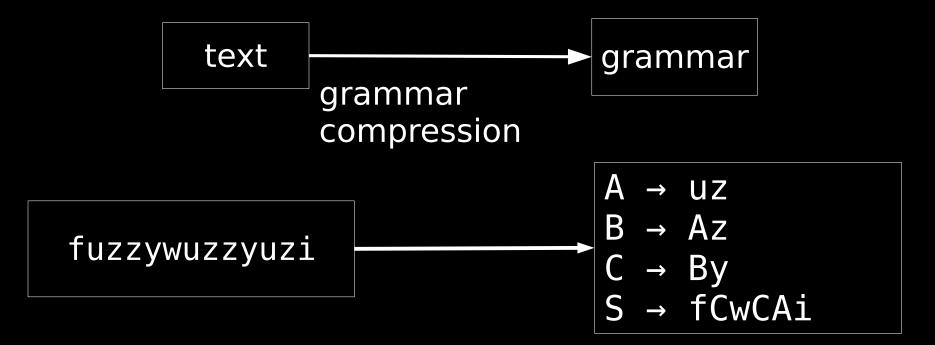
Re-Pair in small space

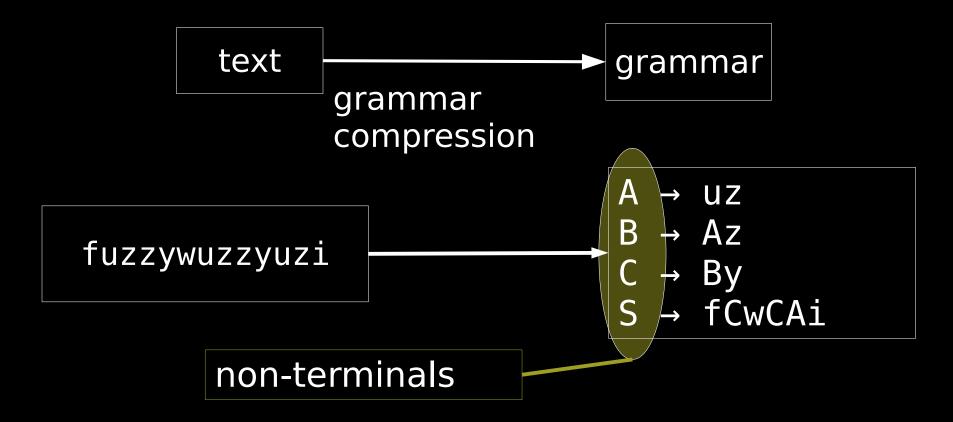
Dominik Köppl Tomohiro I Isamu Furuya Yoshimasa Takabatake Kensuke Sakai Keisuke Goto



text

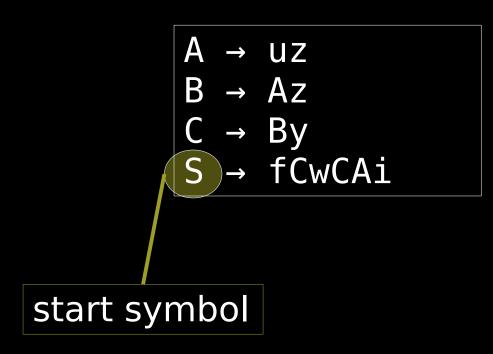


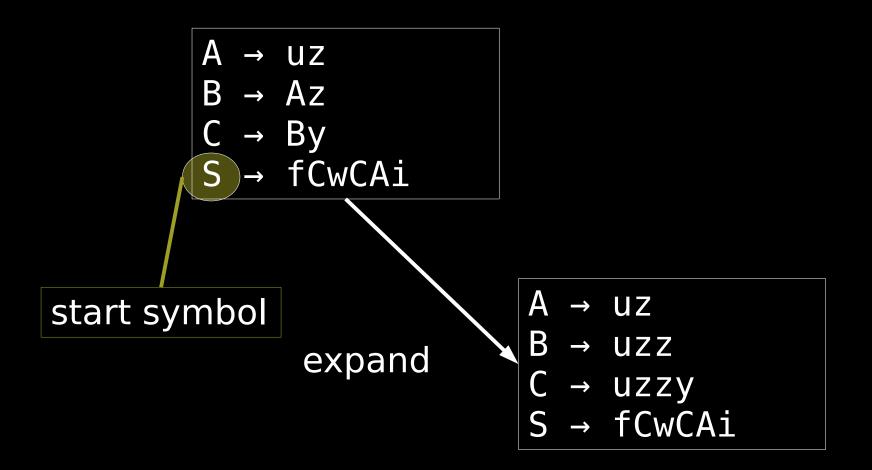


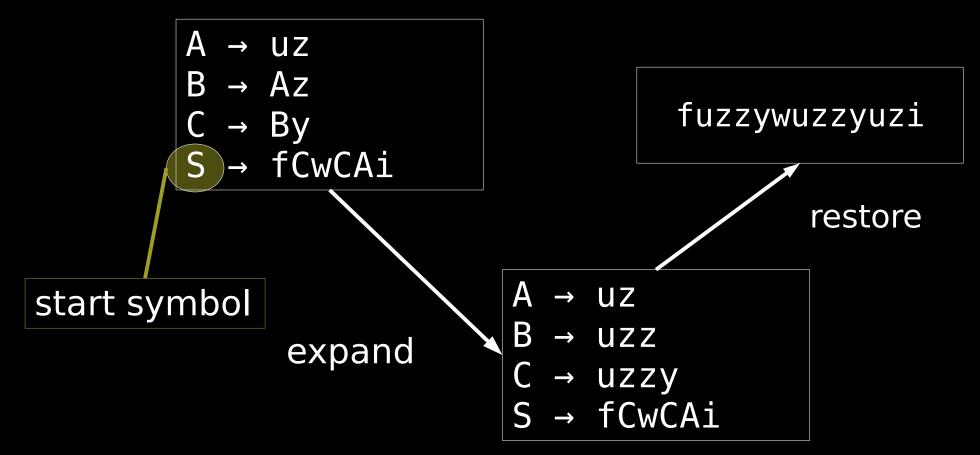


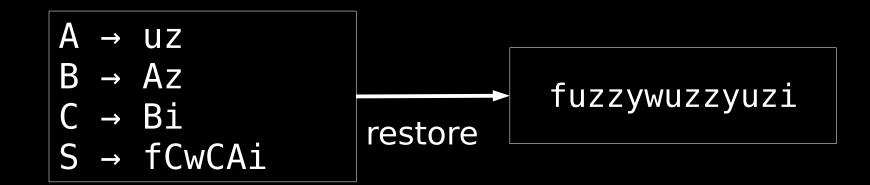
 $A \rightarrow UZ$

- $B \rightarrow Az$
- C → By
- S → fCwCAi

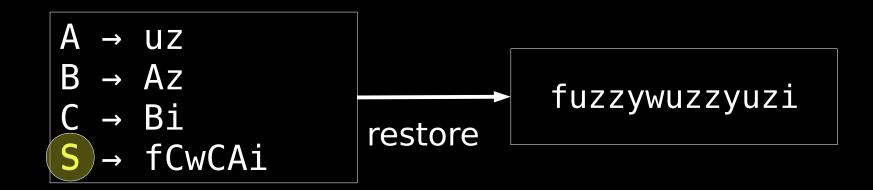




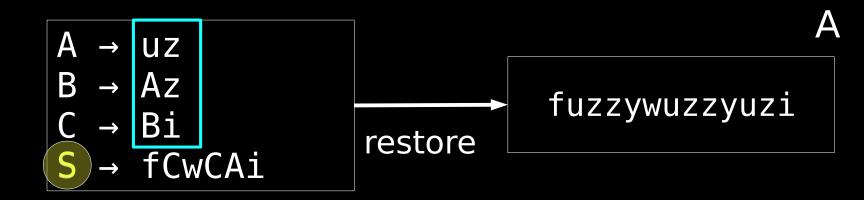




only one start symbol

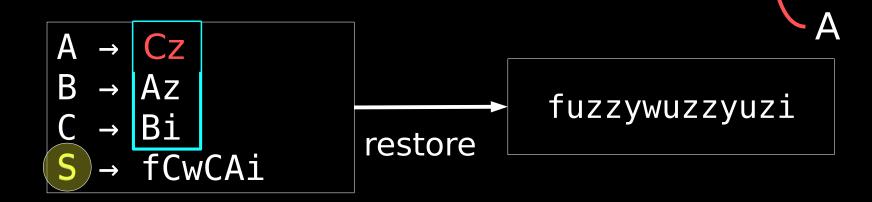


- only one start symbol
- right hand side of each rule has length two (except start symbol)

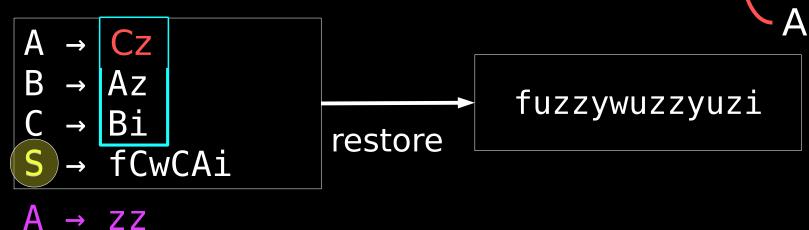


B

- only one start symbol
- right hand side of each rule has length two (except start symbol)
- no cycles



- only one start symbol
- right hand side of each rule has length two (except start symbol)
- no cycles
- every non-terminal has exactly one rule



bigram

given : text T

- bigram : pair of characters
- bigram frequency: number of non-overlapping bigrams in T
- #(b) := frequency of bigram b
- T = fuzzywuzzzyuzi

bigram

given : text T

- bigram : pair of characters
- bigram frequency: number of non-overlapping bigrams in T
- #(b) := frequency of bigram b
- $T = \frac{fuzzywuzzzywzi}{\#(fu)} = \frac{1}{\#(fu)}$

• is an SLP

fuzzywuzzyuzi

#(uz) = 3

- is an SLP
- takes bigram with highest frequency and replaces it with new non-terminal

fuzzywuzzyuzi

• is an SLP

- #(uz) = 3 $A \rightarrow uz$
- takes bigram with highest frequency and replaces it with new non-terminal

fuzzywuzzyuzi fA_zywA_zyA_i

• is an SLP

- #(uz) = 3
- A → uz
 takes bigram with highest
 frequency and replaces it with new non-terminal
- recurses fuzzywuzzyuzi

fA_zywA_zyA_i

T₁=fA_zywA_zyA_i

$\begin{bmatrix} T_1 = fA_zywA_zyA_i \\ T_1 = fAzywAzyAi & \#(Az) = 2 \end{bmatrix}$

$\begin{array}{l} \left(\begin{array}{c} T_1 = fA_zywA_zyA_i\\ T_1 = fAzywAzyAi & \#(Az) = 2\\ B \rightarrow Az\\ T_2 = fB_ywB_yAi \end{array} \right)$

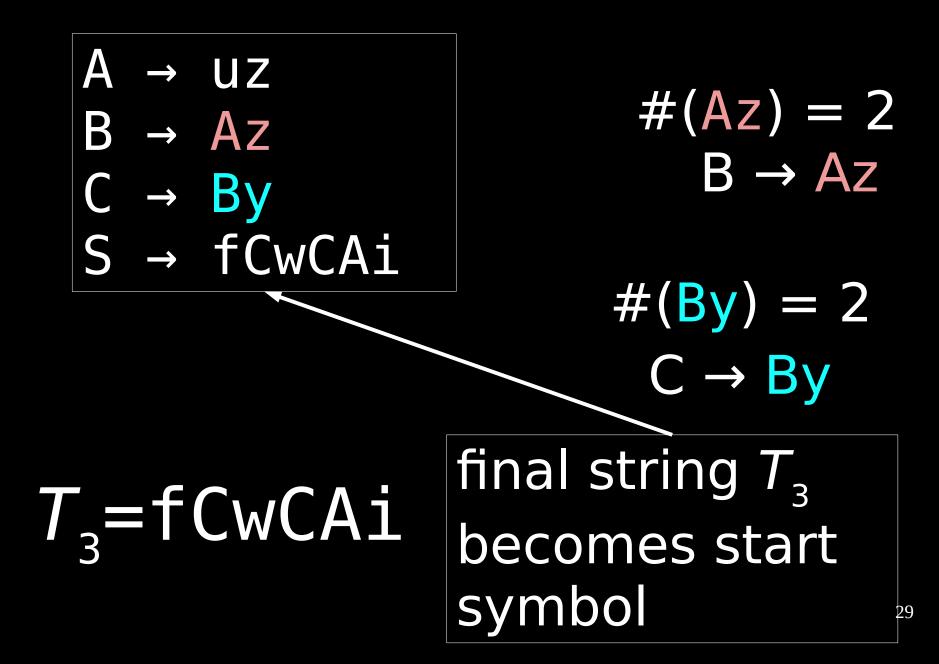
$T_1 = fA_z ywA_zyA_i$ $T_1 = fAzywAzyAi$ #(Az) = 2 B \rightarrow Az $\begin{bmatrix} T_2 = fB_ywB_yAi \\ T_2 = fBywByAi \\ \#(By) = 2 \end{bmatrix}$

$T_1 = fA_z ywA_zyA_i$ $T_1 = fAzywAzyAi$ #(Az) = 2 $B \rightarrow Az$ $T_2 = fB_ywB_yAi$ $T_2 = fBywByAi$ #(By) = 2 $C \rightarrow By$ $T_3 = fC wC Ai$

T₁=fA_zywA_zyA_i $T_1 = fAzywAzyAi$ #(Az) = 2 $B \rightarrow Az$ $T_2 = fB_ywB_yAi$ $T_2 = fBywByAi$ #(By) = 2 $C \rightarrow By$ $T_3 = fC wC Ai$ $T_3 = fCwCAi$

$T_1 = fA_z ywA_z yA_i$ $T_1 = fAzywAzyAi$ #(Az) = 2 $B \rightarrow Az$ $T_2 = fB_y W B_y Ai$ $T_2 = fBywByAi$ #(By) = 2 $C \rightarrow Bv$ $T_3 = fC wC Ai$ terminate when $T_3 = fCwCAi$ all bigram frequencies are

at most 1



known algorithms

Larson, Moffat'00:

 $5n + 4\sigma^2 + 4\pi + n^{\frac{1}{2}}$ words

Bille+'17:

 $\epsilon n + n^{\frac{1}{2}}$ words

both run in expected linear time

- *n:* text length
- σ: alphabet size
- π : # non-terminals
- $\varepsilon > 0$ constant

space is additional to the *rewritable* input text of *n* words

our algorithms

target space:

- $n \log (\sigma + \pi) + O(\log n)$ bits
- input as rewritable part included

- *n:* text length
- σ: alphabet size
- π : # non-terminals

in O(n³) time

find bigram *b* with highest frequency:

- given b = T[i] T[i+1]
- #(b) = #(T[i] T[i+1])

 $= \max_{1 \leq j \leq n} \#(T[j] T[j+1])$

• can find b in O(n^2) time

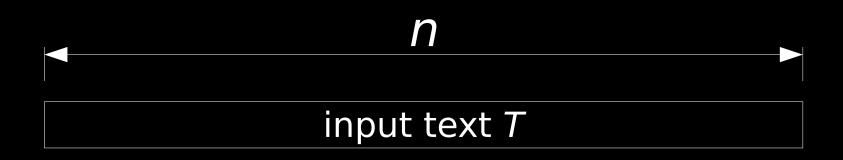
in O(n³) time

- can find b in O(n^2) time
- replace all occurrences of b in T within O(n) time
- number of all distinct bigrams is at most $n \ (\pi \le n)$
- $\Rightarrow O(\pi n^2) = O(n^3)$ time

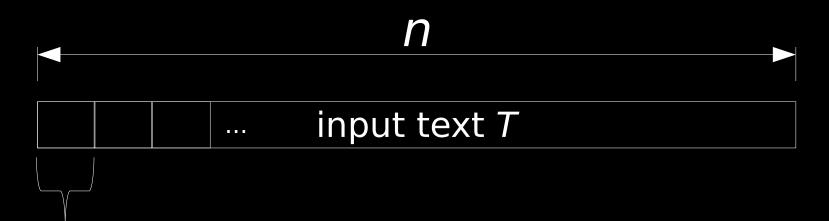
if $\sigma + \pi = O(1)$

- $\sigma + \pi$: # symbols that can appear in T at any time
- if $\sigma + \pi$ is constant:
 - maintain frequencies of all bigrams in $O((\sigma + \pi)^2) = O(1)$ space in a binary search tree
 - all operations on the tree: O(1) time
 - total time: $O(\pi n) = O(n)$
- what if $\sigma + \pi = \omega(1)$, such as $\sigma + \pi = \Theta(n)$?

general approach aim in this talk: $O(n^2)$ time

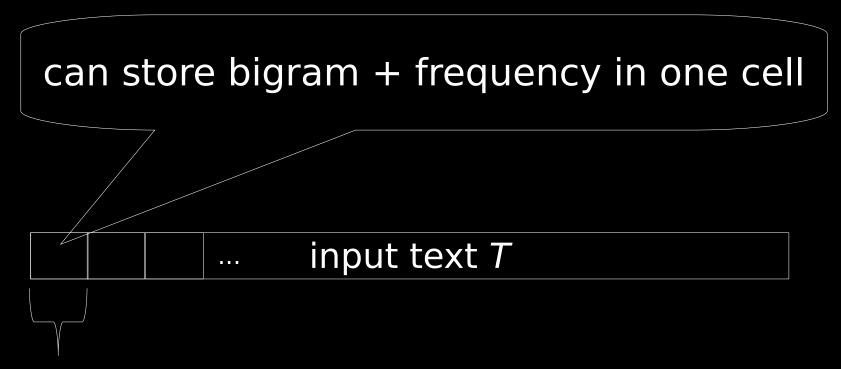


general approach aim in this talk: $O(n^2)$ time



one cell takes O(1) words (for lg σ bits cells : consult the paper)

assumption



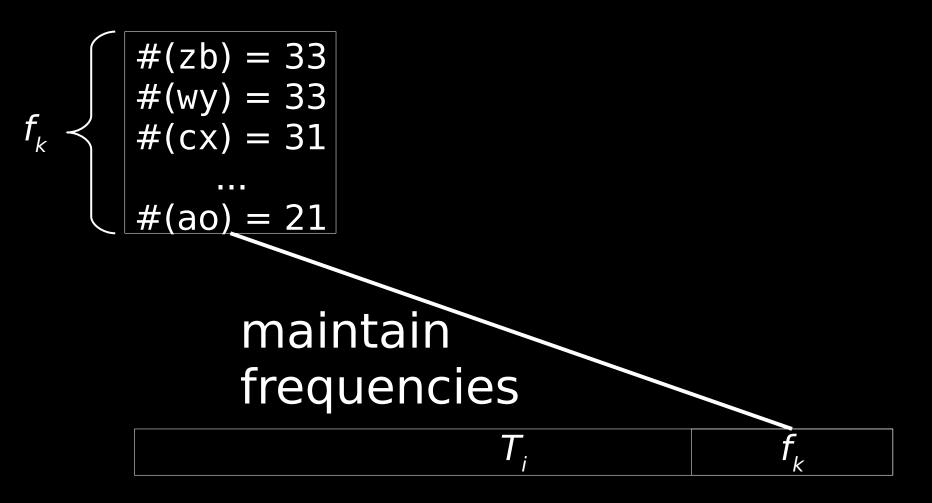
one cell takes O(1) words (for lg σ bits cells : consult the paper) ³⁷

idea

- bigram replacement frees up space
 ⇒ can maintain more frequencies
- for that: divide algorithm into rounds
- at beginning of *k*-th round :
 - $-f_k$: number of frequencies we can maintain
 - -task: compute the frequencies of the f_k most frequent bigrams

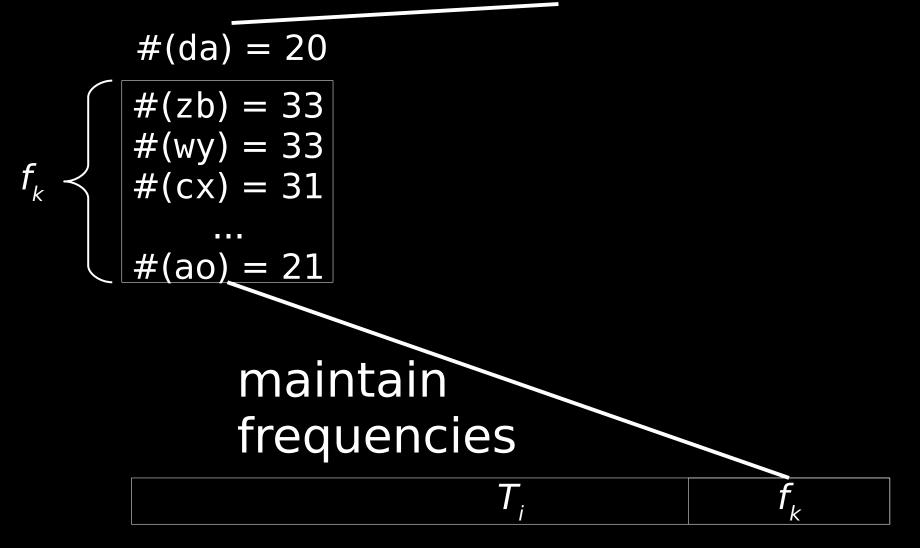
$$f_{k} \neq \begin{pmatrix} \#(zb) = 33 \\ \#(wy) = 33 \\ \#(cx) = 31 \\ \dots \\ \#(ao) = 21 \end{pmatrix}$$

k-th round, number of rules: *i*



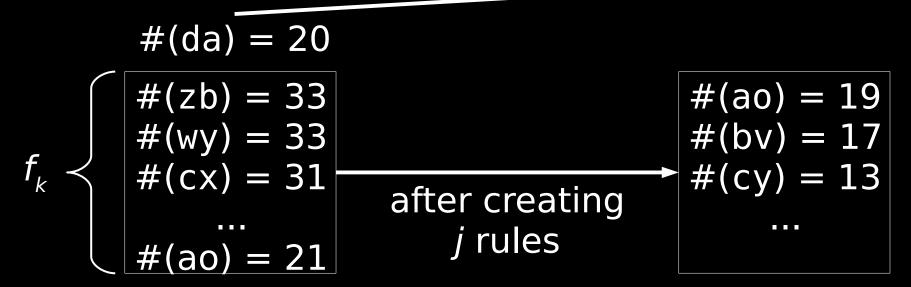
k-th round, number of rules: *i*

the most frequent bigram among those we did not store

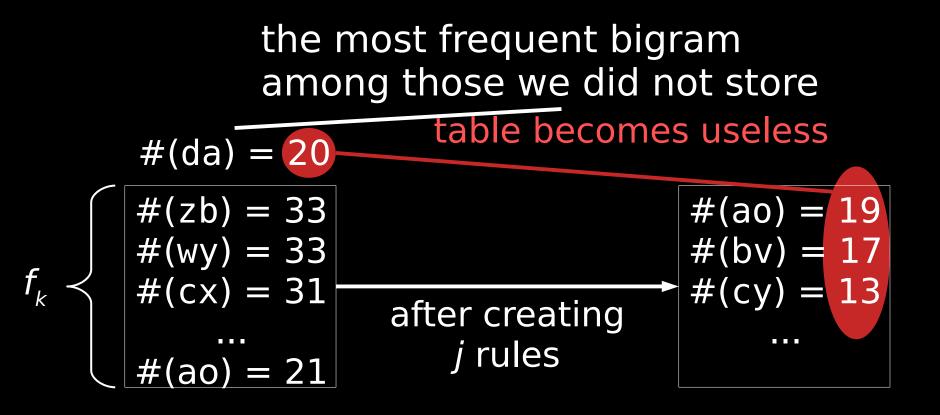


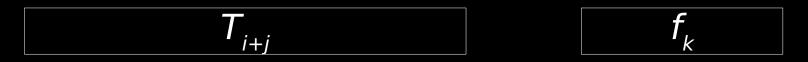
k-th round, number of rules: *i*

the most frequent bigram among those we did not store



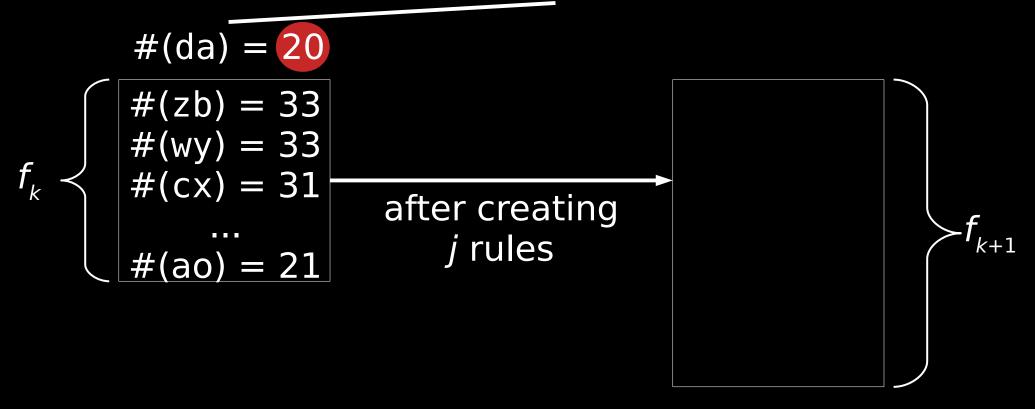
k-th round, number of rules: *i*+*j*





k-th round, number of rules: *i*+*j*

the most frequent bigram among those we did not store



k+1-th round, number of rules : i+j

start of algorithm

- first round: $f_1 = O(1) = constant$
- maintain the f₁ most frequent bigrams
- replace the most frequent bigram
- update the maintained frequencies

fuzzywuzzyuzi

fuzzywuzzyuzi

#(uz) = 3#(zz) = 2#(zy) = 2

fuzzywuzzyuzi

#(uz) = 3#(zz) = 2#(zy) = 2

$\begin{array}{ll} A \rightarrow uz \\ fuzzywuzzyuzi & \#(uz) = 3 \\ & \downarrow & & \#(zz) = 2 \\ fAzywAzyAi & \#(zy) = 2 \end{array}$

$$\begin{array}{ll} A \rightarrow uz \\ fuzzywuzzyuzi & \#(uz) = 3 \\ \downarrow & & \#(zz) = 0 \\ fAzywAzyAi & \#(zy) = 2 \\ & & \#(Az) = 2 \end{array}$$

 for each replaced occurrence:

 the frequencies of at most two bigrams are decremented by one for each replaced occurrence:

 the frequencies of at most two bigrams are decremented by one #(fu) = 1#(zz) = 2fuzz

- for each replaced occurrence:
 - the frequencies of at most two bigrams are decremented by one

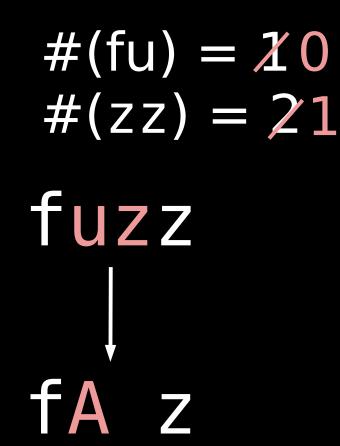
 $#(fu) = \chi 0$ #(zz) = 21fuzz fA Ζ

- for each replaced occurrence:
 - the frequencies of at most two bigrams are decremented by one
- \Rightarrow at end of *k*-th round:

 $f_{k+1} \ge f_k + \frac{1}{2}f_k$

 $#(fu) = \chi 0$ #(zz) = 21fuzz fA Ζ

- for each replaced occurrence:
 - the frequencies of at most two bigrams are decremented by one



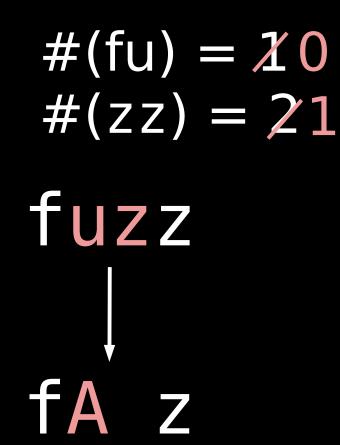
 \Rightarrow at end of *k*-th round:

 $f_{k+1} \geq f_k + \frac{1}{2}f_k$

 $\Leftrightarrow f_{k+1} \ge (1.5)^k f_1$

- for large $k = O(\lg n)$ $f_k = \Theta(n)$ can maintain a constant fraction of all frequencies !

- for each replaced occurrence:
 - the frequencies of at most two bigrams are decremented by one



 \Rightarrow at end of *k*-th round:

 $f_{k+1} \geq f_k + \frac{1}{2}f_k$

 $\Leftrightarrow f_{k+1} \ge (1.5)^k f_1$

- for large $k = O(\lg n)$ $f_k = \Theta(n)$ can maintain a constant fraction of all frequencies !

 \Rightarrow there are O(lg *n*) rounds

time: summary

- computing frequencies of f_k bigrams: $O(n^2)$ time + sort(f_k) time = $O(n^2)$ time (since $f_k \leq n$)
- compute frequencies $O(\lg n)$ times $\Rightarrow O(n^2 \lg n)$ time
- how do we get $O(n^2)$ time?

in-place sorting

- *f_k* : length of input integer array
- result:
 - $-O(f_k)$ space (including input)
 - $-O(f_k \lg f_k)$ time

[Williams'64: heapsort]

$O(n^2)$ time

speed up frequency computation

text after creating *i*-th rule

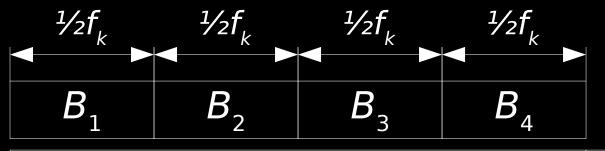
$O(n^2)$ time

- speed up frequency computation
- have f_k space

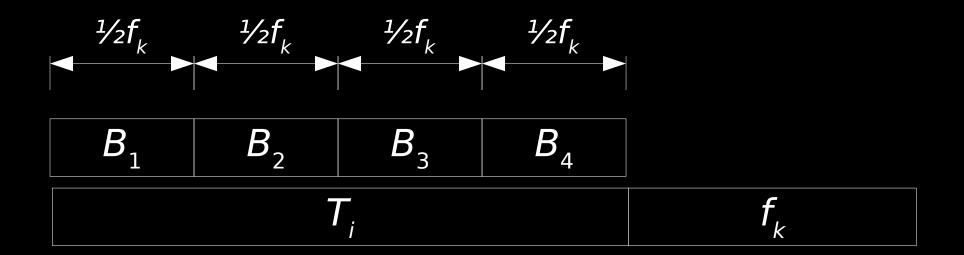
T_i	f_k

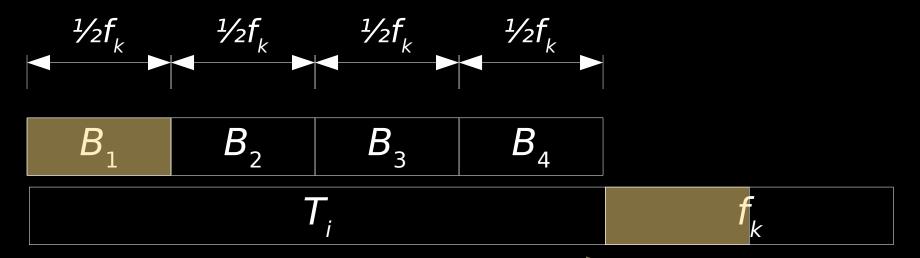
$O(n^2)$ time

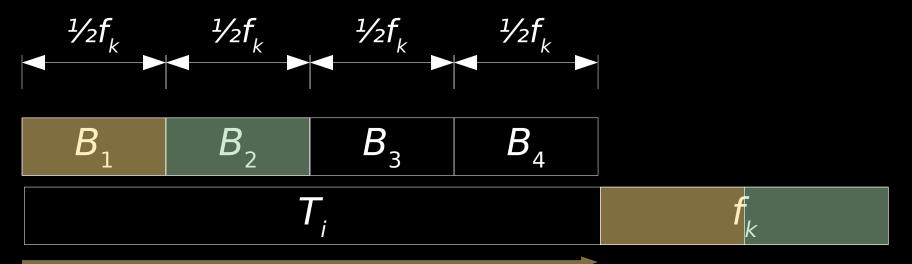
- speed up frequency computation
- have *f_k* space
- divide in blocks B_j with $|B_j| = \frac{1}{2}f_k$

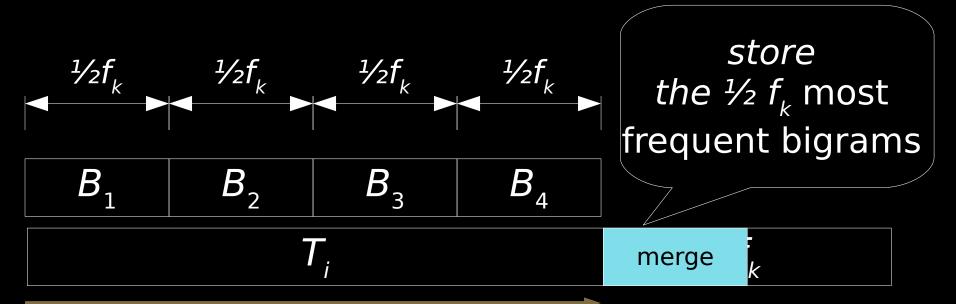


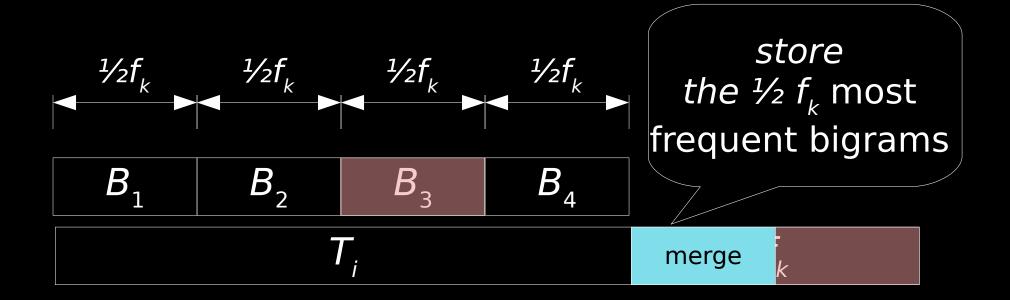
l i i i i i i i i i i i i i i i i i i i	
	n n

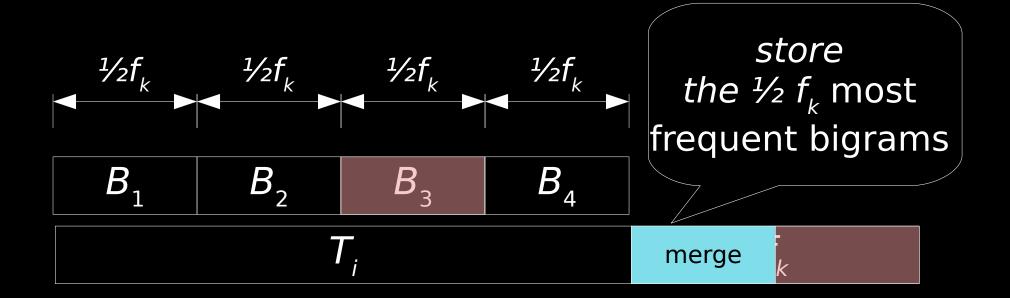




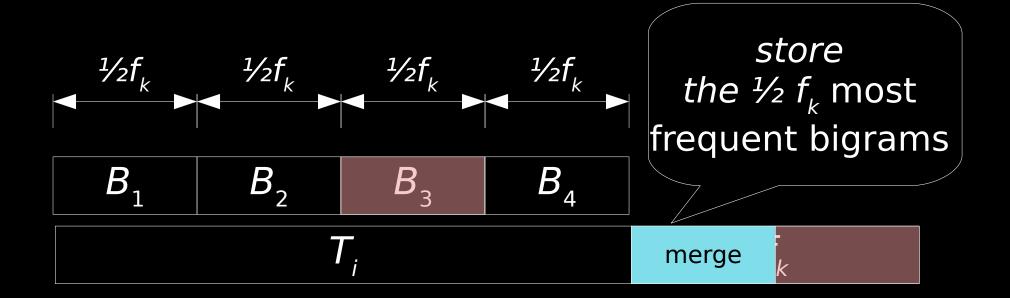








• # merge = # $B_j - 1 \le n / f_k$, $|T_i| \le |T| = n$



- # merge = # B_j 1 $\leq n / f_k$, $|T_j| \leq |T| = n$
- time for bigrams in B_i : O(n lg f_k) (binary search)
- time for each merge: $O(f_k \lg f_k)$
- total time: O(($n (n+f_k) \lg f_k$)/ f_k) = O(($n^2 \lg f_k$)/ f_k)

O(lg *n*) lg n $\frac{n^2}{f_k} \log f_k = O\left(n^2 \sum_{k=1}^{\lg n} \frac{k}{1.5^k}\right) = O(n^2)$ J_k *k*=1 k=1

have at most O(lg n) rounds

$\sum_{k=1}^{O(\lg n)} \frac{n^2}{f_k} \lg f_k = O\left(n^2 \sum_{k=1}^{\lg n} \frac{k}{1.5^k}\right) = O(n^2)$

have at most O(lg n) rounds

$\frac{O(\lg n)}{\sum_{k=1}^{n^2} n^2} \log f_k = O\left(n^2 \sum_{k=1}^{\lg n} \frac{k}{1.5^k}\right) = O(n^2)$

 $f_k = 1.5^{k-1} f_1 = O(1.5^k)$

 $\lg f_k = O(k)$

1.5*k*

have at most O(lg n) rounds

 $\lg f_k = O$

 $f_k = 1.5^{k-1} f_1 = O(1.5^k)$

 n^2

lg n

k =

 $= O(n^2)$

 n^2

have at most O(lg n) rounds

 $\lg f_k = O$

 $f_k = 1.5^{k-1} f_1 = O(1.5^k)$

lg n

k=1

can we get $o(n^2)$ time ?

 $\Rightarrow \log f_k = O(k)$

- 1.5*k*

 $= O(n^2)$

bit-parallel algorithm

- machine word size: Θ(lg n) bits
- popcount: O(lg lg lg n) time per word
- total time:

 $\begin{array}{c|c} O(n^2 & \log \log_{\tau} n & \log \log \log n / \log_{\tau} n) \\ \hline \\ original penalty word packing \\ algorithm \end{array}$

where $\tau := \sigma + \pi : \#$ symbols

 \Rightarrow o(*n*²) time for τ = O(polylog *n*)

arxiv paper

additional content:

- parallel computation
- external memory computation ... in-place or in small space

summary

- can compute Re-Pair in-place
 - $-O(n^3)$ time : trivial
 - O(*n*²) time
 - in-place sorting
 - batch computing frequencies
 - assumed that $\sigma = \Theta(n)$
- general σ : need max($n/c \lg n$, $n \lg \tau$) + O(lg n) bits for c > 1
- future work:
 - $n \lg \tau + O(\lg n)$ bits
 - $o(n^2 \lg n)$ time and τ between $\omega(1)$ and o(n) ?

thanks for listening - any questions are welcome! 76