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Public displays and digital signs are becoming increasingly widely deployed as many

spaces move towards becoming highly interactive and augmented environments. Market trends

suggest further significant increases in the number of digital signs and both researchers and

commercial entities are working on designing and developing novel uses for this technology.

Given the level of investment, it is increasingly important to be able to understand the

effectiveness of public displays. Current state-of-the-art analytics technology is limited in

the extent to which it addresses the challenges that arise from display deployments becoming

open (increasing numbers of stakeholders), networked (viewer engagement across devices and

locations) and pervasive (high density of displays and sensing technology leading to potential

privacy threats for viewers).

In this thesis, we provide the first exploration into achieving next generation display

analytics in the context of open pervasive display networks. In particular, we investigated three

areas of challenge: analytics data capture, reporting and automated use of analytics data.

Drawing on the increasing number of stakeholders, we conducted an extensive review of related

work to identify data that can be captured by individual stakeholders of a display network, and

highlighted the opportunities for gaining insights by combining datasets owned by different

stakeholders. Additionally, we identified the importance of viewer-centric analytics that use

traditional display-oriented analytics data combined with viewer mobility patterns to produce

entirely new sets of analytics reports. We explored a range of approaches to generating viewer-

centric analytics including the use of mobility models as a way to create ‘synthetic analytics’ –

an approach that provides highly detailed analytics whilst preserving viewer privacy.

We created a collection of novel viewer-centric analytics reports providing insights into

how viewers experience a large network of pervasive displays including reports regarding
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the effectiveness of displays, the visibility of content across the display network, and the

visibility of content to viewers. We further identified additional reports specific to those

display networks that support the delivery of personalised content to viewers. Additionally,

we highlighted the similarities between digital signage and Web analytics and introduced

novel forms of digital signage analytics reports created by leveraging existing Web analytics

engines.

Whilst the majority of analytics systems focus solely on the capture and reporting of

analytics insights, we additionally explored the automated use of analytics data. One of

the challenges in open pervasive display networks is accommodating potentially competing

content scheduling constraints and requirements that originate from the large number of

stakeholders – in addition to contextual changes that may originate from analytics insights.

To address these challenges, we designed and developed the first lottery scheduling approach

for digital signage providing a means to accommodate potentially conflicting scheduling

constraints, and supporting context- and event-based scheduling based on analytics data fed

back into the digital sign.

In order to evaluate the set of systems and approaches presented in this thesis, we conducted

large-scale, long-term trials allowing us to show both the technical feasibility of the systems

developed and provide insights into the accuracy and performance of different analytics

capture technologies. Our work provides a set of tools and techniques for next generation

digital signage analytics and lays the foundation for more general people-centric analytics that

go beyond the domain of digital signs and enable unique analytical insights and understanding

into how users interact across the physical and digital world.



Table of Contents

List of Figures xiii

List of Tables xvii

Nomenclature xx

1 Introduction 1
1.1 The Emergence of Pervasive Display Networks . . . . . . . . . . . . . . . . 1

1.2 The Need for New Forms of Signage Analytics . . . . . . . . . . . . . . . . 3

1.3 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background 13
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Audience Models and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Data Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Audience Numbers and Demographics . . . . . . . . . . . . . . . . 19

2.3.3 Audience Engagement and Movement . . . . . . . . . . . . . . . . . 22

2.3.3.1 Proximity-Aware Systems . . . . . . . . . . . . . . . . . . 22

2.3.3.2 Capture of In-Door Viewer Movement Patterns . . . . . . . 24

2.3.3.3 Large-Scaled Viewer Navigation and Movement Patterns . 26

2.3.4 Interaction Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.4.1 Touch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.4.2 Gesture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4.3 Gaze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.4.4 Mobile Phone . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.4.5 Comparing Interaction Modalities . . . . . . . . . . . . . . 33

2.4 Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Statistical Reports about Systems and Content . . . . . . . . . . . . . 34

2.4.2 Visualisations of Analytics Data . . . . . . . . . . . . . . . . . . . . 35



Table of Contents viii

2.4.2.1 Funnel and Flow Diagrams . . . . . . . . . . . . . . . . . 35

2.4.2.2 Heatmaps . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.3 Analytics Reporting in Related Areas . . . . . . . . . . . . . . . . . 36

2.4.3.1 Web Analytics . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.3.2 Retail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Automated Use of Analytics Data . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.1 Targeted Advertising . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.2 Content Scheduling and Content Creation . . . . . . . . . . . . . . . 42

2.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6.1 Evolution and Coverage . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6.2 Suitability for Pervasive Display Networks . . . . . . . . . . . . . . 45

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Analytics Data Capture and Generation 48
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Framework for Multi-Stakeholder Analytics Data Sharing . . . . . . . . . . . 49

3.2.1 Stakeholders of Open Display Networks . . . . . . . . . . . . . . . . 50

3.2.2 Stakeholder Data Collection Analysis . . . . . . . . . . . . . . . . . 51

3.2.2.1 Display Owners . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2.2 Space Owners . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2.3 Content Providers . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2.4 Viewers . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.3 Categorisation of Data Collection . . . . . . . . . . . . . . . . . . . 53

3.2.4 Opportunities from Analytics Synthesis . . . . . . . . . . . . . . . . 56

3.2.4.1 Creation of Novel Insights . . . . . . . . . . . . . . . . . . 56

3.2.4.2 Additional Benefits . . . . . . . . . . . . . . . . . . . . . 58

3.2.4.3 Attitudes Toward Data Sharing . . . . . . . . . . . . . . . 59

3.3 Capturing Traditional Signage Analytics Data . . . . . . . . . . . . . . . . . 59

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Client-side Data Collection . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2.1 Data Modelling . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2.2 Display Client Libraries . . . . . . . . . . . . . . . . . . . 61

3.3.3 Server-side System Architecture . . . . . . . . . . . . . . . . . . . . 62

3.3.3.1 Data Capture and Import . . . . . . . . . . . . . . . . . . 62

3.3.3.2 Pre-processing and Data Integration . . . . . . . . . . . . . 63

3.3.3.3 Injection Modules and Export . . . . . . . . . . . . . . . . 63

3.3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.4.1 Client Libraries . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.4.2 User Interface . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.4.3 Server-side System . . . . . . . . . . . . . . . . . . . . . 65

3.3.4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 65



Table of Contents ix

3.4 Capturing Viewer Mobility Data . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.1 Viewer-based Tracking . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.1.1 Back-end Systems Architecture Design . . . . . . . . . . . 67

3.4.1.2 Mapping of the Public Display Network . . . . . . . . . . 69

3.4.1.3 Mobile Applications . . . . . . . . . . . . . . . . . . . . . 69

3.4.1.4 Opportunities for Data Collection . . . . . . . . . . . . . . 71

3.4.1.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.1.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.2 Infrastructure-based Tracking . . . . . . . . . . . . . . . . . . . . . 73

3.4.2.1 System Design and Architecture . . . . . . . . . . . . . . 73

3.4.2.2 Opportunities for Data Collection . . . . . . . . . . . . . . 75

3.4.2.3 Considerations . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.3 Synthetic Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.3.1 Spatial Map and Probability Model . . . . . . . . . . . . . 77

3.4.3.2 Mobility Simulation . . . . . . . . . . . . . . . . . . . . . 78

3.4.3.3 Modelling Synthetic Viewer Mobility Traces . . . . . . . . 79

3.4.3.4 Combination with Real-world Datasets . . . . . . . . . . . 80

3.4.3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Reporting 82
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Analytics Based on Viewer Data . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Datasets and Methodology . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1.1 Synthetic Analytics . . . . . . . . . . . . . . . . . . . . . 84

4.2.1.2 Tacita . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1.3 Comparing the Applicability of Synthetic Analytics and

Tacita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.2 Effectiveness of Displays . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.2.1 Reports Based on Synthetic Analytics . . . . . . . . . . . 86

4.2.2.2 Reports Based on Tacita . . . . . . . . . . . . . . . . . . . 87

4.2.2.3 Stakeholder Analysis . . . . . . . . . . . . . . . . . . . . 89

4.2.3 Network Visibility of Content . . . . . . . . . . . . . . . . . . . . . 90

4.2.3.1 Reports Based on Synthetic Analytics . . . . . . . . . . . 90

4.2.3.2 Reports Based on Tacita . . . . . . . . . . . . . . . . . . . 92

4.2.3.3 Stakeholder Analysis . . . . . . . . . . . . . . . . . . . . 95

4.2.4 Viewer-centric Analytics . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.4.1 Reports Based on Synthetic Analytics . . . . . . . . . . . 96

4.2.4.2 Reports Based on Tacita . . . . . . . . . . . . . . . . . . . 97



Table of Contents x

4.2.4.3 Stakeholder Analysis . . . . . . . . . . . . . . . . . . . . 98

4.2.5 Display Personalisation Retention Analytics . . . . . . . . . . . . . . 98

4.2.5.1 Usage and Interactions . . . . . . . . . . . . . . . . . . . 99

4.2.5.2 Retention Rates . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.5.3 Stakeholder Analysis . . . . . . . . . . . . . . . . . . . . 101

4.2.5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Using Web Analytics Engines for Display Analytics Reporting . . . . . . . . 102

4.3.1 Overview of Web Analytics Terminology . . . . . . . . . . . . . . . 102

4.3.2 Mapping from Signage to Web Analytics Terminology . . . . . . . . 104

4.3.3 Example Reports and Visualisations . . . . . . . . . . . . . . . . . . 106

4.3.3.1 Display-oriented Performance Reports . . . . . . . . . . . 106

4.3.3.2 Specific Reports for Content and Service Providers . . . . 107

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Automated Use of Pervasive Display Analytics 111
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 The Need for Dynamic Content Scheduling . . . . . . . . . . . . . . . . . . 111

5.2.1 Existing Content Scheduling Approaches . . . . . . . . . . . . . . . 112

5.2.2 Scheduling in Operating Systems . . . . . . . . . . . . . . . . . . . 112

5.3 Lottery Scheduling for Digital Signage . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Applicability of Lottery Scheduling to the Public Display Domain . . 114

5.4 Lottery Scheduling System Architecture . . . . . . . . . . . . . . . . . . . . 117

5.4.1 System Architecture Overview . . . . . . . . . . . . . . . . . . . . . 117

5.4.2 Scheduling Manager . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.3 Context and Constraints Parser . . . . . . . . . . . . . . . . . . . . . 119

5.4.4 Context Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4.5 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4.6 Lottery Ticket Allocation . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4.7 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.8 Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Trials 124
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Pheme: Display-oriented Data Collection . . . . . . . . . . . . . . . . . . . 125

6.2.1 Integration into e-Campus . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.2 Mapping and Injection Module Integration . . . . . . . . . . . . . . 126

6.2.3 Reported and Captured Analytics Data . . . . . . . . . . . . . . . . . 127

6.2.4 Example Reports from Pheme . . . . . . . . . . . . . . . . . . . . . 129



Table of Contents xi

6.3 Tacita: Client-based Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.1 Methodology and Datasets . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.1.1 Integration in the Context of e-Campus . . . . . . . . . . . 130

6.3.1.2 Trial Context and Collected Datasets . . . . . . . . . . . . 132

6.3.2 Viewer Detection Accuracy and Performance . . . . . . . . . . . . . 134

6.3.2.1 Beacon Detection Accuracy and Performance . . . . . . . 134

6.3.2.2 Prototype System for Beacon Detection . . . . . . . . . . . 135

6.3.2.3 Beacon Entry and Exit Detections – Controlled Lab-based

Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3.2.4 Beacon Entry and Exit Detections – Controlled Walk-by

Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3.3 System Component Latencies . . . . . . . . . . . . . . . . . . . . . 141

6.3.3.1 Accuracy for Analytics Data Capture . . . . . . . . . . . . 143

6.3.4 Usage Pattern Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3.4.1 Trusted Content Provider Usage . . . . . . . . . . . . . . . 144

6.3.4.2 Spatial Request Patterns . . . . . . . . . . . . . . . . . . . 146

6.3.4.3 User Retention and Usage Duration . . . . . . . . . . . . . 147

6.4 Infrastructure-based Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4.1 Methodology and Datasets . . . . . . . . . . . . . . . . . . . . . . . 150

6.4.1.1 Integration in the Context of LiveLabs . . . . . . . . . . . 150

6.4.1.2 Trial Context and Collected Datasets . . . . . . . . . . . . 154

6.4.2 Impact of Trigger Zone Sizes . . . . . . . . . . . . . . . . . . . . . . 156

6.4.3 Impact of Display Location Characteristics . . . . . . . . . . . . . . 158

6.5 Comparison of Viewer Mobility Tracking Approaches . . . . . . . . . . . . . 160

6.5.1 Display Owners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.5.2 Space Owners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.5.3 Content Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.5.4 Viewers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.6 Lottery Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.6.1 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.6.1.1 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.6.2 Accuracy in a Real-World Deployment . . . . . . . . . . . . . . . . 167

6.6.2.1 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7 Analysis, Conclusions and Future Work 171
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.2.1 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



Table of Contents xii

7.2.2 Benefits to Other Research Communities . . . . . . . . . . . . . . . 177

7.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.3.1 C1: Analytics Data Collection . . . . . . . . . . . . . . . . . . . . . 178

7.3.2 C2: Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.3.3 C3: Automated Use of Analytics Data . . . . . . . . . . . . . . . . . 180

7.3.4 C4: Systems Evaluation and Large-scale Trials . . . . . . . . . . . . 180

7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.4.1 The Physical Cookie . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.4.2 Synthetic Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.4.3 Scheduling for the Individual . . . . . . . . . . . . . . . . . . . . . . 183

7.5 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



List of Figures

1.1 World’s largest high-definition display wall at the Suntec Singapore conven-

tion centre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Typical display deployments at Lancaster University. . . . . . . . . . . . . . 7

1.3 Map and overview of e-Campus displays at Lancaster University . . . . . . . 8

2.1 Overview of interaction zones by Vogel and Balakrishnan (redrawn from

[VB04]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Screenshot of SPINETIX Cockpit [Cor]. . . . . . . . . . . . . . . . . . . . . 18

2.3 Trends in related digital signage analytics work. . . . . . . . . . . . . . . . . 44

3.1 Fundamentals of the generation and collection of viewer-centric analytics in

digital signage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Stakeholders in open display networks. . . . . . . . . . . . . . . . . . . . . . 51

3.3 Data collection and sharing matrix. . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Focus on the collection of traditional, display-oriented sign analytics data

fundamental to the creation of viewer-centric analytics. . . . . . . . . . . . . 59

3.5 Pheme high level architecture diagram. . . . . . . . . . . . . . . . . . . . . . 62

3.6 Pheme user interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Tacita trust relationship diagram. . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8 Tacita system architecture and data flow diagram (based on [Dav+14] and

adapted in [Mik+18d]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.9 Tacita mobile application for Apple iOS (initially published in [Mik+18d]). . 71

3.10 System architecture for infrastructure-based tracking. . . . . . . . . . . . . . 74

3.11 The basis for synthetic analytics are regular maps (left), which are annotated

in a subsequent process (middle) and automatically transformed into a graph-

based structure (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Using display-oriented analytics and viewer mobility data as a foundation, we

now focus on novel viewer-centric analytics reports. . . . . . . . . . . . . . . 82



List of Figures xiv

4.2 Mean ratio of unique visitors to total number of visits for each class of

mobility model (ordered by the ratio for the Off-Campus Student) for each

display deployment. Low ratios indicate displays that have a greater set of

reoccurring visitors whilst high values represent displays with a greater set of

unique visitors (initially published in [Mik+16]). . . . . . . . . . . . . . . . 87

4.3 Heatmap of proportionally popular displays on which personalised content

was requested (initially published in [Mik+18d]). . . . . . . . . . . . . . . . 88

4.4 Cumulative distribution function of frequencies of content views for the three

synthetic analytics mobility models (initially published in [Mik+16]). . . . . 91

4.5 Number of total requests per Tacita application per day (initially published

in [Mik+18d]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Number of unique users per Tacita application per day (initially published

in [Mik+18d]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.7 Total number of unique users per Tacita application (initially published

in [Mik+18d]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.8 Growth of Tacita users throughout the deployment (blue) and unique number

of users per day (red) (initially published in [Mik+18d]). . . . . . . . . . . . 99

4.9 Cumulative distribution function of frequency of revisiting the configuration

pages of individual Trusted Content Providers (initially published in [Mik+18d]). 99

4.10 Tacita user retention reports with a per-day granularity (initially published

in [Mik+18d]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.11 Tacita user retention reports with a per-week granularity (initially published

in [Mik+18d]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.12 Pheme real-time reports produced through Google Analytics. . . . . . . . . . 107

4.13 Pheme event reports produced through Google Analytics. . . . . . . . . . . . 108

4.14 Pheme content reports produced through Google Analytics. . . . . . . . . . . 108

4.15 Detailed report of displays showing a particular piece of content produced

through Google Analytics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.1 Snapshot of an allocation of lottery tickets for 13 distinct content items using

recency-, duration-, random- and ratio-based lottery ticket allocation modules

each representing different stakeholder requirements. . . . . . . . . . . . . . 116

5.2 Lottery Scheduler system architecture (initially published in [MCD15]). . . . 118

5.3 Ticket allocation component of the Lottery Scheduler (initially published in

[MCD15]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Yarely system architecture developed by [Cli+13] (reproduced from [Cli+13]). 122

6.1 Pheme statistics from the start of the trial using the Google Analytics Injector. 127

6.2 Tacita system architecture focussing on the Display Gateway and interfaces

on the display node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



List of Figures xv

6.3 Interaction and request flow of Tacita requests across the Display Gateway

and Yarely. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 Tacita users at Lancaster University over the study period (initially published

in [Mik+18d]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5 Overview of the content delivery process in pervasive display systems together

with critical events affecting the proximity detection performance. Beacon

entry (1) and exit detection deltas (3) depend on the underlying proximity

detection technology, whereas system latency (2) depends on network and

system performance (initially published in [Mik+18d]). . . . . . . . . . . . . 134

6.6 Floor plan of the controlled walk-by experiments to capture beacon entry and

exit detection latencies (initially published in [Mik+18d]). . . . . . . . . . . 137

6.7 System response latencies in seconds for the chain of Tacita system components.141

6.8 The total number of daily requests issued to Trusted Content Providers across

all client applications (top left); originating from the iOS-based Tacita Mobile

Client (top right); originating from iLancaster (bottom left); and the number

of daily failed requests (bottom right) (initially published in [Mik+18d]). . . . 143

6.9 Number of daily requests for each available Trusted Content Provider (initially

published in [Mik+18d]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.10 Numbers of requests of Trusted Content Providers per display location (green:

low number of requests; red: high number of requests) across all applications

(initially published in [Mik+18d]). . . . . . . . . . . . . . . . . . . . . . . . 146

6.11 Dwell times of viewers in front of displays (green: low dwell times; red:

high dwell times). The dwell times have been normalised based on the dis-

plays with the highest and lowest dwell times respectively (initially published

in [Mik+18d]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.12 Retention weeks by term (initially published in [Mik+18d]). . . . . . . . . . 148

6.13 Retention days (initially published in [Mik+18d]). . . . . . . . . . . . . . . . 148

6.14 Flow diagram for infrastructure-based personalisation. . . . . . . . . . . . . 150

6.15 Flow diagram for infrastructure-based personalisation (display interfaces). . . 153

6.16 Floor plans showing the main floor of the convention space for each of the

five experimental settings visualising the display location and its orientation

(green circle), differently sized trigger zones (small, medium and large), and

the paths of the walk-by experiments. Dots represent an approximation of the

granularity of location points provided by the Wi-Fi location system (the floor

plans provide an approximation only and have not been drawn to scale). . . . 155

6.17 Box plots of accuracy and content exposure measures across all display

locations for each trigger zone size. . . . . . . . . . . . . . . . . . . . . . . 157

6.18 Box plots of content exposure and content accuracy measures for each display

location and large trigger zone. . . . . . . . . . . . . . . . . . . . . . . . . . 159



List of Figures xvi

6.19 Density plots showing the delay of content turning on after/before the viewer

enters the viewable area of the display for each trigger zone size across all

display locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.20 Lottery scheduler lab-based benchmarks with 0-10,000 content items with

low and high numbers of lottery tickets (initially published in [MCD15]). . . 165

6.21 Lottery scheduler lab-based benchmarks with 0-50 content items with low

and high numbers of lottery tickets (initially published in [MCD15]). . . . . . 165

6.22 Accuracy of the lottery scheduler using a ratio allocator and sample e-Channel

content (initially published in [MCD15]). . . . . . . . . . . . . . . . . . . . 168

7.1 End-to-end implementation and integration of the systems introduced in this

thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



List of Tables

3.1 Overview of analytics data that can be captured by stakeholders within open

display networks, as grouped by category. . . . . . . . . . . . . . . . . . . . 54

3.2 Example extensions to UMP to support Proximity and Interaction event types. 60

4.1 Ranking of public displays at Lancaster University based on synthetic analytics. 86

4.2 Ranking of public displays at Lancaster University based on display personal-

isation requests from Tacita throughout the lifetime of the service (initially

published in [Mik+18d]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Aggregated count of unique and total content views per day per viewer for

each mobility model (initially published in [Mik+16]). . . . . . . . . . . . . 96

4.4 User-centric statistics for the use of Tacita. . . . . . . . . . . . . . . . . . . . 97

4.5 Attributes provided to describe Page View and Event hit types in Google

Analytics based on the Universal Measurement Protocol (UMP) [Goo18h]. . . 103

4.6 Mapping of individual attributes from digital signage analytics to Web analyt-

ics’ attributes (based on UMP [Goo18h]). . . . . . . . . . . . . . . . . . . . 105

4.7 Mapping of reports from Web analytics to digital signage analytics’ metrics

(partially described in [Mik+15]). . . . . . . . . . . . . . . . . . . . . . . . 105

6.1 Number of reported content requests to Pheme over the 365 days by content

type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Median, mean and standard deviation for enter region (beacon detected) and

exit region (beacon lost) events (seconds). . . . . . . . . . . . . . . . . . . . 138

6.3 Median, Mean, and standard deviation for beacon entry detection from en-

tering and leaving the viewable area of the display respectively (initially

published in [Mik+18d]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.4 Median, mean and standard deviation (seconds) of the latencies between

Tacita system components (initially published in [Mik+18d]). . . . . . . . . . 141

6.5 Details of application adoption showing the percentage of total users who

issued at least one content request to the Trusted Content Provider and the

availability of the Trusted Content Provider during the study period (initially

published in [Mik+18d]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



List of Tables xviii

6.6 Content accuracy and content exposure measures across all display locations

for each trigger zone size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.7 Content accuracy and content exposure measures for each display location

and large trigger zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



List of Listings

1 Pheme library example code snippet to enable analytics tracking for Python-

based applications.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2 JSON map description (initially published in [Mik+18d]). . . . . . . . . . . . 70

3 Code snippet of the Pheme display client integration into Yarely (simplified). 126

4 Pheme example injector implementation to support Google Analytics. . . . . 128



Nomenclature

Acronyms / Abbreviations

ACM Association for Computing Machinery

AIM Anonymous Impression Metrics

API Application Programming Interface

AVA Anonymous Video Analytics

BLE Bluetooth Low Energy

CDS Content Descriptor Set

IoT Internet of Things

QR Quick Response (Code)

REST Representational State Transfer

RFID Radio-frequency Identification

RTLS Real-time Location Tracking

TID Tracking Identifier

UMP Universal Measurement Protocol

URL Uniform Resource Locator

UUID Universally Unique Identifier

XML Extensible Markup Language



Chapter 1

Introduction

1.1 The Emergence of Pervasive Display Networks

Market reports predict a dramatic increase in the number of digital signs and public displays

deployed in urban spaces [Mar17] with a total of “38 million connected digital screens in

use worldwide” [Mar17]. By 2021, the number of deployed digital signs is expected to

have more than doubled to a total of around 87 million digital signs [Dig17; Mar17]. In

line with the increase in the number of deployed digital signs, the market worth for public

displays is expected to grow to up to $23 billion indicating the increasing importance of digital

signs [Glo17] – despite the high popularity of mobile phones as a way to access information.

In addition to the growth in the number of deployments, we also observe a growth in the size

of individual digital signs. For example, large display walls such as the high-definition display

wall at Suntec Singapore (see Figure 1.1) are likely to lead to a world in which digital signage

will become omnipresent to passers-by and integrated into their daily life [Mik+18a].

Digital signs and public displays are increasingly often also offering a high level of inter-

activity to the viewer. Early work in this space conducted by Vogel and Balakrishnan provided

insights into interaction models that digital signs could support in future: digital signs auto-

matically adapt the displayed content based on the spatial location of the viewer in relation to

the digital sign [VB04]. Such interaction models have been further developed to, for example,

Figure 1.1: World’s largest high-definition display wall at the Suntec Singapore convention centre.
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additionally consider viewer identity to enable the delivery of personalised content [Gre+11].

Novel interaction techniques for public displays are constantly developed and include gaze,

gesture, forms of remote control and direct touch input [She+14] – highlighting the trend

towards highly interactive public displays. Interactive public displays can be often found

situated in railway stations, airports and shopping malls in the form of kiosks allowing the

passers-by to search for a specific piece of information.

Besides the increase in the scale and size of digital signs and the development of novel

interaction modalities, researchers envision new directions in which digital signage will

develop – changing the nature and characteristics of pervasive display deployments. Davies

et al. [Dav+12] introduced the vision of open display networks as the “new communications

medium for the 21st century” [Dav+12] in which a large number of distinct stakeholders

contribute content, infrastructure and devices to a large, common displays network. Davies

et al. envision future display deployments that feature similar characteristics as modern mobile

phone ecosystems in which open platforms such as application stores exist that allow third-

parties including developers, content creators, manufacturers and users to contribute equally

to the market [Dav+12]. Such systems will need to feature open application programming

interfaces that can be used by third-party developers to create applications without detailed

knowledge about the specifics of certain display deployments and write applications that can be

supported across large display deployments as part of an open network. Currently, commercial

signage networks are closed and cannot be easily accessed by external developers and third-

parties. Moving toward an open display network would substantially increase the potential set

of stakeholders and contributors. It is argued that an open application platform for displays

will lead to a comparable dramatic increase in the number of applications and content that

has become available to mobile phones through the application store models [Dav+12]. The

networked characteristic of future display deployments is particularly relevant to describe the

potential scale and dimensions of display deployments especially with the current expectations

of display deployments to grow to close to hundred million devices [Dig17; Mar17; Dav+12]

– an open displays platform and application store for public displays would immediately

provide access to a large number of displays to third-party developers, content creators and

display owners [Cli+14]. Davies et al. point out that “openness does not stop at developers:

public display systems should also be open to content from users” [Dav+12]. With displays

becoming ubiquitously integrated into the daily life of users – both in public and private

spaces – the contribution of users to the display network and content displayed will become

important to ensure displays are useful to the user and provide a clear benefit through display

personalisation [Dav+14].

To illustrate the future use of public displays in the context of such future networks, Davies,

Clinch, and Alt [DCA14] have developed a number of scenarios. The following scenario is an

example of the use of ‘open displays’ in the context of a small independent retail shop.

A local fruit shop has a large number of fresh strawberries left to sell while the

shop is due to close in a few hours already. The owner of the shop knows that
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strawberries are currently very popular and sell well at the competition, but has

to advertise his strawberries in the local community. He quickly creates a short

advertisement and submits it to the “local shopper incentive” scheme in which

viewers who see the advert can retrieve a discount voucher for the local fruit shop.

The discount voucher is also used to track the number of purchases retrieved

from the advert and the shop owner has to pay a fee based on the number of new

customers who used the discount. [DCA14]

The scenario above highlights the contrast to large commercial advertisement networks that

typically feature more complex infrastructure and accessibility models – making it challenging

for the local shop owner to quickly access display resources. It is further envisioned that

future display networks will aim to influence viewer behaviour by showing more appropriate

and personalised content for the viewer, as described in the following scenario:

Jack is participating in a local walk-to-school programme that aims to increase

the fitness of elementary school children. To encourage participation, the a game

has been deployed on the local public display network. On his walk to school,

Jack walks by a number of displays that provide him with a cartoon character and

update on his fitness progress. By walking by a display, Jack also collects points

on his mobile phone that can be exchanged for a cartoon book. [Dav+12]

The scenario above illustrates the opportunities of providing personalised content to

passers-by and supporting future forms of user interaction and engagement modalities [Dav+12].

Display networks provide a platform to schedule content for individuals regardless of the dis-

plays’ schedules but with respect to the (constantly changing) context of the display [DCA14].

The interactions between the passers-by and the display application enables the stakeholders

of the display network to run novel forms of campaigns that ultimately lead to a behavioural

change of the viewer [DCA14]. Providing personalised and contextualised content to viewers

across multiple display deployments and locations is also seen as one way to overcome “dis-

play blindness” [Mül+09] – a common issue in public display deployments where viewers

stop paying attention to displays in over-saturated environments [Dav+14].

In summary, we are moving to a world with a rapidly increasing number of displays, larger

screens and complex eco-systems that increase the number of stakeholders and the range of

available content.

1.2 The Need for New Forms of Signage Analytics

The growing number of public displays and digital signs along with the emerging changes in

the characteristics of display deployments (e.g. growth in individual display sizes and open

networks accessed by a different stakeholders) lead to new requirements for digital signage

analytics. It will become essential to understand how viewers interact and engage across

a number of digital signs and locations, and measure the influence of digital signs on the
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viewers’ behaviour. Moreover, understanding the effectiveness of public displays and novel

applications becomes important to all stakeholders involved including developers, content

creators and display owners. We can draw on examples from the history of Web analytics,

an application domain that we consider highly related to digital signage analytics due to its

focus on user interaction and tracking (in some cases across sites and domains). The insights

gained by analytics have revolutionised the Web and enabled administrators to clearly identify

potential for improvement of the user experience. The analytics space in the Web is well

defined: in 2007, the Web Analytics Association issued the latest version of the Web Analytics

Definition as a specification for relevant metrics and aggregations [BBW07]. The standard

consists of 26 metrics, of which seven feature the fundamental definition of ‘page visits’ and

‘visitor counts’ used as part of the computation of 13 metrics that describe the type of the

visit (e.g. referrers, visit duration, landing and exit pages), four characterising the content

(e.g. bounce rates or single page visits), and two event and conversion measures to capture

user interaction within a single website [BBW07]. Historically, the collection of data relevant

for the computation of the described Web analytics reports was performed server-side by

parsing and analysing server access logs. In order to enable the capture of single page user

interactions and events (e.g. scrolling behaviour, button clicks and cross-device analytics),

Web analytics have moved toward the collecting of data in the client device. For example,

Google Analytics exclusively features client-side data and user tracking captured through the

user’s Web browser, and provides developers with the ability to track users’ on-page behaviour

including customised events such as mouse clicks and scrolling behaviour [Goo18c]. This is

an example of the shift of capturing analytics data on the client in contrast to the access logs

on the server side, i.e. a form of user-centric analytics.

In the digital signage domain the use of novel forms of analytics has not been well studied.

New forms of analytics frameworks will become necessary to support large-scale, open

networks of digital signage and to allow stakeholders to better understand the effectiveness

and success of their displays and applications. Currently, state-of-the-art signage analytics

systems focus on the capture and analysis of system-relevant performance measures (e.g.

system failures on the signage player [Esp17]), and simple audience analytics such as the

number of people walking by a display (e.g. Fraunhofer IIS [Fraa]). Some signage analytics

systems provide administrators and content creators with reports on viewer demographics

including age groups and gender [Int18]. All of these insights, however, are captured for

isolated digital signage displays or in some cases aggregated across a closed commercial

signage network [See]. The access to the captured insights in the form of analytics reports

is typically limited to a small set of stakeholders such as the commercial display network

owners [OnS17].

We believe that it will become crucial for future digital signage analytics to perform a

similar shift as that occur in the Web domain from display-oriented analytics to a viewer-

centric analytics approach. To emphasise the need for viewer-centric analytics and illustrate

the opportunities that will emerge from such a shift in the context of open display networks,

consider the following scenario.
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A large number of digital signage displays are located in the entrance area of

a railway station that is one of the main transportation hubs for the city. The

displays are used to show a mix of digital departure times, advertisements and

way-finding content for passers-by. Andreas is a commuter and enters the railway

station and proceeds to the platform from which his commuter train will depart.

Andreas happens to walk by a public display just at the very time it is showing

an advertisement for a specific soda drink. While Andreas is passing by the

display, he notices the advert and glances at it due to the prominent location of the

display in the entrance area. Even though Andreas was initially heading toward

the platform, because of seeing the advertisement Andreas decides to walk to

the closest shop instead and purchase the advertised drink. Upon purchasing the

drink, Andreas leaves the shop and continues to the platform to eventually board

the commuter train. On his way to the platform, Andreas walks by a number of

subsequent displays that start showing relevant advertisement and content based

on Andreas’ recent visit to the shop and his purchasing activity.

We envision that future signage analytics systems will be able to answer the question of

potential cause and effect from the point at which Andreas entered the railway station and

noticed the advert, to the point at which Andreas purchased the product, and the subsequent

utilisation of analytics insights to improve Andreas’ experience throughout the digital signage

network. In order to understand these potential causalities, however, comprehensive analytics

are required to be captured, evaluated and subsequently fed back into the sign – providing the

opportunity to reliably measure the success and effectiveness of content on public displays

and for improving the viewer experience. We divided this problem space into three areas

of challenge: 1. analytics data capture, 2. reporting, and 3. automated use of analytics data.

To highlight the challenges and opportunities in each of the three areas, we provide a set of

challenges for each of the three areas by drawing on the scenario above.

Analytics Data Capture Specific to the scenario, a number of distinct events need to

be captured: the content displayed on the digital sign (i.e. which advert was playing

when Andreas glanced at the display), the navigation and movement traces of people to

understand who is present in the space and how viewers have navigated across displays

and locations, glances of passers-by at displays (i.e. Andreas’ glance at the display), and

their purchasing activities (i.e. Andreas purchasing the advertised product). Such events

are typically captured by distinct stakeholders of an open display network (display

owners, content providers, retail owners, and Andreas himself) and by heterogeneous

systems. For example, Andreas’ movements could be captured by an indoor location

system, glances at the display through video analytics mounted adjacent to the display,

and his purchasing activities through an appropriate shop analytics system.

Reporting In order to understand the potential causalities of viewers (i.e. Andreas viewing

the content on the display, and the subsequent visit and purchase activity in a shop),
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captured events need to be linked together and associated to the individual. However, in

the context of open display networks each of these example events are ‘owned’ by a

distinct set of stakeholders and captured through systems that are likely disconnected.

In order to create insightful analytics reports that highlight the potential causalities,

such analytics events form need to be shared across stakeholders, linked and associated

with an individual. Additionally, the created analytics reports are equally relevant to

all involved stakeholders revealing the effectiveness and impact of digital signs on

individuals.

Automated Use of Analytics Data We consider the use of analytics crucial for improv-

ing viewer experience with digital signs and the displayed content. It imposes opportu-

nities to use analytics insights and dynamically and automatically adjust the content

on digital signs to reflect the insights captured by, for example, providing relevant

content to the individual based on a shop purchase or the individual’s preferences.

In the context of open display networks, however, a number of requirements (from

all stakeholders involved) may compete over screen real estate – making it necessary

to develop appropriate systems and interfaces that support resolving such competing

requests.

In all cases, overarching analytics are required to understand that the same person caused

these events, and appropriate systems and interfaces to support the feed back into the digital

sign.

1.3 Research Context

The work described in this thesis has been carried out in the context of e-Campus, the world’s

largest digital signage research test-bed established in 2004 and located at the main campus of

Lancaster University in North West England [FDE12]. The e-Campus displays deployment

consists of over 70 displays and a user base composed of 13,115 students, 4,515 members

of staff and a number of visitors. Displays are situated at key locations across the university

campus including outdoor information displays along the main university pathway (e.g. Figure

1.2a) student accommodation colleges, departmental and office buildings (e.g. Figure 1.2b),

student learning areas such as the library and university-provided learning zones.

The e-Campus displays typically show a mix of static content (including university-

wide and departmental news), videos, and websites specifically developed to support public

display content. Users can manage displays and content through two Web-based systems:

e-Channels [FDE12] and the Mercury App Store [Cli+14]. Both systems were designed to

serve the needs of both display owners and content providers. E-Channels can be used to

“create content channels – logical containers – for sharing on each other’s displays” [FDE12].

Content providers can place content items (e.g. images, videos and references to Web sites)

into channels and share channels with other users of the system. In order to show content

from channels on displays, display owners can subscribe their display to one or multiple
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(a) Outdoor display located at the university’s bus sta-
tion showing real-time travel information.

(b) Indoor display located inside a departmental build-
ing showing a mix of university-related news.

Figure 1.2: Typical display deployments at Lancaster University.

channels that are populated by content providers. For example, displays located in student

study zone would be subscribed to multiple channels including university-wide press news

and student-facing channels. While in some cases display owners and content providers are

represented by the same entity, certain users of the system only create content such as the

University press office – similar to application stores for mobile devices. The Mercury App

Store introduced the application store model in which content (both static content, videos and

Web sites) is modelled as applications to the public display domain. Content providers and

application developers can create new applications and offer these through the application

store, while display owners can browse the application store and purchase content and dynamic

applications for their displays. Similar to e-Channels, display owners can further use Mercury

to manage their displays, purchase applications and add these to their displays.

The display nodes at Lancaster run Yarely, an open-source digital signage player developed

as part of multiple research projects at Lancaster [Cli+13; MCD15]. Yarely retrieves display

schedules from both e-Channels and Mercury through the XML-based “Content Descriptor

Set” (CDS) [Cli+13], a file consisting of content descriptions, URLs to the actual static or

dynamic content, and scheduling constraints such as date and time availabilities of channels

and individual content items. In order to determine which content item to show on the display

at any given point of time, Yarely uses a lottery-based scheduling component that considers

the options and restrictions specified within the CDS [MCD15]. Both the signage player

and back-end components are instrumented with Pheme to capture user interactions and

system performance measures – helping content creators, display owners and administrators

understand how the signage network performs, which content has been showing and how

users have interacted with the displays on campus [Mik+15].

Supporting novel forms of interactions is a unique characteristic of the e-Campus test-

bed. In 2017, the entire test-bed was extended to support personalised content through

Tacita, a privacy-aware display personalisation architecture [Dav+14]. Over 45 displays

have been equipped with Bluetooth Low Energy beacons to detect viewer proximity and

support walk-by personalisation (Figure 1.3). Users can download an application for their
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Figure 1.3: Map and overview of e-Campus displays at Lancaster University (grey: standard e-Campus
displays; red: personalisation-enabled e-Campus displays).

iOS- and Android-based smartphone devices through which they can express their preferred

content and preferences. A variety of back-end systems have been developed and deployed

to capture viewer display proximity and send dynamic messages to displays to change the

content displayed to a preferred piece of content if a user is in proximity to a display.

A number of components of the e-Campus test-bed have been extended and developed in

the context of this work, including the lottery-based scheduling component [MCD15], Pheme

analytics framework [Mik+15], and the new Tacita architecture to support display personali-

sation [Mik+18d]. These components are therefore described in more detail throughout this

thesis.

1.4 Contributions

In this thesis, we aim to provide early insights into achieving next generation digital signage

analytics whilst preserving the viewers’ privacy. We present an exploration into each of the

three areas of challenge (analytics data collection, reporting and automated use of analytics

data) providing a series of frameworks, components and techniques addressing each of the

three areas.

In particular, this thesis makes the following contributions:

C1: Data collection. New techniques for the collection of data relating to individuals’

interactions with networks of displays (i.e. across multiple displays and devices), in-

cluding privacy-preserving approaches. In particular:

1. a framework for categorising analytics data and identifying potential opportunities

for measuring the effectiveness of pervasive display deployments and the cre-

ation of novel viewer-centric analytics by combining multiple data sources from

different stakeholders,
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2. an analytics backend system and a set of client libraries to enable us to collect

and process display- and application-specific analytics events, e.g. analytics that

originate from public display content players and interactive display applications.

3. new insights into the creation of viewer-centric analytics by capturing viewer

mobility traces through techniques deployed on the client side,

4. the design and development of a system that supports the capture and processing

of viewer mobility data captured on the infrastructure side, and,

5. a novel approach to creating user-centric analytics data and providing entirely new

forms of analytics insights in a privacy-preserving way by combining real-world

analytics data with synthetic traces of viewer mobility.

C2: Reporting. Novel forms of viewer-centric reports and insights into the opportunities

that emerge from leveraging existing Web analytics engines. In particular:

1. the identification and creation of novel viewer-centric analytics reports founded on

the combination of traditional display-oriented analytics data and viewer mobility

traces captured through viewer-side tracking (C1.3) and generated using mobility

models (C1.4),

2. a new set of example reports for novel signage networks that support the delivery

of personalised content to viewers, and

3. the identification of similarities between the Web and digital signage analytics and

the development and implementation of a mapping of events that span across both

domains – allowing us to leverage existing Web analytics engines for the creation

of display-oriented analytics reports.

C3: Automated Use of Analytics Data. Novel systems that support the automated use

of analytics data on the digital sign to drive content scheduling decisions. In particular:

1. highlighting the need for novel content scheduling systems for digital signs that

are able to respond to potentially conflicting content scheduling constraints and

requirements in the context of analytics-driven open pervasive display networks,

and,

2. the design and development of the first lottery scheduling system for digital signs

designed to address the challenge of resolving potentially conflicting scheduling

constraints and requirements and, additionally, be able to respond to dynamic

content contextual changes from analytics systems.

C4: Evaluation and Trials. We conducted a number of large-scale and long running

trials showing the technical feasibility of systems that have been built and deployed in

the context of this thesis. Concretely, we showed the feasibility of:

1. the Pheme analytics backend and its integration into the e-Campus display test-bed,
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2. the viewer-based collection of display sightings of viewers over a period of six

months as part of an in-the-wild deployment of Tacita in the context of Lancaster

University,

3. the infrastructure-based collection of display sightings of viewers in the context of

a large convention centre equipped with Wi-Fi location tracking capabilities, and

4. the lottery scheduling approach as part of its integration into over 60 e-Campus

displays, covering a duration of over two years and 80 million content schedules.

Findings and outcomes of this dissertation have been published in the following peer-

reviewed journals, magazines and academic conferences (in reversed chronological order):

1. Mateusz Mikusz, Peter Shaw, Nigel Davies, Sarah Clinch, Ludwig Trotter, Ivan Elhart,

Marc Langheinrich, and Adrian Friday. “Experiences of Mobile Personalisation of

Pervasive Displays”. In: ACM Transactions on Computer-Human Interaction – TOCHI

(in preparation) (2018)

2. Mateusz Mikusz, Kenny Tsu Wei Choo, Rajesh Krishna Balan, Nigel Davies, and

Youngki Lee. “New Challenges in Saturated Displays Environments”. In: IEEE

Pervasive Computing (2018)

3. Mateusz Mikusz, Steven Houben, Nigel Davies, Klaus Moessner, and Marc Langhein-

rich. “Raising awareness of IoT sensor deployments”. In: Living in the Internet of

Things: Cybersecurity of the IoT - 2018. Mar. 2018, pp. 1–8. DOI: 10.1049/cp.2018.

0009. URL: https://ieeexplore.ieee.org/document/8379696

4. Mateusz Mikusz, Sarah Clinch, Peter Shaw, Nigel Davies, and Petteri Nurmi. “Using

Pervasive Displays to Aid Student Recall -Reflections on a Campus-Wide Trial”. In:

Proceedings of the 7th ACM International Symposium on Pervasive Displays. PerDis

’18. Munich, Germany: ACM, 2018, 6:1–6:8. ISBN: 978-1-4503-5765-4. DOI: 10.

1145/3205873.3205882. URL: http://doi.acm.org/10.1145/3205873.3205882

5. Mateusz Mikusz, Sarah Clinch, and Nigel Davies. “Design Considerations for Multi-

stakeholder Display Analytics”. In: Proceedings of the 6th ACM International Sym-

posium on Pervasive Displays. PerDis ’17. Lugano, Switzerland: ACM, 2017, 18:1–

18:10. ISBN: 978-1-4503-5045-7. DOI: 10 .1145 /3078810 .3078830. URL: http :

//doi.acm.org/10.1145/3078810.3078830

6. Ivan Elhart, Mateusz Mikusz, Cristian Gomez Mora, Marc Langheinrich, and Nigel

Davies. “Audience Monitor: An Open Source Tool for Tracking Audience Mobility in

Front of Pervasive Displays”. In: Proceedings of the 6th ACM International Symposium

on Pervasive Displays. PerDis ’17. Lugano, Switzerland: ACM, 2017, 10:1–10:8. ISBN:

978-1-4503-5045-7. DOI: 10.1145/3078810.3078823. URL: http://doi.acm.org/10.

1145/3078810.3078823
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7. Mateusz Mikusz, Anastasios Noulas, Nigel Davies, Sarah Clinch, and Adrian Friday.

“Next Generation Physical Analytics for Digital Signage”. In: Proceedings of the 3rd

International on Workshop on Physical Analytics. WPA ’16. Singapore, Singapore:

ACM, 2016, pp. 19–24. ISBN: 978-1-4503-4328-2. DOI: 10.1145/2935651.2935658.

URL: http://doi.acm.org/10.1145/2935651.2935658

8. Mateusz Mikusz, Sarah Clinch, Rachel Jones, Michael Harding, Christopher Winstanley,

and Nigel Davies. “Repurposing Web Analytics to Support the IoT”. in: Computer

48.9 (Sept. 2015), pp. 42–49. ISSN: 0018-9162. DOI: 10.1109/MC.2015.260. URL:

http://doi.org/10.1109/MC.2015.260

9. Mateusz Mikusz, Sarah Clinch, and Nigel Davies. “Are You Feeling Lucky?: Lottery-

based Scheduling for Public Displays”. In: Proceedings of the 4th International

Symposium on Pervasive Displays. PerDis ’15. Saarbruecken, Germany: ACM, 2015,

pp. 123–129. ISBN: 978-1-4503-3608-6. DOI: 10.1145/2757710.2757721. URL:

http://doi.acm.org/10.1145/2757710.2757721

10. Sarah Clinch, Mateusz Mikusz, Miriam Greis, Nigel Davies, and Adrian Friday. “Mer-

cury: An Application Store for Open Display Networks”. In: Proceedings of the 2014

ACM International Joint Conference on Pervasive and Ubiquitous Computing. Ubi-
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1.5 Scope and Limitations

The work described aims to conduct an initial exploration of next generation digital signage

analytics in the context of the vision of open pervasive display networks. The vision describes

future display networks that consist of an increased number of stakeholders contributing

both content and displays (openness), displays becoming embedded into public and semi-

public environments and omnipresent to viewers (pervasiveness), and displays becoming

interconnected across distinct locations and deployment sites (networked). The work at hand

has been scoped particularly around the three areas of challenge regarding analytics data

capture, reporting and automated use of analytics data (as described in Section 1.4). For each

of the areas, we provide a series of data points in the form of frameworks, components and

techniques – allowing us to gain a breadth of insights into each area. Additionally, we apply a

mixed methods approach that consists of an extensive literature review, and quantitative and

qualitative analyses of long-term and in-the-wild trials.

A number of limitations exist to the work presented in this thesis including the following.

• Our work does not aim to provide comprehensive insights in each of the three areas of

challenge (i.e. data capture, reporting and automated use of analytics data) but focusses

instead on providing a set of data points in each of these areas enabling us to capture

and report a breadth of insights.
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• We did not aim to create a single joined-up end-to-end analytics solution for public dis-

play networks but instead provide a set of individual insights, systems and frameworks

that can be combined into a common public display analytics system.

• We did not aim to create novel image processing technologies for the capture of analytics

data in the context of digital signs (e.g. for capturing gestures) but draw on existing

technologies such as Bluetooth Low Energy beacons for location tracking in order to

form a foundational dataset for the generation of novel analytics reports.

• The in-the-wild studies and experiments described in this thesis have largely been

obtained in the context of the e-Campus display network and with a single deployment

in a commercial space. The digital signage testbeds are owned by single stakeholder

entities who represent multiple stakeholder groups at the same time (particularly display,

space and display owners).

1.6 Thesis Structure

The structure of this thesis is as follows. Chapter 2 (Background) gives an overview of

background and previous work in the broader context of analytics, and specifically in the

domain of digital signage analytics. Based on the literature, we provide an analysis of the

suitability of existing work to support open pervasive display networks. Chapter 3 (Analytics

Data Capture and Generation) provides insights into relevant analytics data that can be captured

for digital signage and an exploration of the collection and generation of such data sets for

the use in new and existing analytics systems. Based on the identified data sets, Chapter 4

(Reporting) outlines concrete examples of the generation and use of novel analytics reports.

We demonstrate the opportunities and advantages that result from the shift toward novel

viewer-centric analytics. Analytical insights can be used to dynamically inform the kinds of

content that is showing on screens and improve the user experience as described in Chapter 5

(Automated Use of Pervasive Display Analytics). Chapter 6 (Trials) describes the evaluation

of systems developed in the context of this thesis in both long- and short-term deployments

across a number of different trial sites. Finally, Chapter 7 (Analysis, Conclusions and Future

Work) presents the contributions and findings of this thesis and highlights areas of potential

future work.



Chapter 2

Background

2.1 Overview

We begin the introduction of background and related work by describing models and frame-

works developed for the description of different interaction and engagement phases with

public displays (Section 2.2). To understand better the current landscape of systems that

already support the capture of digital signage analytics, we introduce in Section 2.3 systems

that were specifically developed to collect data around digital signs (e.g. for capturing systems

performance measures, content logs and the health status of displays), and that provide some

insights into the audience (e.g. their demographics and attention levels, and how they navigate

within a space). We further introduce public display applications and content (e.g. interactive

applications) that enable the capture of explicit interaction events such as direct interaction

with the sign, gaze and interaction through mobile phones. To present captured data and learn

new insights from such datasets, work has been conducted into the reporting of analytical

insights. Section 2.4 presents such previous work including historical approaches originating

in Web analytics to describe user navigation patterns through association rules, statistical

reports of systems and content, and various visualisations that have been used in the context

of digital signage analytics. While analytical insights are often used by display owners and

content providers to gain a better understanding about the ways viewers use displays, addi-

tional research has been conducted on automatically instrumenting displays and changing their

content based on contextual events that goes beyond just simple touch events, as described

in Section 2.5. This includes specifically targeted advertising (Section 2.5.1) and the use of

analytics to influence the schedule of displays (Section 2.5.2) based on contextual information

and viewer presence. Additionally, Section 2.4.3 presents the use of public displays and digital

sign analytics in related areas such as retail and the Web. Finally, Section 2.6 consists of a gap

analysis in which we clearly highlight the unique characteristics and requirements for future

display analytics frameworks in the context of open display networks.
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Figure 2.1: Overview of interaction zones by Vogel and Balakrishnan (redrawn from [VB04]).

2.2 Audience Models and Metrics

A number of models and frameworks have been developed for the classification and description

of different phases of user interaction and engagement with public displays. Early work in

understanding interactions of viewers with public displays was published by Vogel and

Balakrishnan in 2004 – with a specific focus on displays that support both interaction from a

distance using gestures and direct interaction through a touch sensors [VB04]. The authors

developed the Framework for Interaction Phases in which they identified four key interaction

phases that interactive public display systems should consider when viewers approach displays:

(illustrated in Figure 2.1):

Phase 1 – Ambient display: viewers are present in the vicinity of the display and notice

the display while it is following its regular content schedule (displays are in their

“neutral state” [VB04]).

Phase 2 – Implicit interaction: viewers have been detected by the system to be in the

the vicinity of the display. As a consequence, the detection of viewers leads to a change

in the content that is displayed without the viewer actively or explicitly interacting with

the display.

Phase 3 – Subtle interaction: viewers “approaching the display and providing an im-

plicit cue such as pausing for a moment” [VB04]. Such subtle interactions are consid-

ered as a basis for a display to reveal personal and contextual information pertaining to

the individual viewer.

Phase 4 – Personal interaction: viewers start explicitly interacting with the public dis-

play from a short distance through direct touch input or other appropriate input modali-

ties such as gestures.

As Vogel and Balakrishnan point out, viewers “transition from implicit to explicit, public

to personal, interaction” [VB04] as they go from phase one (ambient display) through to phase
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four (personal interaction) [VB04]. As part of the work, the authors have identified the need

to facilitate each of these interaction phases dynamically for an improved viewer experience

and provide appropriate content for each phase. For example, the content should change if

a viewer dwells in proximity to the screen for a certain amount of time (subtle interaction),

or if the viewer approaches the display and is close enough to perform direct interaction

(personal interaction) [VB04]. Vogel and Balakrishnan additionally discuss potential privacy

implications of users interacting with displays in public spaces. In particular, the personal

interaction phase imposes risks of revealing sensitive information. Whilst users can hide some

personal information displayed on the screen with their body, Vogel and Balakrishnan note

that this technique is only suitable for a certain “class of information” [VB04].

Another example of the exploration of design spaces and interaction zones in digital

signage was performed by Rogers and Brignull in 2005 [RB05] – with a specific focus on

designing a system that encourages a group of viewers to start interacting with a public display

and ultimately to initiate conversations within a group of viewers. The interactive display

application that Rogers and Brignull deployed allowed bystanders to share comments on a

public display through an input device installed in the vicinity of the screen. The authors

observed two interaction patterns: firstly, the application quickly drew in more bystanders and

led to a “honey-pot effect” [RB05]. Secondly, people followed a typical interaction pattern in

which they first moved into the honey-pot zone, and then started to queue up at the input device

to start interacting with the application Rogers and Brignull. The authors further observed that

within the “virtual space” that emerged in the immediate vicinity of the display, it “became

socially acceptable to spark up conversations with others” [RB05]. The findings lead to the

observation that two general interaction zones exist: a highly interactive circle around the

display which is visible through the honey-pot effect, and a low interaction zone further away

from the display.

Focusing on how passers-by and viewers approach digital signs, Michelis and Müller

developed the Audience Funnel Framework as a way of describing six typical viewer behaviour

and interaction phases as passers-by approach, dwell and leave the immediate vicinity of a

digital sign in a public space [MM11]:

Passing by: people who are present in the immediate vicinity and view range of a display.

Viewing and reacting: people who showed interest in the display and its content. Such

individuals are referred to as ‘viewers’.

Subtle interaction: viewers performing “something” that causes a reaction on the display

(e.g. approaching a proximity-aware display that detects the viewer and subsequently

changes the content).

Direct interaction: viewers who explicitly interact with the display and its content, e.g.

through touch or gesture.

Multiple interactions: the same viewers performing direct interactions multiple times,

i.e. continuously interacting with the display.
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Follow up actions: viewers performing additional subsequent actions upon engaging or

interacting with the screen, such as following up on the Web [MM11].

While we would expect viewers to go through these phases in chronological order, Michelis

and Müller point out this does not necessarily have to be the case [MM11]. Similar to Rogers

and Brignull [RB05], Michelis and Müller based their findings on observations conducted as

part of a deployment of an interactive application on a public display. In the case of Michelis

and Müller, the interactive application mirrored the passers-by virtually on the display as

they walked by [MM11]. The framework describes typical ways people interact with public

displays – of course, if a display does not offer direct interaction, the phases described might

differ. For example, the passing-by and viewing phases would be identical while the direct

interactions phase might be interpreted differently in the context of non-interactive public

displays.

With regards to the capture and measurement of the effectiveness of advertisements

through the means of digital signage, She et al. have proposed a new model for capturing and

measuring the “effectiveness of interactive display advertising” [She+14]. The model consists

of three main phases in which viewers approach a display:

Attraction: potential viewers becoming aware of a public display in their vicinity, e.g.

by spotting its presence or walking by.

Interaction: viewers actively interacting with a display and its content, e.g. through touch

or gestures.

Conation: viewers performing any actions after interacting with a display.

She et al. defined the “effectiveness” measure of an advertising campaign using public

displays as the ratio of the number of viewers of an advert, and the number of people who

followed up after the conation phase [She+14] which can be compared to the follow up actions

phase from the Audience Funnel Framework [MM11]. The model developed by She et al.

emphasises the importance of considering each of the three phases during the development

and deployment of content for public displays – in this case for advertisements.

The knowledge of interaction phases and zones, and the understanding of how viewers

approach digital signs are being used to implement novel applications that dynamically react

to the presence of viewers depending on the interaction zone a viewer has entered. Ballendat,

Marquardt, and Greenberg developed the Proxemic Interactions model which, in addition

to the proximity of the user to the display, also considers their identity, orientation and

movement [BMG10] and builds on top of the interaction transition approach developed by

Vogel and Balakrishnan [VB04]. A further publication elaborated on the Proxemic Interactions

model and described it as a basis for “the new Ubicomp” [Gre+11]. As part of the model,

Greenberg et al. have identified five “dimensions” of relevance for the support of proximity-

aware interactions:
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Distance: defining either the distance of the viewer to a display or their presence in

certain Interaction Zone.

Orientation: continuous or discrete orientation of the viewer to the display, e.g. whether

the viewer is facing the display.

Movement: both the speed and direction of the viewer while being present in the vicinity

of the display.

Identity: unique description of the viewer or entity, i.e. not necessarily the real identity

information of a viewer.

Location: relative or absolute location of an entity or the viewer – including relative

locations of two entities or viewers to each other.

The authors note that relevant metrics for the support of proximity-aware interactions could

be dependent on each other. For example, Location as a dimension might be the foundation

for capturing data for the remaining four metrics. Equally, each metric in isolation could be

enough to feature certain functionalities such as the recognition of an audience [Gre+11].

The Proxemic Interactions model can be used both as a basis for novel application areas for

digital signage and for describing viewer behaviour and engagement with an interactive or

even non-interactive display.

2.3 Data Capture

The capture of relevant datasets is the foundation to understanding and learning how viewers

interact with displays, for example, to determine which content was the most and least effective

or interesting to individuals passing-by. In this section, we give an overview of different kinds

of datasets and metrics relevant for digital signage analytics – from purely systems-focused

performance indicators (Section 2.3.1) to insights into audience behaviour and movements

(Section 2.3.3).

2.3.1 Systems

The roots for monitoring the performance and health status of systems, including networks of

digital signage and public displays, can be found in the use of the Simple Network Management

Protocol (SNMP) [Cas+90]. The protocol was originally developed to support the exchange

of “information between one or more management systems and a number of agents” [Sta98]

across networks of systems. Since the initial development of SNMP, a number of system

and network management tools have arisen [MZH99]. Martin-Flatin, Znaty, and Hubaux

have conducted a survey of network management tools allowing developers to chose the best

solution for their system [MZH99].

Specifically for monitoring networks of digital signage, a set of commercial monitoring

tools have emerged. Esprida is an example for a system that was initially developed as
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Figure 2.2: Screenshot of SPINETIX Cockpit [Cor].

a traditional remote management tool to monitor and control generic end-point devices –

noting that such end-point devices can well represent public displays [Esp17]. While Esprida

provides ways to monitor the behaviour of remote devices and digital signage, it is also

designed to support the remote management of remote devices. The general motivation of

remote monitoring systems is to “offer better service at a lower cost, minimize response time,

and maximize the availability and reach of advertising on their networks” [Esp17]. Similarly,

OnSign TV is a product that features a real-time dashboard specifically designed to detect

“any issues” with the signage network, allowing administrators and technicians to respond fast

to potential problems [OnS17].

SPINETIX Cockpit [Cor] is a commercial product that predominantly focuses on enabling

display owners to maintain and oversee their remote display deployments [Cor]. As shown

in Figure 2.2, the application features the monitoring of remote displays to ensure their

hardware status and connectivity in real time. Further, Cockpit tries to automatically detect

potential failures and malfunctions, e.g. such as unwontedly disconnected or powered off

displays, software malfunctions, environmental problems such as power cuts, or firmware

conflicts. SignageLive is a software suite with comparable features to SPINETIX Cockpit and

was also designed for the remote monitoring of displays [Rem17]. A Web-based real-time

dashboard allows administrators to oversee their entire display network, and view warning

and error notifications through the interactive interface. In addition to hardware monitoring,

SignageLive also provides an overview of currently and previously played content on displays,

and the number of players that have already or are due to update to the latest content schedule.

Traditional signage analytics often uses log files gathered from digital signage as a

foundation for the creation of status reports of digital signage players or content played

records. An example for such an approach is CAYIN SuperReporter 2 [CAY] that can be

used as an extension to the manufacturer’s digital signage players, and collects log files from

each individual display remotely to be then used as a basis for the creation of device-centred

analytics reports.
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2.3.2 Audience Numbers and Demographics

Capturing and counting the size of the audience and their demographics in front of a public

display has been a focus both in a commercial context as well as in research. Commercial

tools mostly use visual computing techniques to count the number of people in the vicinity

of a display and refer to the field as “Anonymous Video Analytics” [Int18; Ham+09; Fraa]

(AVA). The name originates from the fact that the sensing and processing of the video feed is

performed on or close to the visual sensor instead of in the cloud, and that only the outcomes

of the computation are stored instead of the entire video feed. Using this approach, the

recognition of the same viewer and thus the computation of unique viewers metrics is not

possible [Sla11]. However, “protecting viewer privacy by design” [Cav11] is a clear advantage

of using AVA and therefore an important step toward the deployment of such systems that

help understand more about the audience without revealing personal-identifiable and other

comprehensive insights of individuals. In particular the extraction of demographic information

of the audience and retail customers is one of the main selling points of commercial state-of-

the-art products. From the use of AVA a set of metrics can be derived: “potential audience”

(anyone in vicinity of the display) and “useful audience” or impressions (those who actually

glanced at the display) [Sla10b]. Demographic information from commercial signage analytics

products that use video analytics include an estimate of the customers or viewers age, gender,

and, in some cases, a form of attention and mood measure [Int18; Fraa; See; Qui16; IBM13;

NEC13] and ethnicity [GH15]. The overall goal of signage analytics is to help advertisers

and content creators quantify the “effectiveness of dollars they spent” [Sla10a] and provide

support for targeted advertising on public displays [Far+14; Sla10a].

Intel’s Anonymous Video Analytics (AVA) [Int18] is a commercial application for process-

ing video analytics feeds in real time with the processing component located on the sensing

device. Intel uses a face classification algorithm that identifies people whose heads are facing

the camera (and thus also the display), and generates counts and aggregations of the number

of visitors of a display. The audience counts are based on the total number of viewers and

returning viewers – the application is not able to identify unique viewers. However, AVA does

provide insights into the average dwell times of viewers spend to look at the screen. Intel’s

AVA features an additional set of metrics to the typical audience, impression or dwell time

counts to provide transparent insights into the accuracy of the measurements. For example,

the impression count error describes the accuracy of the current viewer count by comparing

the viewer count provided by AVA with ground truth data (e.g. collected through manual

counting) – giving insights into the accuracy of the face classification algorithm [San+11].

The system further collects a set of basic demographics on rough age estimates (child, young

adult, adult and senior), and gender. Such metrics are included into audience analytics reports

as an additional dimension and enable the user of the reports to aggregate viewer and dwell

times by demographics.

Researchers from Fraunhofer developed a video analytics system that is comparable with

Intel’s AVA: Fraunhofer SHORE [Frab] is a facial video analytics engine underpinning the
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Anonymous Video Analytics for Retail and Digital Signage (“AVARD”) product [Fraa]. Similar

to Intel, the face recognition is performed on or close to the sensor, and the researchers claim

that the algorithm is robust enough to work in differing lighting conditions, even when utilising

consumer-grade video cameras. While digital signage is one application domain, the software

is advertised to be used in retail, health and other application areas. SHORE [Frab] goes one

step further than just retrieving basic demographic information and is additionally capable of

determining the emotional state of viewers purely through video analytics techniques. The

emotional state is categorised in terms of four facial expressions: happy, sad, surprised, and

angry. Fraunhofer SHORE additionally provides a fine granular age estimation and returns

an actual age instead of an age range – including a deviation metric to communicate the

accuracy of the estimated age. This product is the foundation and visual analytics engine for

Fraunhofer’s Anonymous Video Analytics for Retail and Digital Signage [Fraa] software suite,

which provide an example use case SHORE and the supported metrics and reports specifically

in the digital signage domain.

The detection of emotional states and moods is not a unique feature. Other commercial

visual analytics products have been specifically developed for the digital signage domain

that use a similar approach for face classification. Quividi [Qui16] provides similar visual

analytics tools that are capable of detecting a number of metrics that are in common with

Fraunhofer SHORE: “opportunities to see” the content (i.e. counting people who walked

by the display but have not glanced at the screen), number of viewers, dwell and attention

times, gender and age estimates, attention states and moods “from very unhappy to very

happy” [Qui16]. As a unique feature, Quividi additionally supports the detection of facial

attributes including facial hair, glasses and sunglasses [Qui16]. Specifically designed for

analytics for kiosks, Meridian uses video analytics to detect and count “potential users” and

actual users and the retrieval of the collected data in real-time, e.g. for the use of interactive

and adaptive display content [Sla16]. The classification, however, is limited to age and gender,

though could be extended with other video analytics products and enriched with interaction

logs captured directly through the interactive kiosk software. SCALA Advanced Analytics [Sca]

even allows the plugin of a range of sensors and actuators that can be individually programmed

and dynamically change their behaviour based on audience presence and viewer counts. For

example, displays could change the content displayed based on an approaching audience or

interactions in proximity to the display [Sca].

A broader approach is used by IBM Intelligent Video Analytics [Ham+09; IBM13] and

NEC’s FieldAnalyst [NEC13] software. While the previous products focused mainly on face

recognition classifiers and required the camera to be mounted on the screen, IBM focuses on

analysing video feeds from CCTV cameras [Ham+09]. Similarly, the FieldAnalyst software

captures faces and people from video streams and is capable of measuring a basic set of

demographics (age, gender, distance to the screen, and viewing time), the number of viewers

of a display and, additionally, the number of entrances and exits in a space without the need to

place the camera at the display [NEC13]. Similar to Fraunhofer AVARD [Fraa], FieldAnalyst

is designed for the digital signage and retail domain and provides ways for “target analysis”
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and “non-buyer” analysis – helping display owners and content providers to understand which

user groups are engaging with displays. Seemetrix is able to return a similar set of metrics: it

consists of the capability to capture a rough age and gender classification of viewers [See].

Reports are extended by an attention measure per viewer which is calculated from the total

duration a viewer has spent looking at (or in the direction of) the display, i.e. the duration in

which the viewer has been “attentive” [See].

While commercial products focus on providing an end-to-end system for capturing and

reporting information about the audience, one of the main focuses in the development and

use of visual analytics tools is to answer questions about the user behaviour and the ability to

track individuals [LCK13]. Of course, systems that support audience tracking in the context

of pervasive displays are also capable of generating audience numbers.

Examples of specific signage analytics work include the analysis of pedestrian traffic

around a public display performed by Williamson and Williamson [WW14]. The authors

placed a video camera on the display and used visual computing techniques to both count and

track people walking in the surrounding area of the display deployment. While the focus of

the system was to track people, the same approach could be used to simply count the number

of people who are in the immediate vicinity of the display and produce an audience count

measure. Using a depth-camera mounted to the display and facing the audience as a source,

Tomitsch et al. deployed a public display to conduct a study to understand the level of care

and attention of viewers toward content that is shown on the displays [Tom+14]. The video

stream was recorded as part of the deployment and the authors were able to use it for a better

understanding about the audience (including the number of people) and their behaviour in

front of the display. In a similar approach, Farinella et al. equipped a public display with

cameras and developed a system that supports the identification and recognition of returning

viewers at a public display based on biometric features [Far+14]. Parra, Klerkx, and Duval

used visual computing techniques to automatically generate an audience count of people

passing by at an in-the-wild deployment at Brussel’s largest train station [PKD14].

In addition to simple audience counts, visual analytics based systems are often also capable

of capturing the user dwell time in proximity of the display, and their view times of the display

and content [RS13]. More recently, Elhart et al. published the “Audience Monitor” – a toolkit

specifically designed to count the number of people approaching a display and their dwell

time [Elh+17]. Utilising a mix of different sensing technologies, Gillian et al. developed

“Gestures Everywhere”, a system that is able to track an individual across multiple displays

through a number of sensing technologies such as Bluetooth Low Energy beacons and video

cameras [Gil+14]. In addition to providing context-aware content to the viewer, the system

also supports the tracking of individuals across multiple displays and locations and serves as a

basis for the generation of analytical insights such as audience counts.

Whilst the presented work typically requires the use of video cameras mounted at the

display facing the audience, other video analytics tools utilise surveillance cameras that

capture a broader view of the vicinity of the display. IBM Intelligent Video Analytics uses

such an approach in which it is possible to search for specific faces, the extraction and filter
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for detail demographics, however, is not possible [IBM13]. Note that, for the purpose of

conducting and analysing research experiments, demographic information of an audience have

often been conducted manually through observations, e.g. in [Alt+11a] and [PTK18].

The use of video analytics techniques in order to capture audience numbers and demo-

graphics can potentially impose a privacy risk to individuals present in front of the display.

Previous work, however, has developed approaches that address the potential privacy risks.

For example, Intel AVA [Cav11] conduct the analysis of the video feed close to the sensor and

report the generated numbers (e.g. the number of viewers engaging with the display) instead

of the video feed. Similar approaches are taken with the concept of “Edge Analytics” in which

computations are performed on the edge of the cloud close to the sensor both for performance

reasons and for privacy preservation [Sat+15].

2.3.3 Audience Engagement and Movement

2.3.3.1 Proximity-Aware Systems

The use of information on the proximity of viewers to displays has been explored in research

mainly in the context of the development of novel interactive applications that change their

content or enable certain interaction modalities based on approaching viewers or the distance

of viewers to a display [MG15].

Vogel and Balakrishnan have developed a prototype system to specifically support the

transition “from implicit to explicit, public to personal, interaction” [VB04] of viewers with

a pervasive display. This work is an early example of a proximity-aware pervasive display

system that automatically adapts the content and interaction modalities to the viewer based

on their distance to the screen. To measure the engagement and proximity of viewers, the

authors chose active markers and motion detection sensors (the state-of-the-art at the time

at which the paper was published). The distance measure of the viewer to the display was

used to dynamically adapt the content and enable certain interaction modalities. For example,

as soon as a viewer has reached the immediate vicinity of the display and is close enough to

perform direct interaction, the display enables the touch input sensor and changes the content

to an interface that is suitable for direct interaction [VB04].

More recently, Wang, Boring, and Greenberg developed the Proxemic Peddler – an

interactive application as a demonstrator for an “advertising display that captures and preserves

the attention of a passers-by” [WBG12] by utilising proximity information and tracking

individuals while they are in the vicinity of the display. The authors describe one of the

key advantages in monitoring the immediate vicinity of a display as the ability to tailor the

content to the viewer and their current location [WBG12]. The demonstrator continuously

captures the movements of individuals and their “attentional state” in real-time and adjusts

the content accordingly, e.g. by showing “rapid animations” to viewers passing by, and more

detailed content to viewers that decided to dwell in front of the display [WBG12]. Wang,

Boring, and Greenberg work builds on top of the Proxemic Interactions model developed by

Ballendat, Marquardt, and Greenberg [BMG10] (described in more detail in Section 2.2) and
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the Proximity Toolkit developed by Marquardt et al. [Mar+11]. The tool-kit is a software that

incorporates the interaction model and enables developers to create interactive applications

that utilise proximity information. The tool-kit supports the collection of relevant analytics

data in accordance with the Proximity Interactions model: distance, orientation, movement,

identity and location. In addition to sensing data about individuals, measurements about the

(spatial) relationship between two individual entities (e.g. their distance, angle and velocity

difference) and the pointing relationship between two points (e.g. intersection) is collected

and made accessible by the tool-kit API [Mar+11]. A number of analytical insights can be

derived from such data. For example, the speed and angle in which viewers are approaching

the display, and their potential relationship to other bystanders can be captured and used to

measure changes in behavioural or movement patterns depending on the displayed content.

The use of proximity data has also been explored for the design of interactive and collab-

orative spaces. Dostal et al., for example, have designed a system to support “collaborative

proxemics” [Dos+14]. The authors utilised a combination of Microsoft Kinect sensors and

consumer RGB depth-cameras to support, among other features, the tracking of multiple

users – with a limitation to up to four users in real-time. In addition to proximity information,

the tool-kit also gathers data on the proximity to other (potential) group members, and the

attention level of the users of the system. The system is purely based on computer vision,

and the authors included a confidence level measure that transparently indicates the accuracy

of the results. Gillian et al. use “Gesture Everywhere”, a system that captures gestures and

audience presence information through depth-cameras in real time at MIT Media Lab to

recognise the proximity to the display of individual viewers and select an appropriate piece of

content [Gil+14]. While the data is initially captured within the analytics module, the system

makes the data available for applications and content running on the display and allowing the

immediate use of current gestures and audience engagement for changing the content, and

viewers to interact with the display. An opposite approach was taken by Alt et al. with the

GravitySpot deployment [Alt+15]. Instead of tailoring the content to the viewers location, the

authors have instead tried an approach in which the content on the display is used to guide the

viewer to the “sweet spot”, i.e. the best location in which the user can consume the content

displayed [Alt+15]. Visual analytics techniques are used to track the current location of the

viewer and increase or reduce the blurring on the display until the viewer has found the desired

location [Alt+15].

The utilisation of proximity-aware interaction models is not restricted to the research

environment – a number of commercial providers offer pervasive display systems that are

based on user proximity information [MG15]. Novo Ad, for example, is a product that is

typically deployed in public bathrooms. Sensors are used to detect a person standing in front

of a mirror to then automatically display advertisements on the mirror or in front of urinals

without allowing the user to opt-out or turn the system off [Cap17; MG15]. Targeting touch-

enabled kiosks, Meridian is a commercial product that uses visual computing techniques

to detect an approaching audience and then automatically change the content to provide

incentives for the user to start explicitly interacting with the display [Sla16]. Proximity data
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is further collected to provide analytical insights about the performance of the kiosk to the

display owners. Measuring the distance of a viewer to the display is a common metric in digital

signage analytics. Quividi, for example, captures such data for each person in vicinity to the

display [Qui16]. Such data is made available in real-time and Quividi explicitly mentions the

use for proximity-aware systems and the adaptation of content based on audience presence

and proximity as one potential use case [Qui]. Similarly, Cayin provides an interface for the

plugin of external sensors (such as proximity sensors) to enable “interactive and personalised

applications” and “multi-functional services” [CAY].

Greenberg et al. identified a set of “dark patterns in proxemic interactions” [Gre+14] in the

context of interactive and context-aware public displays. In particular, the authors highlight

issues with regards to user privacy – for example, displays revealing a viewers interests by

providing personalised content as they approach the display [Gre+14]. The provision of

personal content through public display has been further considered by early work such as

Shoemaker and Inkpen [SI01] who developed the Single Display Privacyware system designed

to provide personalised content in the context of a shared public display.

2.3.3.2 Capture of In-Door Viewer Movement Patterns

In order to measure the influence and therefore also the effectiveness of digital signage

and pervasive displays we need to be able to track the audience beyond and across single

displays within closed environments. This includes the need for more detailed understanding

of viewer navigation patterns, i.e. focused on the viewer instead of the physical device of

a display. In related domains such as activity recognition and human sensing such shifts

were previously described as “human-centric personal analytics” [LB14] and “human-centric

sensing” [SAS11].

Tracking and the required localisation of individuals indoors is a challenging task but

equally is an “important source of context for ubiquitous computing systems” [WH08]. An

early example for determining the indoor location of users dates back to 2004 in form of a

patent by Gray, Jeffrey, and Chery [GJC04]. The general idea is to use triangulation in spaces

densely equipped with wireless access points, and identifying individuals by their mobile

device’s MAC addresses. While the computed location is often an approximation of the actual

location of the person or device, the movement traces acquired over time are still informative

enough to give insights into certain navigation patterns of an individual and are certainly

accurate enough to, for example, determine in a shopping mall scenario which shop a person

has entered and how long they have stayed inside [Nan+13]. Researchers have also developed

improvements to WiFi location tracking. This includes the work of Woodman and Harle who

focused on the development of an indoor localisation system that, in combination with Wi-Fi

location traces, uses movement data captured by foot-mounted units [WH08].

The use of Wi-Fi- and infrastructure-based location tracking has also been explored and

deployed in commercial spaces. The “retail store of the future” [Air13] describes the use of

customer movement tracking to improve staffing, and also to provide better marketing and
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even perform A/B testing inside the store [Air13]. Generally, the combination of multiple

data sources have a high potential and will be discussed in the subsequent sections. A similar

approach has been used to develop one of the largest and longer-running test-beds for indoor

localisation – which has been deployed at three different environments: a university campus,

resort island and a convention centre [Kha+13; Jay+16]. The location data has been made

available as a platform and service to other researchers and developers, enabling the utilisation

of the data for the development of novel applications and data analytics [Jay+16]. The use

of Wi-Fi location tracking, however, brings a number of tradeoffs and considerations. For

example, the performance of location tracking algorithms, and therefore also their accuracy,

may be highly dependent on the occupancy level in the space that may be changing significantly

within small time frames [MB13]. Khan et al. conclude that Wi-Fi- and infrastructure-based

location tracking for indoor environments still remains a challenging approach [Kha+13].

The use of mobile devices and smartphones are key for enabling indoor location tracking.

While Wi-Fi fingerprinting is one approach, built-in smartphone sensors offer a wide range of

opportunities for collecting information about the context in which the user is present [BH13] –

including for determining their spatial location. Park, Shin, and Cha have used the magnetome-

ter and accelerometer of smartphones to automatically detect each time the user turns around a

corner or changes their direction in real-time [PSC13]. The authors mapped detected corners

and turns back to the spatial layout of the building and were able to compute the trajectory of

the users movement path. Park, Shin, and Cha note, however, that this approach requires a

certain layout of the space that needs to be manually configured within the system and might

only work with buildings of a certain layout (e.g. with clear corners) [PSC13]. In a related

approach, Roy, Wang, and Choudhury designed an application that uses smartphone sensors

to determine the person’s walk direction [RWC14]. A combination of compass, accelerometer

and other sensors are used to compute the direction in which a person is walking – such infor-

mation can be then mapped back onto a spatial map and therefore used to draw conclusions on

how viewers navigated throughout the space. Indoor localisation tools can benefit from such

data to, for example, improve the accuracy of the location determination [RWC14]. Even light

sensors can be used to accurately determine the indoor-location of a person in a controlled

environment as shown by Hu et al. [Hu+13]. Researchers have also explored approaches

in which the use of active or passive tracking devices is not required. One example of such

systems is WiTrack which measures the body reflections of radio signals [Adi+14]. Adib et al.

point out the relatively high accuracy which, at the time of publication, even exceeded the

accuracy of other radio frequency tracking systems that required the use of transmitters. To

support tracking through radio signals, however, the environment needs to be heavily equipped

with appropriate tracking devices. In its current version, the system can only track a single

person at a time present in the space.

Capturing (indoor-) location traces can potentially reveal sensible insights about individu-

als and could potentially be misused to monitor individuals, for example, in the context of a

work environment [Wan+92]. Early work such as the Active Badge system designed to track

individuals indoors already considered privacy as an important issue [Wan+92]. The authors
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note that in the system designed devices rather than individuals are tracked, allowing individu-

als to interrupt the location tracking by putting away the device at any time – i.e. providing full

control over the systems’ insights. Want et al. further note that location tracking “technology

is rarely inherently bad; it is just that it can be used for good or bad purposes” [Wan+92].

2.3.3.3 Large-Scaled Viewer Navigation and Movement Patterns

Moving out from closed and indoor environments, an understanding of how viewers navigate

beyond the immediate vicinity of a digital sign is essential to answer questions on the display

effectiveness and potential behaviour and movement changes due to interactions with the

sign. Linking back to the motivating scenario (see Section 1.2), this level of tracking is

key to link the viewer path from the display to the nearest shop – and therefore answer the

question about a potential change in behaviour due to seeing the display content. Visual

analytics and image processing have been widely explored in research as a common approach

to track people behaviour. Candamo et al. have brought together an extensive literature survey

on algorithms and tools that use image processing to extract the behaviour of individuals

or groups from a video stream [Can+10]. Example applications of such systems include

automated behaviour detection, interactions of people with each other and even automated

fraud and safety detection [Can+10]. An early example for the development of a visual

analytics software for the activity recognition of customers in a retail environment was

performed by Krahnstoever et al. [Kra+05]. The authors developed a novel approach in which

RFID technology was used as an additional source for the identification of objects on a shelf

which have been picked up by the customer – while video analytics was used to capture the

customers’ movement traces. The resulting analytics provided novel insights into the ways

customers moved across the store and interacted within the retail space, on a level similar to

user interactions on an e-commerce website (e.g. the tracking of products that were added and

removed to the virtual or physical shopping basket). This could be linked to digital signage

the customers may have interacted with before picking up and purchasing a certain product in

the physical store.

Generally, video cameras and the subsequent video analytics computation are a common

technique to use for the extraction of detailed information about people including their body

attributes such as hair type, eye wear and clothing colour [Ham+09]. The authors mention

the recognition of the same person across multiple video feeds as an explicit use case of

this system – thus allowing the collection of movement patterns in a large scale and across

locations as an alternative to using face recognition systems. The tracking of individuals

across multiple video sequences and locations has also been explored by Yang et al. [Yan+07].

While their work is focused on the development of the actual visual computing algorithms

that are used to track an individual across multiple frames and angles, the resulting insights

allow the tracking of an individual across locations without the need for an active or passive

tracking device. Of course, while the primary use of such a system is often motivated by

safety arguments for the automated detection of fraud or crimes, it can also be used for
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capturing analytical insights relevant for the digital signage domain. The computation of

behaviour and navigation patterns of individuals after passing a digital sign could allow

administrators and providers to gain insights into the effectiveness and performance of a

display or content displayed. The recognition of people across multiple video sequences is a

difficult problem. Mitzel et al. designed a system that uses sparse detection and segmentation

to follow an individual, and supposedly is robust enough to handle occlusions and multiple

camera feeds [Mit+10]. The approach of using additional data sources has also been used

for improving the accuracy of people tracking. Teixeira, Jung, and Savvides combine visual

analytics from existing surveillance infrastructures with on-device sensors (in this case,

accelerometer and magnetometer) to uniquely identify people through their mobile phone’s

unique identifier [TJS10]. This allows the recognition of the same person even after returning

to the monitored area. Of course, this approach requires the person to carry a smartphone with

a dedicated application as an active tracking device. As an example for the use of behavioural

analysis, Girgensohn, Shipman, and Wilcox have developed a system that uses visual analytics

to determine and track activity patterns in a retail store [GSW08]. The tool produces heat

maps of common movement patterns and frequently visited places, and the visualisation

also includes the location and speed of people. This can help in understanding the kinds of

activities customers were performing in the space [GSW08].

Using visual analytics for activity and behaviour recognition and tracking is a common use

case in research as identified in a survey conducted by Candamo et al. [Can+10]. Alternative

approaches for tracking people to gain more insights into their navigation patterns, for example,

in the context of adventure and amusement parks, involve the use of active GPS tracking

devices [RCS10]. Konidala et al. use mobile applications to collect additional information

about visitors, including their location coordinates as they move around the park [Kon+13].

The authors point out the usefulness of such data for analytics purposes for park providers.

On an even larger scale, cellular data can provide movement traces of individuals [Bec+13]

– though the granularity does not appear to be suitable for the use in the context of signage

analytics.

The detection of people and objects in video sequences, however, is a complex problem.

Researchers have worked on methods to improve the accuracy and performance of such

systems, e.g. by combining computer vision with “models of pedestrian dynamics” [Ant+06].

In addition to the technical challenges in audience tracking through video analytics, other

challenges and concerns arise. The use of video analytics and tracking of individuals has

been pointed out to be privacy invasive and a number of concerns have been raised within the

research community (e.g. context-aware displays that recognise individual viewers make their

private information visible on public displays) [Gre+14]. To address such issues, researchers

have worked on methods to enable the use and collection of such insights while still preserving

individuals privacy. Zhang et al. [Zha+10], for example, discuss privacy issues of closed-

circuit television cameras and provide a privacy-preserving solution for pedestrian tracking

and recognition. Instead of storing an image of the viewers face (i.e. a frontal image of an

individuals face), the system computers biometric features of the face and stores a hash of
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the biometric features [Zha+10] – similar to how systems currently hash password strings to

avoid the storage of such sensitive information in plain text. This approach prevents potential

attackers from decoding facial and biometric information stored on the device while allowing

the system to recognise reoccurring viewers.

Viewer navigation paths (whether captured via video analytics or location tracking systems

such as GPS) represent highly sensitive data and may violate the privacy of individuals. A

number of systems, however, have been developed that address issues of privacy in this context.

LocServ is an early example of a system developed by Myles, Friday, and Davies [MFD03]

specifically designed to allow individuals take full control over location data captured and

processed by defining and applying policies. For example, users can express times and contexts

in which location tracking is acceptable (e.g. while at work) whilst rejecting location tracking

in other contexts (e.g. while at home) [MFD03]. The system has been partially motivated

by pawS (“a privacy awareness system for ubiquitous computing environments”) [Lan02]

supporting the implementation of ‘data usage policies’ allowing users to both express their

preferences for the usage of personal data and track the usage of it.

2.3.4 Interaction Events

Understanding more about interactions and engagement with digital signage and content

showing on displays is a key aspect in drawing conclusions about the effectiveness and

usefulness of both display deployments and content [Alt+12]. Multiple ways exist in which

users can interact or visually engage with a public display. She et al. conducted a survey to

extract common interaction modalities in the digital signage domain and identified presence,

direct touch, gesture and remote control as a set of interaction categories [She+14]. For each

of these categories, different software- and hardware-based capture techniques are available to

capture the data that is relevant for signage analytics. Whilst we described proximity-aware

systems that take viewer presence into account in Section 2.3.3.1, we will give an overview of

related work in which researchers have developed and deployed digital signage systems that

allowed viewers to interact through remote controls in form of mobile phones, gestures, touch,

and, as an additional category, gaze. All of the described technologies could function as data

capture techniques and be used to build up analytics-relevant datasets about the interaction

and engagement of viewers with digital signage.

2.3.4.1 Touch

Direct touch may be a likely choice for the deployment of interactive public displays such

as kiosks (e.g. the UBI Hotspots deployment in Oulu, Finland [Oja+12]) and offer a range

of opportunities for the collection of analytics-relevant data. As part of the proximity-aware

system developed by Vogel and Balakrishnan and initially described in Section 2.3.3.1, the

authors included direct interaction for the “personal interaction” phase, i.e. when users have

approached the display close enough [VB04]. The authors describe the higher accuracy

and the occlusion of the content a user has requested from the display as two among other
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advantages of direct touch over other interaction modalities such as gesture [VB04]. The

use of multi-touch interfaces in which multiple users can engage with the display at the

same time infers new challenges. Jacucci et al. have specifically looked at the design of

application that support such multi-touch interfaces [Jac+10]. From an analytics perspective,

the particular focus lies on the differentiation between multiple users – which has also been

identified as one of the design challenges in this work in the context of supporting “parallel

interaction” [Jac+10]. For the evaluation of their multi-touch public display prototype, the

authors have, in addition to surveys, recorded viewer interactions with a camera located in the

vicinity of the display and used the recordings to perform an observation of viewers.

In contrast, Alt et al. have chosen a different approach to analyse user engagement with

the deployment of Digifieds, an interactive classified application for public displays [Alt+11a].

The authors made heavy use of log files collected on the server to gain insights into the number

of users, usage times and the kinds of classifieds and content users have requested through

direct touch interactions on the display and additionally through a mobile phone client. These

touch events and content requests were used to identify peak usage times throughout a day

and content from which users have requested additional information [Alt+11a]. In addition to

log files, Alt et al. have also performed observations and controlled studies to understand how

viewers engage with the application.

The use of touch modalities can have potential impacts on viewer privacy particularly

around the interaction with display applications. For example, Kim et al. [Kim+10] identified

the vulnerability of touch interfaces (in the context of tabletops) with regards to ‘shoulder

surfing’ (i.e. bystanders capturing interactions and potentially sensitive information revealed

by the viewer such as authentication). Work that addresses issues of privacy in the context

of touch interactions on public displays includes Sharp, Scott, and Beresford [SSB06] who

developed a system that allows viewers to use mobile phones instead of touch-based interfaces

on the display in order to enter sensitive data.

2.3.4.2 Gesture

Depth- and infrared cameras, typically mounted at or behind the digital sign, have been a

prominent choice of technology among researchers to enable gesture-based interactions. For

example, in 1997, Matsushita and Rekimoto developed the “Holo Wall”, a large display wall

composed of a glass wall with a rear-projection sheet, a projector and infrared-camera pointing

from behind the wall at the audience to capture their gestures and interactions [MR97]. More

recently, Peltonen et al. used a technologically similar setup for capturing viewer gestures

and to track the audience in front of the “City Wall” [Pel+07]. Some of the main features

of the system include “hand posture and gesture tracking” and “computer vision based

tracking” [Pel+07] – both approaches can be used in combination with the infrared-based

camera to log user interactions through gestures. With the release of Microsoft Kinect and

an appropriate software development kit, depth cameras became a widely used and powerful
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tool in the research community and are used even beyond the digital signage domain, e.g. for

object recognition and human activity recognition [Han+13].

Müller et al. deployed a public display using a Kinect sensor to capture user interactions

and engagement [Mül+12]. The authors followed the recommendations of the Audience

Funnel (see Section 2.2) for the implementation and deployment of the display. The proximity

information about the audience captured by the sensor is used to change the content shown

on the display in order to make the passers-by aware of the gesture-enabled display and

to encourage them to start interacting. Using sensing technology to make the audience

aware of gesture-enabled displays has also been explored by Walter, Bailly, and Müller who

conducted experiments with different kinds of gestures, and strategies of revealing gestures

to the audience [WBM13]. For this purpose, a similar approach to [Mül+12] was used: a

depth-camera was deployed in conjunction with a public display and used to both detect

approaching viewers and trigger content when a viewer was detected, and provide gesture

interaction support [WBM13]. In general, Walter, Bailly, and Müller have found that gestures

appear to be the better technique of interaction for viewers (compared to, for example, touch

interfaces). However, in accordance with the Audience Funnel, the authors identified the

importance of communicating to the viewer that a display is gesture-enabled as an important

step. Interestingly, the authors found that instead of the display dynamically changing its

content as someone approaches the display, a permanent information should be displayed to

make people aware of the gesture functionality [WBM13].

As an extension to standard digital signage and the use of depth cameras, more sophis-

ticated setups have also been explored for the support of gesture interactions. For example,

Sodhi, Benko, and Wilson developed a system that uses a combination of projectors and depth-

cameras to project directly onto the person’s hand. In this case, the hand acts both as a gesture

and display device, and the projection on the hand is used to communicate supported gestures

to the user [SBW12]. Data collected from the depth-camera is therefore used to provide instant

feedback to the user, and can also be collected for further analytics purposes. In the context

of a retail store, Ravnik, Solina, and Zabkar have explored how audience analytics data can

be used to predict customer behaviour by utilising machine learning algorithms and video

analytics [RSZ14]. The developed system was able to predict in over 70% of cases whether

a customer will perform the purchase of a product upon the interaction with a digital sign.

The authors note that such an approach “can also be used to predict the roles of an individual

in the purchase decision process” [RSZ14] – therefore building a potential foundation for

novel insights and interactive displays. Equally, more simplistic techniques can be used for

capturing audience attention and supporting gestures on public displays. Hardy, Rukzio, and

Davies developed an application for public displays that uses a consumer-grade web-cam

in combination with motion recognition software [HRD11]. While gesture recognition was

successfully implemented, the authors have based their data analysis purely on observations

and manually collected and measured attention levels, glance times, and other information

about viewers such as demographics – not using the insights that might have been captured by

the system.
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Similarly to touch-based interactions, gestures can be subject to privacy concerns by

viewers. Clark and Lindqvist [CL15] identified a number of threat models particularly around

the use of gestures for user authentication. For example, potential attackers may capture

gestures performed by individuals simply by observations (as gestures in the context of

public displays are performed in public or semi-public spaces). Certain counter measures,

such as the increase of gesture features detected by a system can increase both security and

privacy [CL15].

2.3.4.3 Gaze

Gaze tracking has been explored in the context of digital signage in two domains: enabling

support for gaze as an interaction modality [Ead+04; SHT10; ZBG13], and for capturing

analytics data about prominent regions on a public display [Bur+05; Sip+10; ZBG13].

An early example of the use of gaze to enable interactions on public displays is Eye-

Guide [Ead+04]. Motivated by the lacking support of public displays to select and retrieve

sensitive and personalised information, Eaddy et al. utilised a head-worn eye-tracking device

(in form of a separate head- and eye-trackers) in combination with a headphone and micro-

phone to allow the user to select content on the display without specifically pointing toward it

(e.g. the destination on a map to which the user requires guidance) [Ead+04]. The main focus

of this work was on the support of novel interaction modalities and the support for privacy-

preserving ways of retrieving information from public displays. More recent approaches to

support gaze have shifted from the use of user-worn eye-tracking to tracking devices that are

mounted on the public display pointing toward the audience. San Agustin, Hansen, and Tall,

for example, showed that supporting eye-tracking for viewers can be achieved with off-the-

shelf consumer components, in this case a combination of a video camera and infrared light

sources [SHT10]. However, such systems can have certain limitations: the user is required

to go through a short calibration process prior to being able to interact with the screen, and

the distance from viewer to display cannot be greater than 1.5 meters [SHT10]. To provide

immediate support for interactions without the need to go through a calibration phase, Zhang,

Bulling, and Gellersen developed an eye-tracking system for public displays with simplified

interaction capabilities: viewers can use their eyes to indicate three gaze directions: left,

right and centre [ZBG13]. In contrast to other systems, Zhang, Bulling, and Gellersen use a

single consumer camera without additional infrared light sources and other sensing technology.

The developed system is further able to detect “gaze attention to the screen” [ZBG13], i.e.

capture whether a viewer present in front of the display is explicitly looking toward the display.

The authors emphasise the system to be “calibration-free and person-independent” [ZBG13],

making it therefore suitable for public display deployments to capture insights about audience

behaviour.

The use of gaze in the context of analytics has inspired work investigating Web adver-

tisements such as the research conducted by Burke et al. who specifically looked at “banner

blindness” [Bur+05]. As part of the controlled experiment conducted by the authors, the data
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collected included the directions in which users have looked, and provided novel insights into

the areas of websites that are focussed by users [Bur+05]. The emergence of Google Glass

and similar devices enabled Rallapalli et al. to take the eye-tracking approach into the “real

world” outside of an controlled lab to capture “physical browsing by users in indoor spaces

such as retail stores” [Ral+14]. The collected data included dwell times, gaze directions at

products, and reach out for certain items [Ral+14]. The authors achieved this high level of

tracking through a combination of sensors on Glass and the user’s smartphone. As Rallapalli

et al. point out, the resulting dataset can be best compared with the data that could be captured

by the user browsing through an e-Commerce website and viewing certain products – in this

case, without any data collection by the retail store. Sippl et al. developed a prototype system

that was specifically designed to track and collect the viewer’s gaze direction in the context

of public displays to support analytics [Sip+10]. The authors emphasised the importance of

understanding the gaze direction of viewers specifically for advertising enabling dynamic

content to focus on the region of a display on which a viewer is the most interested or atten-

tive [Sip+10]. Similar to the system developed by Zhang, Bulling, and Gellersen [ZBG13],

Sippl et al. use a single camera mounted on the top of the display and are able to detect general

regions on the display that are in focus by the viewer (i.e. top-left, top-right, bottom-left and

bottom-right) without the need for calibration. Gaze data are collected in real-time enabling

the dynamic integration to other applications beyond targeted advertising [Sip+10].

Gaze-tracking is considered a privacy-preserving and secure modality for viewers to

interact with public displays and other devices. De Luca, Weiss, and Drewes [DWD07], for

example, developed a system that utilises eye-gaze in order to support the entry of passwords

for cash machines. Due to the subtlety of eye-gazes, it is significantly more difficult for

bystanders to capture the input and interactions of viewers [DWD07].

2.3.4.4 Mobile Phone

Researchers have also explored the use of mobile phones for interacting with public displays –

including the use of mobile phones as pointing devices for direct interaction. “Digital Graffiti”

is a system developed by Carter et al. [Car+04] that allows the interaction through a personal

mobile device to allow users the sharing of personal drawings on public displays. In this case,

gestures are captured through a dedicated application running on the user’s mobile device

which were send to the display explicitly by the user. A similar system was developed by

Scheible, Ojala, and Coulton for MobiToss [SOC08] to allow users the capture of short videos.

To release the video to a public display nearby, users were required to perform a “throwing

gesture” [SOC08]. Similar to [Car+04], gestures were also captured directly on the device

and used to trigger the video upload. While the focus of the authors was not on the analytical

use of such gesture data but on providing a novel user experience, this work yet shows early

opportunities of how data can be captured client-side (i.e. supplied by the viewer) in the

context of digital signage in addition to the sensing that can be performed on the sign through
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visual sensors – similar to the concept of client-based event tracking in modern Web analytics

that are sourced from the user’s browser [SOC08].

The use of mobile phones has also been explored to support implicit interactions of viewers

with public displays. Davies et al. designed a system to support the personalisation of public

displays [Dav+14]. Viewers can express their preferences through a dedicated mobile phone

application which then monitors user locations and automatically requests content changes

when the user is close to a display [Dav+14]. The system is designed to support content

changes even if the user is not explicitly using the Tacita mobile application. This functionality

is achieved through the location monitoring in the background compared with a map in which

the developers have specified the locations of each display associated trigger zones defining

the area in which the mobile application sends a request to the display [Dav+14]. Of course,

with the request for personalised content on certain displays viewers also reveal their location –

and it is possible to create a comprehensive dataset of user-related location traces. The authors,

however, draw on pre-existing trust relationships between viewers and content providers

where the viewer’s location is only shared with the personalisable applications that have been

activated.

Previous work in the context of mobile phone based interactions with public displays

has also identified other privacy-related concerns of viewers. For example, in the work of

Cheverst et al. [Che+05], users were able to use mobile phones in order to share and retrieve

pictures on a photo display using Bluetooth. Users were particularly concerned regarding

the accessibility of the pictures that have been shared with the display and highlighted the

importance of providing full control over the data (e.g. to be able to remove shared data).

2.3.4.5 Comparing Interaction Modalities

Different interaction modalities can have varying impact on the viewer perception and user

experience of public displays. Researchers have used analytics techniques to compare the

effectiveness of displays and content depending on the interaction modality that was supported

by the display. Alt et al. performed the “Waiting Room Experiment” in which the authors

deployed a public display equipped with both touch and gesture sensors and the “Soap

Bubble” application that supported interactions through sensors [Alt+13]. The authors tried

to understand if interacting with a display has a cognitive effect on the viewers’ memory

to remember the content better compared to non-interactive displays. The authors made

heavy use of the available sensing technology and collected the entire depth video stream and

performed interactions categorised by the interaction type. To measure the actual effectiveness

(in this case, in the form of content memorability), the authors conducted a survey at the

end of the study to understand whether viewers remembered certain content based on the

interaction technique that was used. Parra, Klerkx, and Duval have conducted an experiment

in which they compared two different strategies to communicate the interactivity of a display

to the viewers: silhouettes and mirrors of passers-by transferred to the public display in real

time [PKD14]. In particular, the researchers utilised a combination of visual computing
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techniques and interaction logs were utilised to quantify and describe viewer interactions

in the form of a flow diagram for each of the two interaction modalities. Similar to other

deployments, the collected video analytics and interaction data is processed in real time and

used to change the content on screens and automatically react to viewers approaching the

display [PKD14].

Generally, viewers can interact or engage with a public display in many ways. She et al.

have performed a literature survey in which they found a number of interaction modalities –

including Bluetooth-based sensing, Near Field Communication, video processing or direct

touch [She+14]. The heterogeneity of interaction modalities requires different data collection

and reporting techniques to support digital signage analytics and the automated measurement

of user engagement.

2.4 Reporting

The majority of the work in digital signage analytics has focused around the development

of novel models for describing user behaviour (Section 2.2), and the collection of sign and

viewer interaction events (Section 2.3). In this section, we will introduce work that mainly

describes the reporting of analytical metrics and insights in the context of digital signage,

and how such systems have emerged from Web analytics. In particular, we firstly introduce

systems that were developed to report purely systems and content focussed insights in digital

signage. Secondly, we show how modern analytics about viewer behaviour has emerged from

Web analytics, and provide an overview of visualisation techniques used in the context of

digital signage analytics – including systems that have been developed as part of an overall

product, and systems and approaches that are part of research projects.

2.4.1 Statistical Reports about Systems and Content

In Sections 2.2 and 2.3, we have introduced a set of commercial products and research work

specifically tailored toward the signage analytics domain, some of which capture metrics

similar to these defined for Web analytics to measure and report user interactions and engage-

ment with displays. Whilst many of the presented research papers focus on the extraction

and collection of certain metrics, commercial products typically also feature the reporting of

collected insights and relevant analytics data.

Digital signage analytics traditionally focus on the reporting of logs captured on the display

and specifically focusing around metrics captured about the display itself [CAY; Loo17].

CAYIN Super Reporter and Look Digital Signage are examples for products that provides

administrators with the ability to retrieve statistical reports about the log of played content,

and aggregations of the duration content was played back across the display network [CAY;

Loo17]. In addition, Look Digital Signage includes a dashboard that provides real-time

insights into the current health status of connected displays and the associated signage player

software, e.g. to identify displays with a hardware or software problem and such that require
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maintenance. Reports are composed of simple pie and bar charts, with an interface allowing

administrators to filter for specific displays and content. CAYIN advertises their system as

a tool for billing purposes to compute the durations a specific advert has played across all

displays part of the network. While the aggregation and report generation capabilities are

limited, the tool features the exporting of reports into third-party applications (e.g. spreadsheet

calculation tools) for further analysis and aggregation. Similarly, Look Digital Signage

includes capabilities to create statistical reports of content played across all connected displays

with the particular focus on providing a “proof-of-play” for further use including billing

purposes [Loo17]. Typically, such proof-of-play reports include a “detailed report confirming

each and every time a campaign has been played back” [OnS17].

Commercial display analytics systems that focus on the reporting of audience numbers and

demographics (introduced in Section 2.3.2, p. 19) also consider viewer privacy. For example,

Intel AIM [Int18] provide anonymised insights of viewers (e.g. report aggregated numbers

of specific demographics and age ranges only). Additionally, video streams are analysed on

or close to the sensor neglecting the need for streaming and storing video recordings of the

audience.

2.4.2 Visualisations of Analytics Data

Different visualisation techniques have been used both in the research domain and by com-

mercial products. This section focuses on specific visualisation techniques including funnel

and flow diagrams, and heatmaps used to describe viewer behaviour and movement patterns

in the context of digital signage.

2.4.2.1 Funnel and Flow Diagrams

Researchers have used various techniques to report data pertaining to signage analytics and

user interaction. Parra, Klerkx, and Duval use a flow diagram to show aggregates of different

interaction stages of passers-by (walking by, noticing the display, triggering content, and

actively interacting) with a display [PKD14]. The flow visualisation can be best compared with

modern features provided by modern Web analytics frameworks such as Google Analytics in

which user behaviour and sequential Web site visits are reported using funnel visualisations

that show the proportions of users accessing certain sites in order [Goo18f]. For example,

knowing at which interaction stage most of the users have stopped interacting with the display

could reveal potential problems with the signage player or interaction modalities. Researchers

have developed a number of audience description models (initially described in Section 2.2),

some of which consists of elements about the description of audience behaviour [MM11;

PKD14]. As part of the Audience Funnel Framework, Michelis and Müller have developed

solutions to describe user behaviour and navigation patterns in the vicinity of displays in which

they utilise funnel-based expressions and visualisations. Specifically, Michelis and Müller

describe the conversion rates of viewers from across the four interaction phases (passing by,

subtle interaction, direct interaction, and multiple interaction) giving a detailed understanding
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of which proportion of passers-by were retained throughout the phases. For example, as part

of their study, the authors collected a set of interaction data and were able to measure a 33%

conversion rate of viewers transitioning from passing-by to subtle interaction, and 95% from

subtle interaction to direct interaction. In this concrete examples, the authors have chosen

a mix of bar chart and flow diagram in which each bar represents the proportion of viewers

compared to the number of passing-by, overlaid with the conversion rate of viewers between

each phase [MM11]. Such insights allow developers and display providers to understand which

phase transitions work effectively and which require attention and improvements. Of course,

such reports are only applicable to display deployments that can be mapped to the original

Audience Funnel Framework, i.e. provide a certain level of interaction capabilities. Parra,

Klerkx, and Duval specifically showed how the dataset could be used to provide conversion

rates (number of people interacting with the display relative to the total number of passers-by)

per hour to understand at which times certain interaction stages are the most likely for a user

to go through [PKD14]. Parra, Klerkx, and Duval have further chosen funnel visualisations

to show the flow of viewers going through a number of phases – clearly indicating at which

phase a proportion of viewers is transitioning to the next phase [PKD14].

2.4.2.2 Heatmaps

The use of heat maps can be particularly useful to report and visualise user navigation

flows and behavioural patterns linked to locations for both in- and out-door environments.

Girgensohn, Shipman, and Wilcox developed an activity recognition system that plots average

speeds, people counts and behaviours onto a spatial map enabling the user to understand

how proportions of visitors behave in their space [GSW08]. Whilst this system is not built

specifically for signage analytics, locations of digital signs could be plotted onto the map as

an additional piece of information to reveal more insights into potential influences of the signs

on viewer behaviour. In a related approach, Williamson and Williamson make use of heat

maps to visualise the flow of pedestrians around an out-door display based on different kinds

of content displayed on the screen as viewers walk by [WW14]. The aim of such reports is

to help understand researchers and content creators which how certain content and display

locations influence on the viewers walking and behaviour patterns, which content draws more

attention and, specifically in this case, which content leads to a change in behavioural and

navigational patterns of the passers-by.

2.4.3 Analytics Reporting in Related Areas

The creation of analytics reports regarding the behaviour and interactions of individuals has

been subject to prior work in areas closely related to digital signage such as Web analytics and

retail.
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2.4.3.1 Web Analytics

Web analytics form one of the foundations for the creation and use of user interaction and be-

haviour reports. Whilst a number of differing definitions for Web analytics exist as previously

noted by Peterson [Pet04], the authors have adopted a more general definition highlighting the

large number of potential data sources for Web analytics systems and the use of the insights

created:

“Web analytics is the assessment of a variety of data, including Web traffic, Web-

based transactions, Web server performance, usability studies, user submitted

information and related sources to help create a generalised understanding of the

visitor experience online.” – Peterson [Pet04]

As highlighted in the quote above, Web analytics considers a number of different datasets

and data sources to create results. Jansen [Jan09] describe two main methods for capturing

data relevant for analytics reporting: (1) Web server log files, and (2) page tagging. Web server

log files are page access logs typically created by the Web server application on each page or

content request – including additional meta data such as the IP address of the requesting client,

cookies, and details on the Web browser and operating system of the client [Jan09]. Page

tagging describes the method of using hidden JavaScript snippets that “send information about

the page and the user back to a remote server” [Jan09]. This approach allows, for example,

the capture of in-page user behaviour such as scrolling and is commonly used by modern

analytics services.

Given the large amount of analytics-relevant data captured on Web servers, a number of

insights can be gained through appropriate reports and researchers have developed techniques

that allow the extraction of insightful and comprehensive information from such access logs

and other data sources. Cooley, Mobasher, and Srivastava brought together a set of techniques

for the extraction of patterns by analysing web transaction logs of users accessing websites, and

are typically used by Web administrators and potential content creators [CMS97]. The authors

have specifically explored the creation and use of association rules of users interactions across

multiple Web sites. Such association rules enable the reporting of, for example, the proportions

of users who accessed a specific Web page upon previously visiting a different page of the

same domain, and the reporting of the proportion of users who entered a Web site through a

specific page compared to other entry pages. Specific example reports developed by Cooley,

Mobasher, and Srivastava further include those of the type: “40% of users who accessed

website A, also accessed website B”, “20% of users who accessed website C, purchased

product X”, “30% of users who searched for keyword Z accessed website Y”, and “30% of

viewers of website A live on the East Coast” [CMS97].

The overall goal of Web analytics is generally to improve the user experience in the Web

based on the insights gained [CMS97]. According to Cooley, Mobasher, and Srivastava, the

reporting of such user behaviour has the potential to enable targeted advertising and provide,

at the time, novel and unique insights into the user behaviour and navigation patterns to



2.4 Reporting 38

inform a better and more effective website design – ultimately with the goal to improve the

quality of the website [CMS99]. The quality of the reporting can be even improved with the

identification of individual users and user sessions while “the goal of session identification

is to divide the page access of each user into individual sessions” [CMS99]. This enables

the creation of more detailed analytics reports in which the identified session is part of the

aggregation. For example, whether the user’s visit of website Y, after previously visiting

website X, is counted as a consequential page visit or as an entry page to the site would depend

on whether both visits have been identified as part of the same or a different session.

The primary application area for Web analytics is to explore and understand how users

interact on Web sites [Jan09]. Such analytics reports can be used, for example, to measure

and understand human social behaviour as in the work conducted by Gonçalves and Ramasco

[GR08] who analysed access logs captured on the server side from a university website.

Based on the log files, the authors developed access and usage patterns and derived various

information such as sleep and work patterns of individuals [GR08]. Other domains include

journalism in which Web analytics are used to closely monitor the success of news stories

– directly influencing news stories to prominently feature on home pages in the form of a

gatekeeper [Eds14].

The tracking of individuals across distinct Web sites can be a potential invasion of the

user’s privacy and has been identified as a particular issue [KW09]. We note that attempts

at protecting user privacy exist. For example, commercial analytics services such as Google

Analytics implement measures that allow owners of Web sites to activate the anonymisation

of personal data (i.e. the visitor’s IP address) in order to ensure reduce the invasion of

privacy [Goo18d]. Once activated, all analytics events relating to a user are stored against a

masked IP address only and cannot be tied to an individual anymore.

2.4.3.2 Retail

In the retail context, retail-specific datasets have been used for digital signage analytics as a way

to evaluate the effectiveness and success of advertising campaigns, and therefore also public

displays deployed in a retail context themselves [AMS12]. For example, to determine the level

of success of an advertising campaign, retailers and advertising agencies analyse point-of-sales

information that have been gathered over long periods of time and conduct surveys and lab-like

observations of viewer responses to display content [Sla10a]. In the context of advertising on

public displays, the effectiveness of a display can be partially defined through the effectiveness

and success of an advertising campaign which is immediately linked to the increase in sales

of the advertised product. To automate this process, Senior et al. have deployed digital signs

and a face recognition system in a retail context to identify and track people – and enabling

the use of such a system with already deployed surveillance cameras [Sen+07]. The authors

explicitly identified customer counts and mention the measurement of “display effectiveness”

as use cases for their system. The display effectiveness in this context has been based on the

dwell time of viewers in the immediate vicinity of the display and their trajectories around
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the display inside a retail store. With an increase in the dwell and interaction time of viewers

with a display, the display was described as more effective [Sen+07]. Of course, linking

this information with trajectories beyond the vicinity of the display inside a shipping mall

or similar environment could allow us to draw conclusions on the display effectiveness with

regards to behaviour change.

The similar set of technologies was used to capture valid transactions and link such

transactions to customers who have viewed a certain piece of content or advert prior to

purchasing a product. Rai, Jonna, and Krishna conducted research into the detailed analysis of

customer behaviour in the retail space – up to the level of detecting objects that customers have

placed into their shopping card while still navigating through the store [RJK11]. Such a high

level of tracking and insights about customers can be best compared with current Web analytics

techniques in which user interactions, and placements of products into virtual shopping cards

are recorded and assigned to individuals. Rai, Jonna, and Krishna elaborate on the emergence

of novel business opportunities for retailers based on their system, including the delivery of

location- and context-aware advertisements to public displays close to the visitor [RJK11].

Example content could include promotional offers based on the location of the visitor and the

products that have been placed into the shopping cart. Pervasive computing technology and

the ability to track visitors and purchases in the offline-world will likely change “the face of

retail” [KSO11]. Krüger, Schöning, and Olivier describe the replacement of traditional, paper-

based signage with digital displays as one of the potential changes in modern retail – providing

a number of opportunities to improve the experience for customers by, for example, delivering

personalised messages and recommendations [KSO11]. To provide visitors with additional

information about products, Strohbach and Martin developed a platform for context-aware

public displays specifically designed for the use in retail environments [SM11]. The system

features a modular architecture in which a number of “context agents” can be plugged in –

each of which representing a separate data source such as RFID sensors and visitor tracking to

allow the display to automatically adapt to the visitor and their preferences. For example, the

built-in RFID tracking recognises RFID-equipped products that a visitor places on the screen

and automatically visualises additional information about the product such as descriptions

or the price [SM11]. The ability to plug in sensors and therefore external data sources can

be one way to feed data initially captured by analytics systems back into the digital sign to

improve the user experience.

The systems described are characterised by their desire to collect large amounts of data

about individuals in order to understand the effectiveness of public displays in influencing

customer decisions (e.g. success of advertisement campaigns by linking customer behaviour

before/after interacting with a display [RJK11]). The desire for capturing and processing

large amounts of data relating to individuals, however, introduces a number of privacy-related

implications as highlighted by Tene and Polonetsky [TP13]. The authors particularly argue

for the need of a “legal model where the benefits of data for organisations and researchers are

shared with individuals” [TP13] – providing some insights to users about the usage of their

personal data.
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2.5 Automated Use of Analytics Data

Analytical insights can be used to dynamically change the content on public displays and

digital signage to ensure the content better suits the current contextual events, e.g. tailored

toward the demographic of an audience. The common (commercial) use of such systems is the

provision of advertisements targeted to a specific group of people (Section 2.5.1) and support

for the creation and scheduling of content (Section 2.5.2).

2.5.1 Targeted Advertising

The use of analytics data for the placement and messaging of targeted advertisements to

individuals has originated in the Web domain and has emerged from efforts to create person-

alised Web experiences through the use of data mining on Web usage logs [MCS00]. Google

AdSense [Goo17] is an example of a commercial product that mines user interests and analysis

the Web site on which the administrator has placed the advert. The resulting advertisement is

highly context-aware and, at the same time, tailored toward the viewer’s interests. In contrast

to digital signage analytics, such modern Web advertising tools track users across multiple

websites and domains, and therefore provided insights into users’ traces throughout the Web.

As a result, companies gain a detailed understanding of the user behaviour and individuals are

likely to receive a different personalised advertisement even though they are visiting the same

Web site.

Similar to the trends in Web analytics, researchers are working on systems that support

targeted advertisements “in the real world” for digital signage and public displays. While the

use of actuated displays and the support for the delivery of personalised and targeted content

through public displays and digital signage were referred to in the context of improving the

user experience [Sla16], such systems are used specifically for targeted advertising. For

example, the previously described Proximity Toolkit developed by Marquardt et al. [Mar+11]

has been used as a foundation to enable researchers the development of novel interactive

content including “attention-demanding advertisements” [Mar+11]. The purpose of the system

is to support advertisements that dynamically adapt to the attention level and location of the

passers-by in the vicinity of the display to grab and retain the passers-by attention. The

application relies on real-time information computed and provided by the underlying analytics

system of the toolkit based on the Proxemic Interactions model developed by Ballendat,

Marquardt, and Greenberg [BMG10] and described in more detail in Section 2.2 (Audience

Models and Metrics).

While the Proximity Toolkit uses spatial and contextual information about the attention

level captured in the vicinity of the display to support the delivery of tailored advertisements,

other systems were developed that capture more detailed insights about the audience and

individuals. The use of demographic information for the actuation of displays and the selection

of targeted content on digital signage is a particular focus of commercial systems for enabling

targeted advertising to individuals passing by displays [Far+14; Sla10a; Tia+12]. To enable

the development and implementation of such applications (i.e. dynamic display and content
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changes), commercial providers utilise visual analytics techniques and frameworks that feature

appropriate APIs specifically designed for the purpose of creating dynamic and interactive

content. SCALA provide a visual analytics tool that supports the “plug-in of sensors” [Sca]

and was designed to “adjust automatic messaging to reflect customer habits and trends” [Sca]

– practically providing ways for content creators to build sensors that are connected to the

analytics systems and integrated as part of public display applications. Other commercial

suppliers have worked on applications that make analytics insights available instantly via

a network service [Qui16] to grab the attention of a passer-by and make viewers aware of

interaction capabilities of kiosks [Sla16]. As part of their product line, Meridian Kiosks offer

an analytics framework and corresponding digital signage applications and signage players that

enable “more targeted messaging and advertising” [Sla16] with the goal to “incentivise people

to touch the screen and engage” [Sla16]. In such cases, receive a control feed that enables the

distribution of targeted messages and adverts to individuals based on their behaviour in the

vicinity of the display, and can also be used to inform the quality and effectiveness of certain

kinds of content [Sla16].

To better tailor advertisements to individuals, Tian et al. developed a system that orches-

trates insights from a number of on-screen and external data sources including video analytics

and sales statistics [Tia+12]. The developed “intelligent advertising framework” consists of a

learning module that captures how well demographic groups responded to certain ads (e.g.

measured by an increased number of views), and starts delivering out ads to groups of people

of the same demographics. External data sources, in particular sales statistics from point-

of-sales terminals, are used to capture the effectiveness of such advertisements in real time.

Display owners and advertisers were able to additionally define rules for content to be shown

preferably to a certain demographic group – in this case, combinations of age ranges and

gender. The resulting system was unfortunately not extensively evaluated though, according to

the authors, attracted significant attention from the advertising industry [Tia+12]. NEC offer

a similar system that enables “real-time marketing” [NEC13] through an integrated digital

signage solution. The system utilises insights captured through analytics (e.g. point-of-sales

statistics) to drive the content shown on displays [NEC13].

While the majority of systems use “anonymous video analytics” (initially described in

Section 2.3.2) for enabling targeted advertisements, Farinella et al. went one step further

and support face reidentification for the selection of targeted advertisements [Far+14]. The

authors emphasise the value in being able to determine if a viewer present in front of the

display has seen a particular advert previously, which would highly impact the selection of

an advert [Far+14]. Of course, such an approach is not anonymous and does indeed collect

unique information about a visitor enabling the system to potentially build up deep insights

such as navigation and visiting patterns about an individual.

Langheinrich and Schaub [LS18] highlight privacy-related risks that emerge with the

increasing amount of “custom-tailored and context-aware services” [LS18]. The authors

discuss a set of approaches of system designs for pervasive computing to help improve user

privacy whilst still enabling the provision of tailored services for individuals.
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2.5.2 Content Scheduling and Content Creation

Displays and deployments that adapt to local analytics and contextual events are often referred

to as ‘situated displays’. Research has been conducted to explore the use of (real-time)

analytics data for the selection of content shown on displays (e.g. to advertise technical

capabilities of the display to the viewer passing by [Dav+14]). A set of previously presented

papers in Section 2.3 (Data Capture) provides an “attention grabbing” feature that uses

real-time analytical insights to capture and react to passers-by with the purpose of making

them aware of the interaction capabilities of the public display and ultimately to retain their

attention for a longer duration. For example, the public display system developed by Parra,

Klerkx, and Duval [PKD14] uses real-time analytical insights that are fed back into the digital

sign to automatically select appropriate content to be shown to individuals in vicinity of the

display. Similar to the Looking Glass [Mül+12], the system developed by Parra, Klerkx,

and Duval shows a “digital mirror” of each passer-by that dynamically follows the person as

they move around in the vicinity of the display – with the aim of drawing in more attention

from the audience and hence improving the visibility of the display [PKD14]. As part of

the interaction models established by Vogel and Balakrishnan [VB04], the authors have

developed a prototype system that utilises the viewer’s location adjacent to the display to help

transitioning across interaction zones by automatically adapting the content and activating the

appropriate interaction modality [VB04], as described in Section 2.3.3 (Audience Engagement

and Movement). Insights about viewers such as their demographics are further used to

influence the kinds of content that are displayed in real-time. Whilst we have introduced a

subset of such applications in Targeted Advertising (Section 2.5.1), researchers worked on

systems that go one step further and tailor content to individuals recognised and identified by

the system – across multiple display locations. This includes systems developed by Gillian

et al. [Gil+14] and Farinella et al. [Far+14] that include built-in face recognition to identify

viewers, and deliver highly tailored and personalised content based on their preferences such

as personal calendar information.

Analytics data has also been used to inform the creation of new kinds of content and drive

the development of novel interaction and gesture modalities for digital signage. Examples of

such systems include commercial products that capture audience numbers and demographics

(described in detail in Section 2.3.2). Slawsky describe such commercial tools as a way to

allow content creators and administrators measure the effectiveness of their content (in this

case effectiveness is measured by the number of views a piece of content has received by

the audience), allowing content creators to understand which kinds of content produce better

numbers and are therefore more effective [Sla11]. Researchers have used analytical insights

including those collected through observational studies to inform the design of novel content

and interacting gestures for public displays [HRD11]. In this work, Hardy, Rukzio, and Davies

captured attention levels per content and interaction type which enabled the authors to extract

and determine which kinds of content achieved the desired results (i.e. more attention and

interactions). Ultimately, such insights allowed the capture of preferred gesture types enabling
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researchers to focus on the development and deployment of such gestures that perceived more

interactions (e.g. due to their simplicity) [HRD11].

2.6 Analysis

The related work described spans across foundational research on audience interaction models

for describing viewer behaviour in the immediate vicinity of a display, data capture and

reporting techniques such as video analytics, and work that automatically utilises analytics

data to adapt novel forms of interaction modalities. In this section, we provide an overview of

the coverage of the body of related work regarding the three areas of challenge (analytics data,

reporting and the automated use of analytics data), and subsequently provide an analysis of the

suitability of the work for use in the context of open pervasive display networks by identifying

and highlighting limitations for each of the characteristics (openness, pervasiveness, and

networked).

2.6.1 Evolution and Coverage

In order to allow us to highlight the coverage of the body of related work and the changing

research focus over time, we first categorised each piece of work into one of the three areas of

challenge. To provide a better understanding of our categorisation, we defined each of the

areas as follows:

Analytics Data Capture Systems, probes or solutions that are related to capturing ana-

lytical insights about viewers / audience, users of a system, and the digital sign itself.

Additionally, we consider work regarding the development of novel capture techniques

such as visual computing algorithms.

Reporting Systems, probes or solutions that specifically focus on the creation and dis-

semination of relevant analytics reports, including work that focuses on the presentation

of relevant or novel metrics.

Automated Use of Analytics Data Systems, probes or solutions that utilise analytics

insights in real-time to dynamically adapt the content shown or the available inter-

action modalities to viewers present in the vicinity of the display. Additionally, we

include work on retrospectively informing the design of (interactive) content or display

deployments based on analytics.

Due to the large amount of related work that was specifically conducted on investigating

and enabling novel interaction modalities (e.g. via gaze), we additionally consider interaction
as a fourth area – allowing us to provide further insight into the research focus of the related

work. Of course, novel interaction modalities can be used as a driver for capturing relevant

analytics data (i.e. viewer interactions and engagement with the display). However, we assign
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Figure 2.3: Distribution of related and relevant digital signage and Web analytics work by their
publication date grouped by the main focus of the paper into four categories: capturing of analytics
data, interacting of users, reporting of relevant analytics insights and the use of analytics for actuation.

related work to the ‘interaction’ category only if it was not specifically focusing on enabling

analytics.

Figure 2.3 shows the coverage of the related work for each year as a stacked bar chart (due

to the scope of some of the introduced research papers, a subset of papers may be assigned

to multiple categories at the same time). We observe that the majority of the work focuses

on areas of data capture and interaction – i.e. enabling the capture of novel interaction events

from the audience. Little work has been carried out on the creation of analytical insights

and reports, or that utilises such reports for the actuation of digital signs. We note that the

increased trend of developing novel forms of interaction modalities – likely to be grounded in

the opportunities that have emerged with technical advancements. For example, gaze [SHT10],

gesture [Gil+14] and mobile phones emerged as new ways for viewers to interact with displays

in recent years. Additionally, we observe a constant tendency to focus on analytics data capture

techniques (e.g. user mobility tracking in spaces [Jay+16; WW14] or the detection of attention

states of viewers [WBG12]). The common thread across the related work lies in the focus on

single or small scale display deployments with analytical insights typically provided about the

audience (e.g. demographics and age ranges) and their behaviour (e.g. interaction phases). For

example, the introduced audience models and metrics (Section 2.2, p. 14) define a detailed

language and understanding of how viewers navigate and behave in the immediate vicinity

of a display (e.g. “passing by” and “viewing and reacting” [MM11]), perform certain forms

of interactions (e.g. implicit and subtle interaction [VB04], and direct interactions [MM11])

and the consideration of potential follow-up interactions (e.g. “follow-up actions” [MM11] or

“conatation” [She+14]).
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In the following section, we will address the shortcomings and limitations of related work

in the context of open pervasive display networks.

2.6.2 Suitability for Pervasive Display Networks

Our work is motivated by the shift from closed networks of displays towards open pervasive

display networks, drawing on the scenario introduced in Section 1.2 (p. 3). Specifically, such

networks of displays feature a unique set of characteristics regarding their ‘openness’, ‘perva-

siveness’ and ‘networked’ aspects. Considering the existing body of work in digital signage

analytics in terms of these characterisations highlights a set of limitations and shortcomings.

Openness

With pervasive display networks becoming more open, the number of potential stakeholders

who contribute to the display network significantly increases compared to closed display

networks. Previous work has identified such stakeholders to include display owners, content

providers, space owners and specifically also include viewers as a fourth stakeholder [VO11;

AMS12; Cli+14]. Each of these stakeholder groups are likely to be composed of a high

number of individual stakeholders.

The existing body of work, however, typically focusses on capturing and reporting analyt-

ics for single stakeholder entities only. As an example for the body of work that focuses on

data capture and reporting, the system-based monitoring tools introduced are predominately

designed to provide display owners with an overview of the entire network of deployed digital

signs (e.g. Esprida [Esp17] and CAYIN [CAY]). More sophisticated analytics tools (e.g. Intel

AVA [Cav11] and Fraunhofer SHORE [Frab]) additionally provide insights into the audience

demographics (including age ranges and gender using cameras mounted on displays). Such

audience analytics reports, however, are targeted for display owners as the single stakeholder

entity. A similar trend can be observed in work on feeding (analytics) data back into the sign,

e.g. to support novel forms of interactions. For example, systems that utilise insights on viewer

demographics [Tia+12], audience attention levels and locations [MG12] and interactions with

physical objects in the vicinity of the display [Sla16] have been designed for use with either

a single display deployments (e.g. proximity-based interactions [MG15]) or in the context

of environments that are controlled by a single stakeholder entity (e.g. [Tia+12]). However,

with displays becoming open ecosystems to which a range of stakeholders can contribute, the

complexity increases in accommodating requirements and constraints imposed by individual

stakeholders and the high number of potential contextual changes to be fed into the sign.

It will likely become highly challenging to, for example, create a definite display content

schedule that accommodates all these requirements and is capable of dynamically responding

to analytics events in the vicinity of a display.

We were unable to identify prior work that considers openness as a characteristic across

the data capture, reporting and automated use of analytics data areas of challenge. In particular,

work that considers capturing and combine relevant datasets across a range of stakeholders
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(also including viewers as an equal stakeholder) leveraging the potentially rich ecosystems

through which viewers navigate and in which viewers interact. Drawing on the introductory

scenario, analytics systems that consider events from multiple data points, likely to be owned

by multiple stakeholders, will be required in future open display networks. Additionally, such

systems will need to include mechanisms for resolving potentially conflicting requirements

and constraints when feeding analytical insights from various stakeholders back into the sign.

Networked

Existing work focussed on capturing and reporting analytics regarding individual displays

or networks owned by a single stakeholder entity. In particular, the techniques described

focus on capturing and analysing data from the perspective of a display, i.e. provide insights

about displays and their audience. For example, commercial solutions capture a set of system-

related information from displays that are part of a single network such as logs of content

played and the state of display players [CAY; Rem17; OnS17]. Additionally, more advanced

solutions feature visual analytics techniques to capture (anonymised) audience numbers and

demographics from individual displays including gender, age ranges and in some cases even

the mood of members of viewers [Int18; IBM13; Tia+12; Alt+12].

In contrast, with the emergence of interconnected networks of displays we will be able to

observe potentially complex and spatially distributed viewer interactions and engagements

with displays and the content shown that will be difficult to describe with conventional

analytics techniques. Instead, a shift towards a viewer-centric perspective on analytics will be

required to enable the creation of reports that describe how viewers experience digital signs

and content when moving across spaces. For example, instead of capturing and reporting the

average demographic group, analytics may provide further insights on the content viewers

have previously seen, and the potential impact of displays on their behaviour and movement

patterns – almost providing an equivalent to a click-through event given in Web analytics. We

were unable to identify prior work that focussed on providing a viewer-centric perspective in

the context of open pervasive display networks.

Pervasiveness

The final characteristic of future display networks is the pervasiveness: public displays

appear embedded into urban environments and are becoming omnipresent to the viewer. With

displays becoming more pervasive and ubiquitous, the amounts of data, data stakeholders

and users is likely to grow consistently – creating a need for novel analytics systems that

facilitate the requirements emerging from the unique characteristics from future open display

networks. Such novel analytics systems, however, impose risk of revealing highly sensitive and

potentially privacy-invasive insights about individuals. For example, researchers have focussed

on developing accurate indoor location tracking technologies that work within a limited spatial

area, e.g. by utilising Wi-Fi hotspots [GJC04; MB13; Air13] with the overall goal to gain

a better understanding about the behaviour and navigational patterns of individuals. Some
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work considered to additionally capture the viewer’s identity to provide certain personalised

services such as access to calendars [Gil+14], or proposes the knowledge of viewer identities

to enable the association of distinct events (e.g. display views and purchases) [RS13].

However, in the context of open display networks with viewers becoming a participating

stakeholder, we believe it to be crucial that analytics can be captured in a privacy-preserving

way yet providing detailed viewer-centric insights into the viewer experience. We were

unable to identify work that supported the capture, reporting and subsequent automated use of

analytics insights that was designed in a privacy-preserving way for the use in open display

networks or pervasive computing environments.

2.7 Summary

In this chapter we provided a detailed overview of research efforts and state-of-the-art systems

in digital signage analytics and related domains. We introduced audience models and metrics

describing the requirements and opportunities for digital signage analytics specifically regard-

ing audience behaviour in the vicinity of displays. In the context of data capture, we described

early work on capturing analytics-relevant data on public displays – predominantly focused

around the performance and reliability of systems (i.e. individual display nodes), and more

recent work on using visual analytics techniques to capture audience counts and demographics,

interactions and behaviour patterns in front of the display. Systems for reporting of analytical

insights include statistical reports about the system performance and the content displayed

across a network of displays (e.g. to provide a “proof of play” for billing purposes), and visu-

alisation techniques used to express analytical insights pertaining to public displays. In terms

of automated use of analytics data, we described systems that support the delivery of targeted

advertisements based on audience demographics, and those that utilise more sophisticated

insights (e.g. the viewer’s identity) to schedule personalised content in real time to a display.

Finally, we gave an overview of analytics in related domains including user tracking across

Web sites, and capturing and providing analytics in a retail context. An analysis of this body

of related work in the context of open pervasive display networks revealed that analytics

are typically considered for displays owned by single stakeholder entities – whilst in open

networks of displays a large amount of stakeholders contributes to the display deployment.

Additionally, the body of work imposes limitations to the extent to which analytics is captured

and reported on the viewer-centric experience with a display network across multiple locations

– whilst preserving the viewers’ privacy.



Chapter 3

Analytics Data Capture and
Generation

3.1 Overview

In this chapter, we investigate the identification and collection of relevant analytics datasets.

We begin by exploring the challenges and opportunities that openness and pervasiveness bring

to the capture and generation of digital sign analytics and present a framework for analytics

data sharing. A key finding from this work is the providing viewer-centric analytics requires

the combination of conventional sign analytics and user mobility tracking data (see Figure 3.1).

Hence, we provide an architecture for an analytics platform for the collection and processing

of traditional and display-oriented analytics data, and describe two different approaches for

the collection of viewer mobility and interaction logs: using client-based tracking technology

through the viewers’ mobile phones and, in contrast, the use of infrastructure-based tracking

through Wi-Fi fingerprinting. Finally, we describe the use of mobility models for the creation

of synthetic analytics as an approach that preserves viewer privacy and, simultaneously,

Viewer Mobility Data

Display-Oriented 
Sign Analytics

Viewer-centric analytics 
Combining mobility traces 
with traditional analytics 
datasets of content shown on 
screens provides the ability to 
generate traces of viewer 
sightings of content across 
displays and providing 
viewer-centric analytics. 

Data Collection Reporting

Figure 3.1: Fundamentals of the generation and collection of viewer-centric analytics in digital
signage.
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provides us with the foundation to generate signage analytics reports that have previously not

been possible due to the lack of comprehensive viewer tracking.

Excerpts of this chapter have been published in the following peer-reviewed publications:

1. Mateusz Mikusz, Sarah Clinch, Rachel Jones, Michael Harding, Christopher Winstanley,

and Nigel Davies. “Repurposing Web Analytics to Support the IoT”. in: Computer

48.9 (Sept. 2015), pp. 42–49. ISSN: 0018-9162. DOI: 10.1109/MC.2015.260. URL:

http://doi.org/10.1109/MC.2015.260

2. Mateusz Mikusz, Anastasios Noulas, Nigel Davies, Sarah Clinch, and Adrian Friday.

“Next Generation Physical Analytics for Digital Signage”. In: Proceedings of the 3rd

International on Workshop on Physical Analytics. WPA ’16. Singapore, Singapore:

ACM, 2016, pp. 19–24. ISBN: 978-1-4503-4328-2. DOI: 10.1145/2935651.2935658.

URL: http://doi.acm.org/10.1145/2935651.2935658

3. Mateusz Mikusz, Sarah Clinch, and Nigel Davies. “Design Considerations for Multi-

stakeholder Display Analytics”. In: Proceedings of the 6th ACM International Sym-

posium on Pervasive Displays. PerDis ’17. Lugano, Switzerland: ACM, 2017, 18:1–

18:10. ISBN: 978-1-4503-5045-7. DOI: 10 .1145 /3078810 .3078830. URL: http :

//doi.acm.org/10.1145/3078810.3078830

4. Mateusz Mikusz, Peter Shaw, Nigel Davies, Sarah Clinch, Ludwig Trotter, Ivan Elhart,

Marc Langheinrich, and Adrian Friday. “Experiences of Mobile Personalisation of

Pervasive Displays”. In: ACM Transactions on Computer-Human Interaction – TOCHI

(in preparation) (2018)

5. Mateusz Mikusz, Kenny Tsu Wei Choo, Rajesh Krishna Balan, Nigel Davies, and

Youngki Lee. “New Challenges in Saturated Displays Environments”. In: IEEE

Pervasive Computing (2018)

3.2 Framework for Multi-Stakeholder Analytics Data Sharing

The analytics landscape in the context of open displays networks [Dav+12] is composed of

a large set of stakeholders such as display and space owners, and content providers. The

increasing number of public displays deployed in the environment and stakeholders involved

lead to a complex network and ecosystem in which large amounts of analytics data can be

captured regarding various aspects of the display network. We conducted an analysis of related

literature to identify types of analytics data that can be captured, and subsequently designed

a framework for the categorisation of data sources in order to identify relevant datasets that

can serve as a foundation for the creation of analytics reports and oversee and understand

important aspects of large open display networks. We believe that the categorisation of data

types and data sources is an important first step to enabling the identification of opportunities

for novel analytics insights to be gained in digital signage and public display ecosystems.

https://doi.org/10.1109/MC.2015.260
http://doi.org/10.1109/MC.2015.260
https://doi.org/10.1145/2935651.2935658
http://doi.acm.org/10.1145/2935651.2935658
https://doi.org/10.1145/3078810.3078830
http://doi.acm.org/10.1145/3078810.3078830
http://doi.acm.org/10.1145/3078810.3078830
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3.2.1 Stakeholders of Open Display Networks

A set of distinct stakeholders are involved in typical public display networks. In particular,

related work in the field of open display networks and digital signage have identified a core

set of four stakeholder groups: display owners, space owners, content providers and viewers

[VO11; AMS12; Cli+14]. In the context of public display analytics, each stakeholder group is

likely to be capable of collecting a unique set of data required for the creation of reports. The

identified stakeholder groups are defined as follows.

Display Owners. Stakeholders owning a single display or network of displays are con-

sidered display owners. Typically, display owners have access to both the hard- and

software that is powering displays and have an influence on the kinds of content and

applications that are displayed. Examples for display owners include large commercial

display network providers such as LinkNYC1 or smaller research deployments such as

UbiDisplays in which the displays are owned by the responsible research group [VO11].

Space Owners. Stakeholders who are in control of the physical space in which a display

is deployed are referred to as space owners. For example, a display that belongs to a

commercial advertising network might be deployed in a shopping mall that is owned by

a distinct company.

Content Providers. An entity or organisation that is responsible for creating and sup-

plying content through single displays or a network of public displays is described as

content provider. Examples of content providers have been identified by Alt, Müller,

and Schmidt as “event organisers, some types of service providers, and even passers-by”

[AMS12].

Viewers. The ‘targets’ of public display networks and consumers of content and applica-

tions distributed through displays are referred to as viewers – who become stakeholders

of the display network themselves. For example, viewers will be able to express prefer-

ences and contribute their own content to displays and therefore have a high impact and

influence on the content displayed [Dav+12; AMS12].

In large-scaled open display networks each of these stakeholder groups can be composed

of a large number of individual entities and organisations. Additionally, a single organisation

might have multiple roles in a display network and therefore be part of multiple stakeholder

groups at the same time. For example, in a shopping centre scenario, the organisation owning

the physical space of the shopping mall might also own the display network deployed in

the space that provides visitors with interactive way finding. Displays located inside the

shopping mall used for advertising purposes, however, would show external content created

and provided by stakeholder groups distinct from the display and space owner.
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Display	owners
Space	owners
Content	providers
Viewers

Server:	https://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Gorilla
Viewer:	https://upload.wikimedia.org/wikipedia/commons/thumb/0/03/
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Figure 3.2: Stakeholders and their relationships in an open display network environment including
content providers (A), space owners (B), public display owners (C), and viewers (D) who may move
across multiple spaces. Example data sources include CCTV cameras deployed in a space (E) and
point-of-sales terminals (F) in a retail context (first published in [MCD17]).

3.2.2 Stakeholder Data Collection Analysis

The motivating scenario described in Section 1.2 (The Need for New Forms of Signage

Analytics) envisioned the stakeholders’ ability to trace display sightings of passers-by with

purchasing and interaction events beyond the vicinity of individual displays (i.e. seeing an

advert for a soda drink and purchasing the advertised product at the nearest shop due to the

display content shown). To support the analytics required for such deep understanding of

cause and effects as part of the scenario, datasets from a large number of stakeholders need

to be captured. As emphasised in Figure 3.2, individual stakeholders of a display network

have unique opportunities for data collection—each required to support the opening scenario.

In particular, Figure 3.2 shows the example of two spatially distinct display networks and a

viewer group that is able to move between the spatial boundaries of one space into the other.

Third-parties (Figure 3.2, A) such as independent developers, news agencies and advertising

companies provide the content to the display network. Space owners (Figure 3.2, B) have

access to a rich set of datasets relevant for analytics purposes. In the example of a retail

space, the datasets can include closed-circuit television (Figure 3.2, E) and point-of-sales

statistics (Figure 3.2, F). Displays are typically located within a space (Figure 3.2, C) but can

be owned by a separate organisation. Viewers in display networks (Figure 3.2, D) become

an important stakeholder and act as a connection point by moving across multiple spatially

separated spaces.

Whilst some stakeholders might have access to overlapping datasets (e.g. audience de-

mographics captured by display owners and space owners simultaneously), each stakeholder

group have also access to a unique set of data and is able to collect relevant data to create

analytical insights that can contribute to the generation of analytics reports for an entire display

network. To better understand the kinds of data individual stakeholder groups are capable

of collecting, and analyse the opportunities for the creation of novel insights by combining

1https://www.link.nyc

https://www.link.nyc
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data from individual stakeholders, we conducted a literature review revealing the types of

datasets relevant for digital signage analytics that have been considered by previous work. We

categorised potential datasets and insights into six groups (Table 3.1): anonymous counting

(i.e. anonymous statistics about a present audience), anonymous tracking (i.e. anonymous in-

sights into the behaviour of an audience and their potential engagement with a public display),

gesture recognition (i.e. datasets yielding insights into interactions and gestures performed

by viewers), behaviour analysis (i.e. insights into audience behaviour within the vicinity of

a display), pseudo-anonymous tracking (i.e. insights into audience behaviour across display

locations) and contextual events (i.e. events relevant to the specific stakeholder such as sales

statistics). The analysis of data collection opportunities for each stakeholder group is as

follows.

3.2.2.1 Display Owners

Display owners are typically able to access and capture data via the presentation software

directly on the digital sign. This includes a log of played content and content change patterns

as well as potential failure states of the sign [Mik+15], and events of personalised content

delivery to specific viewers based on their proximity to the display [BMG10; VB04; WBG12].

If the display is equipped with audience tracking sensors such as video cameras, the display

owner may have access to further audience statistics and demographics [Int18], the orientation

of viewers to the display [VB04], and their dwell times in the immediate vicinity of the

display [Fraa]. Display owners can capture more comprehensive insights about the audience if

displays are equipped with gesture recognition sensors (e.g. determining levels of interactions

through gesture logs [PKD14]), and through face identification on displays equipped with

appropriate video sensors [Far+14]. In particular face identification provides very detailed

insights into the interaction and navigation patterns of viewers [Far+14].

3.2.2.2 Space Owners

Space owners have a broader view of the surrounding environment and are able to capture

more comprehensive insights into the behaviour and navigation patterns of people who visit

the space. This can include a general counting of people who are present in a particular

area (e.g. in an area in which a display was deployed) [Mit+10], the time certain individuals

have spent in a specified area [Sen+07], and simple entrance and exit counts of buildings

and other spaces [Sen+07]. More sophisticated video analytics connected to a potentially

already existing closed-circuit television can even extract the physical characteristics of people

present in a space including their hair types, eye-wear, and colour of their clothing [Ham+09;

TJS10]. Further insights can be gained by analysing the direction and speed of people in

a space [WW14]—even across multiple cameras and locations [Yan+07]. Similar levels of

insights can be achieved through Wi-Fi fingerprinting and location tracking achieved purely

based on infrastructure sensors [Air13]. Specific examples of data collection opportunities

from retail environments include the collection of sales statistics through point-of-sales
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terminals [Ven+07], conversion rates of purchases compared to the number of people present

in a space [Sen+07], and additional point-of-sales statistics such as refunds and purchase

cancellations [Ven+07].

3.2.2.3 Content Providers

Naturally, content providers have detailed knowledge about their application and the content

that was supplied to a display network. This may well differ from the knowledge that is

available to other stakeholders. For example, in the case of dynamic content such as an

application that provides news feeds to displays, display owners might know that the news

application was scheduled onto the display at a particular point of time, but they might not

necessarily know the particular content that the news application distributed to the display. In

this case, content providers would be able to capture the exact content that was created as well

as the display that requested content [Mik+15].

In particular for displays and applications that support a user interactions, content providers

are able to capture gesture interactions [HRD11], and user interaction events on the screen

itself, e.g. through a touch-screen [Jac+10; VB04; Alt+11b]. Based on the user interaction logs,

content providers are able to collect and create detailed navigation patterns within the display

application—similar to insights that can be created by Web analytics tools [BS00] Whilst user

interaction is one form of engagement, content providers can also capture engagement of users

who follow up on content [Dob+11; Leh+12]. An example for an appropriate mechanism

embedded in the content is the use of QR codes [GHN13].

3.2.2.4 Viewers

Viewers are able to capture and access a rich set of information and insights about themselves—

such as their activities, location traces and life-logging. In particular, this includes their

navigation and walking patterns [Ral+14] and additional information about the characteristics

of their movements such as step counts [BH13] and dwelling durations [Ral+14]. With appro-

priate sensing technology such as smart glasses, viewers can are also capable of capturing

gestures and gaze and therefore revealing, for example in a retail context, which products and

displays have been noticed as viewers move through a space [Ral+14]. Further, modern smart-

phones that are typically carried around by a large proportion of viewers have sophisticated

sensing technology integrated including accelerometers and GPS receivers [TJS10]. Viewers

are also able to capture insights about other viewers in their vicinity, for example, to support

indoor location tracking [LSC12].

3.2.3 Categorisation of Data Collection

Our literature review (summarised in Table 3.1) identified a wide variety of datasets that

go beyond the scope of traditional signage analytics highlighting the fact that individual

stakeholders have only limited insights and are unable to capture comprehensive insights

about the behaviour patterns of the audience. For example, space owners are typically capable
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Figure 3.3: Matrix composing the sources for data analytics collection (client- and server-side) and
the dimensions of data sharing.

Client-Side

Server-Side

Sharing No Sharing

Client-Side & 
Sharing

Client-Side & 
No Sharing

Server-Side &
No Sharing

Server-Side &
Sharing

of capturing insights about the behaviour of visitors and retail statistics but have only little

insight about the content shown on displays deployed within the boundaries of their physical

space. Content providers know which displays have played and showed their content but have

no or only very limited insights into the levels of interactions and engagement such as the

number of views their single piece of content retrieved across a signage network. To allow

stakeholders to gain more detailed insights into the effectiveness of their display deployments,

applications and spaces, data will likely have to be merged and combined across multiple

groups of stakeholders and organisations.

To help identify opportunities of combinations of datasets captured by distinct stakehold-

ers that can lead to the capture and creation of novel insights, we designed a stakeholder

data sharing matrix (Figure 3.3). This stakeholder sharing matrix considers the origin of

the data captured and the level of sharing required and is motivated by drawing analogies

from Web analytics in which datasets are typically collected either server-side (e.g. through

logging on the Web server) or user-side (e.g. by using modern analytics tools that execute

within the user’s browser such as Google Analytics) [KB00; Goo18c]. In digital signage, a

similar categorisation can be applied: insights can be either collected by the infrastructure

(server-side) or by the viewer (client-side), and the willingness to share collected datasets by

the corresponding stakeholders (beyond their organisation) can be applied as an additional

dimension. The intersections visualised in Figure 3.3 between the data origin and sharing

dimensions are defined as follows:

Client-Side & No Sharing The analytics-relevant information is collected by the client

(e.g. in the context of digital signage by the viewer) and is not shared with other

stakeholders or organisations. Instead, datasets are made available to single stakeholders

or organisations only. The browser cookie is the analogy from the web: it serves as

a “small piece of data” [MDN18] created by a server and stored locally on the user’s

device and that can be retrieved by the creating server and domain only [MDN18].

Client-Side & Sharing The collected datasets are similar in their nature to the Client-

Side & No Sharing category, however, clients are willing to share insights across multiple
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organisations. For example, two distinct stakeholders have access to information that

was captured by the client such as display interactions. This intersection draws on

analogies from advertisements in Web analytics in which certain Web sites might share

page visit and interaction statistics with advertising networks to potentially improve

advertisement sales, or simply as a proof that certain advertisements were shown.

Server-Side & No Sharing Insights are collected within a specific organisation or single

stakeholder and are not shared with other entities. In the context of digital signage

analytics, server-side sharing summarises insights that are collected by display owners,

space owners and content providers and can include simple face counts, logs of content

shown on displays, and retail-related analytics. The server-side category is analogous to

Web logs stored on the Web server and capturing simple page visits.

Server-Side & Sharing The information collected server-side is shared across multiple

distinct stakeholders and organisations. For example, space and display owners share

their insights about viewer movement patterns with each other to improve the viewer

experience by finding more appropriate locations for a display. The Server-side & Shar-

ing category draws an analogy with industrial supply chain management and business

to business relationships in which supply levels are shared to other organisations as

described in more detail in Section 3.2.4 (Opportunities from Analytics Synthesis).

The matrix-based categorisation of collected datasets provides researchers with a frame-

work for exploring the opportunities of data sharing across relevant stakeholders and organisa-

tions by specifically highlighting the intersections between the groups of stakeholders and the

data origin.

3.2.4 Opportunities from Analytics Synthesis

Building on top of the data sharing matrix (Figure 3.3) and data collection overview (Table 3.1),

we identified a set of example opportunities that arise from combining datasets across multiple

distinct stakeholders. We additionally provide an overview of the feasibility of data sharing

between individual organisations by presenting use cases from other domains in which data

sharing is successfully practised.

3.2.4.1 Creation of Novel Insights

The creation of novel insights in the form of datasets and analytics reports can be seen as the

main advantage of data synthesis across stakeholders. Examples from related domains such as

supply chain management have shown that stakeholders are likely to share their analytical

insights—under the condition that there is a clear benefit to all parties involved [LW00]. In

the context of public display deployments, we have developed an initial set of examples of

data synthesis across stakeholders based on the identified dataset individual stakeholders are

capable of collecting (Section 3.2.2 – Stakeholder Data Collection Analysis). In the following
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subsections, we preset a set of opportunities for the creation and computation of reports by

combining data initially collected and owned by two distinct stakeholder groups.

Display Owners and Space Owners Both stakeholders can complement each other’s

insights in the areas of gesture based user interactions and behaviour analysis of passers-

by—yielding a comprehensive set of insights about the audience. This includes in

particular questions on how displays affect the mobility patterns of viewers and their

activity, and the proportion of people present in a space interacts with the display and

its content. By additionally combining space-specific data including such as can be

collected in a retail context (e.g. sales statistics), the stakeholders involved can start

computing correlations of viewer activity and interactions with purchasing activities to,

for example, compute a conversion rate.

Display Owners and Content Providers Content providers can contribute detailed in-

sights about the content that is supplied to a display, and potential follow-up interactions

of users with the distributed content, e.g. by subsequently visiting a Web site. Display

owners have detailed anonymous counts and behavioural insights about the audience

that potentially views a piece of content in the vicinity of a display. Combining datasets

from both stakeholders enables content providers to retrieve insights about the audience

and their demographics that has viewed a particular piece of content, while display

owners gain details about the type of content shown and potential proportions of view-

ers following-up beyond the direct interaction with the display. In particular, display

owners will be able to understand which kinds of content have lead to higher dwell

times, and which demographics have responded to and engaged with a piece of content.

These insights can contribute to the development of automated display schedules that

dynamically adjust the content based on the audience—leading to an improvement both

for the content providers by allowing them to improve their reach and for the display

owners by increasing the value of their displays based on the currently present audience.

Display Owners and Viewers Combining datasets from both display owners and view-

ers enables us to answer questions regarding the number of returning viewers for

individual display deployments (i.e. viewers provide us with the ability to identify

returning visitors). In addition, insights directly collected from the viewer’s perspective

(e.g. through wearable cameras) can be combined with data from the infrastructure to

capture objects and places viewers have seen immediately before and after walking by

or interacting with a display.

Space Owners and Content Providers Content providers benefit from the space own-

ers data in particular regarding the space owner’s capabilities to count and track users

beyond the vicinity of the display—allowing the content provider to understand, for ex-

ample, how their content has influenced the viewer’s behavioural patterns. In particular

in the retail environment, the combination of content insights and sales statistics could

lead to a new understanding of the effectiveness of advertising campaigns.
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Space Owners and Viewers Space owners are limited in their ability to recognise and

identify individual visitors and viewers present in their space whilst viewers complement

the insights about their activities and behavioural patterns from their perspective – in

particular beyond the boundaries of the space in which the space owner is able to capture

relevant data. Insights through the combination of both datasets allow us to answer

questions on the viewer’s activities before entering the space, e.g. from which spatial

and geographical location viewers originated.

Viewers and Content Providers In the collection of relevant analytics data, viewers and

content providers complement each other in their capabilities to identify the viewer

activities in the vicinity of the display and beyond displays. This provides insights

for the content provider into the viewer activity patterns after interacting with their

content, whilst viewers can benefit from more appropriate and targeted content shown

on displays as they walk by based on their mobility and activity patterns.

The examples described above are based on the synthesis of datasets from two distinct

stakeholder groups only. By increasing the numbers of stakeholders who contribute their

datasets, the number of insights that can be gained grow substantially. For example, bringing

together space owners, display owners and content providers would enable comprehensive

insights into the influence of both displays and content to an audience across the entire space

in which the display is deployed.

3.2.4.2 Additional Benefits

In addition to the creation of novel insights, further benefits can be gained from combining and

synthesising analytics data across multiple distinct stakeholder groups. Phan, Kalasapur, and

Kunjithapatham have shown the opportunities in a different domain: readings from multiple

sensors can be fused with the goal of ensuring the accuracy of individual sensor readings and

this can lead to more valuable results [PKK14]. Tian et al. show that by combining previously

collected data on viewer behaviour (in this case, the content that the viewers have seen on a

display) with additional contextual data (such as the display location and weather), the authors

have shown an increased accuracy of their target advertisement system [Tia+12].

Additional benefits also include the inclusion of viewers as equal stakeholders of the

overall analytics ecosystem – viewers can supply information instead being a subject observed

by other stakeholder infrastructure. This approach also allows viewers to opt-out of data

collection whilst data collection by other stakeholders through infrastructure sensors such as

CCTV do not allow viewers to trivially opt out. The sharing of analytical insights, in particular

if similar datasets are recorded, can also lead to cost savings—instead of two stakeholders

capturing identical insights (such as audience insights through video analytics), the datasets

can be captured once and shared across interested stakeholder groups. Alternatively, similar

datasets collected multiple times can potentially increase the veracity of the insight by allowing

stakeholders to cross validate the collected information.



3.3 Capturing Traditional Signage Analytics Data 59

Viewer Mobility Data

Display-Oriented 
Sign Analytics

Viewer-centric analytics 
Combining mobility traces 
with traditional analytics 
datasets of content shown on 
screens provides the ability to 
generate traces of viewer 
sightings of content across 
displays and providing 
viewer-centric analytics. 

Figure 3.4: Focus on the collection of traditional, display-oriented sign analytics data fundamental to
the creation of viewer-centric analytics.

3.2.4.3 Attitudes Toward Data Sharing

Analytical insights such as sales statistics are often considered commercially sensitive, likely

introducing significant burdens to sharing and combining such datasets.

While we are not aware of previous work that has explicitly explored the data sharing

and synthesis across digital signage stakeholders, other examples in business-to-business

relations exist. Examples include data sharing along supply chains where it is common to

share information with business partners - providing insights and benefits to all those in-

volved [LPW04; LW00]. Such data can specifically include inventory levels and product

sales statistics automatically retrieved from point-of-sales terminals and transmitted to sup-

pliers and other stakeholders in the supply chain [KLO04]. Kulp, Lee, and Ofek describe

the specific benefits for manufacturers from entering such a data sharing agreement with

retailers. Data from multiple stakeholders along the supply chain is combined to create better

demand prediction for specific products (by analysing current and historical sales patterns),

enabling manufacturers to dynamically adapt to current sales patterns and ultimately improve

the performance [KLO04]. Both historical as well as real-time sales statistics, however, are

commercially sensitive data and require written agreements and contracts between the involved

parties prior to sharing as identified by Ghosh and Fedorowicz [GF08]. Kulp, Lee, and Ofek

point out that at a most basic level, the requirement for entering data sharing and synthesis

agreements is a clear benefit to all parties involved in the process [KLO04].

3.3 Capturing Traditional Signage Analytics Data

3.3.1 Overview

It is essential for signage analytics systems to capture data from a sign itself such as a log of

the content shown and the physical state of the display in order to be able to combine these

insights with additional metrics such as viewer mobility patterns as shown in Figure 3.4. In

this section, we focus specifically on the collection of display-oriented sign analytics data.

Current sign analytics systems (previously described in Section 2.3.1) are typically created

specifically for the digital signage domain. This means, such systems are unable to leverage
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Table 3.2: Example extensions to UMP to support Proximity and Interaction event types.

Hit Type: Proximity Hit Type: Interaction

Event timestamp Event timestamp

Referrer Referrer

Content Content

TID TID

Queue time Queue time

Session identifier Session identifier

Client identifier Client identifier

Total number of viewers Interaction type

Number of viewers facing the display X-coordinate of touch event

Number of viewers interacting Y-coordinate of touch event

Data precision (data collection frequency)

the wealth of analytics tools deployed for other domains such as the Web. To explore whether

such existing analytics tools could be repurposed for the signage domain and to provide

us with the ability to capture and process display-oriented analytics data, we designed and

developed Pheme, an analytics support platform. Pheme consists of two core components:

client-facing libraries for capturing relevant events on the display side, and a back-end system

for processing, storing and aggregating incoming analytics data.

3.3.2 Client-side Data Collection

In order support the capture of display-oriented analytics data, we defined a data model and

developed a set of client-libraries that provide the ability to describe and collect a standard set

of traditional signage analytics metrics.

3.3.2.1 Data Modelling

To model signage analytics data, we draw on our literature survey (Section 2.3.1 (Systems)

and existing analytics engines from the Web, utilising the Universal Measurement Protocol

(UMP) – initially developed by Google for Web and mobile phone related analytics [Goo18h].

UMP defines attributes for a typical set of analytics events such as page views, e-Commerce

related activities and the more general ‘events’ type that can be used to describe in-page or

in-app viewer behaviour. In the context of digital signs, we describe the content shown on

displays as a Page View hit type described as part of UMP, similar to a user opening a Web

site on their browser. Typical attributes of the page view hit type include the description of

the content shown, referrer attributes and details about the user agent (in this case, about the

display that showed the content). To capture the physical state of the display, we utilise the

custom Events type that provides a certain level of flexibility in describing analytics events

using the fully customisable category, attribute, label and value fields. The physical power

state of the display is categorised as display_power_state with the actual power states

stored in the attribute field (e.g. ‘on’, ‘off’ or ‘unknown’). A more detailed mapping from

signage-related analytics data to Web analytics is described in Chapter 4 (Reporting).
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To illustrate the extensibility of UMP and to allow us to capture additional user-related

interaction activities such as explicit interactions (e.g. through direct touch), and implicit

interaction through display personalisation systems such as Tacita [Dav+12], we extended

UMP with additional data attributes. Table 3.2 shows the set of attributes that are supported

by Pheme to collect proximity and interaction related analytics events.

3.3.2.2 Display Client Libraries

We developed a set of front-end libraries that provide support for the integration of Pheme into

existing systems and deployments. These libraries follow a similar principle that can be found

in Web analytics systems which typically feature a set of simple libraries and code snippets for

administrators to integrate on their Web pages to immediately enable basic analytics tracking

[Goo18e]. These code snippets are automatically loaded as part of the interactive JavaScript

code executed on the visitor’s browser and report the visitor’s activity automatically back to the

analytics system. In digital signage, however, analytics need to be captured within the digital

signage players—typically developed in proprietary software in the form of heavy clients.

Due to the lack of standards and heterogeneous implementations, an automated or dynamic

integration of an analytics client library to provide an analytics tracking automatised to the

same extend as in the Web, we developed separate client libraries that provide developers with

a way to easily integrate and enable analytics tracking within their infrastructure.

The Pheme client libraries are available as a set of Python-based modules (both for

Python 2.7 and 3). Providing support for front-end systems and enabling the capture of user

interactions, we also provide libraries for PHP and JavaScript (e.g. for dynamic, Web-based

display content). The libraries provide methods that can be reused by developers and content

creators to associate user interactions with appropriate UMP attributes. For example, direct

user interactions (e.g. touch displays) can be captured through the integration of Pheme within

a Web-based content item, while personalisation requests and contextual information can be

captured and reported on the back-end.

An example code snippet for the integration of Pheme analytics tracking into a Python code

base can be found in Listing 1. Developers are simply required to initialise PhemeAnalytics

with their associated TID and can use the Pheme analytics instance to report events. Providing

a unique user identifier through the .set_client_uuid method can be used to associate

an event to a specific user, whilst reusing the same user identifier enables the tracking of

users across across multiple instances and devices. Pheme libraries for Python 2.7, PHP and

JavaScript provide an identical set of functionalities and tracking methods for developers.

If events are collected using Pheme’s analytics libraries, each event is automatically

associated with a timestamp at the point at which the event was reported, and with a timestamp

at the point at which the event reached the Pheme back-end—in line with the industry standard

of other analytics libraries [Goo18c]. In addition, display identifiers and TIDs are used to

accurately determine the source of the event and enable us to filter out potential false reports.



3.3 Capturing Traditional Signage Analytics Data 62

1 from phemelibrary import PhemeAnalytics
2

3 # Set up the tracking ID to be attached to all reports.
4 pheme = PhemeAnalytics("example_tracking_id")
5

6 # Set a client identifier for the display or user interacting.
7 pheme.set_client_uuid("client_uuid")
8

9 # Report a custom event asynchronously
10 pheme.track_event_async("category", "action", "value")
11

12 # Report a proximity event asynchronously.
13 pheme.track_d_proximity_async(
14 distance='1.2m', person_uuid='xyz', time_spent='17s'
15 )

Listing 1: Pheme library example code snippet to enable analytics tracking for Python-based applica-
tions..
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Figure 3.5: Pheme high level architecture and data flow diagram. Components highlighted in green
have been fully implemented whilst components highlighted in yellow have not been implemented.

3.3.3 Server-side System Architecture

Once analytics data has been reported by the client-libraries using the appropriate function

calls (Listing 1), it arrives at the Pheme back-end. The back-end system architecture has been

designed following the pipeline concept and consists of four main components (Figure 3.5):

Import, Pre-processing and Data Integration, Export, and Visualisation and Reporting.

3.3.3.1 Data Capture and Import

The Import module provides a RESTful API to which analytics-relevant events are reported

from client devices using the UMP format. In line with common analytics systems, incoming

events must consist of a unique tracking identifier linking incoming requests to a specific

owner. The tracking identifier can be retrieved through a Web-based interface after registering

with Pheme (Figure 3.6a).
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3.3.3.2 Pre-processing and Data Integration

Following the import, the incoming datasets are passed on to the Pre-processing and Data

Integration module. Pheme has been designed to support multi-stakeholder data synthesis as

initially described in Section 3.2.4 (Opportunities from Analytics Synthesis) and to accom-

modate individual stakeholder requirements regarding privacy and data ownership [MCD17].

Both the data synthesis and the accommodation of privacy and data ownership requirements is

performed within the pre-processing and data integration module.

This module consists of the following components: user and application interface, access

and synthesis rules, secure data store and a set of processing components (Figure 3.5).

Incoming datasets from the Import module arrive initially at the in-bound Privacy Mediator

component (based on initial ideas first proposed by Davies et al. [Dav+16]). This module

provides stakeholders with a mechanism to filter sensitive information or anony mise data prior

to sharing and synthesising with datasets owned by other stakeholders – e.g. to protect business

secrets whilst still contributing to the generation of novel analytical insights if data has not

been anonymised prior to sending to Pheme. Following mediation, incoming data is then

processed with respect to predefined processing and synthesis rules supporting a fine-grained

level of control regarding the processing and sharing of data. The Synthesis Module is the core

component for the synthesis and combination of mediated datasets in accordance to the rules

specified by relevant stakeholders. Upon the successful processing and creation of synthesised

and combined datasets, both mediated and synthesised datasets are stored in the secure data

store for potential future use, e.g. further data synthesis for other stakeholders and allowing

future reference to historical datasets and supporting a full range of (future) synthesis and

redaction policies.

To make the synthesised datasets available to other stakeholders, the architecture consists

of an outbound Privacy Mediator module that applies policies specified by contributing

stakeholders. For example, some stakeholders would agree to provide more insights to enable

a better data synthesis and linkage with other stakeholders’ datasets but under the condition

that certain association parameters (i.e. parameters used to combine multiple distinct analytics

datasets such as the physical location of a display relative to purchasing statistics) used will be

removed prior to releasing synthesised insights. Upon passing through the outbound privacy

mediator, data streams are passed on to the injection and export modules for further processing.

3.3.3.3 Injection Modules and Export

To support the ability to repurpose existing third-party analytics engines, we designed the

Export module that consists of a set of injection components that map and convert processed

data to become compatible with the target system and ‘inject’ the converted data objects into

third-party systems using the target systems’ APIs. The Export module supports multiple

“injectors” – each representing a specific mapping of data to make it compatible with the

third-party service and includes an implementation of third-party APIs to be able to report

relevant datasets. Users of Pheme can assign multiple injectors to their unique tracking
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(a) Pheme User Interface: Overview of registered
projects.

(b) Pheme User Interface: Overview of available injec-
tor modules.

Figure 3.6: Pheme user interface.

identifiers, therefore being able to automatically distribute incoming analytics data using

different injectors simultaneously to the same analytics engine using different mappings, and

to distinct analytics services.

As third-party analytics systems are typically developed for a specific purpose (e.g. for

Web analytics) and only support the reporting and visualisation of specific metrics, Pheme

supports the creation of custom reports and visualisations that go beyond the capabilities of

individual third-party analytics engines. For example, users can choose to implement custom

reports and visualisations within Pheme with direct access to datasets associated with the users’

tracking identifier in addition to injecting their datasets into third-party analytics systems.

3.3.4 Implementation

Significant portions of Pheme including client libraries, a user interface for administrative

purposes and the back-end system have been implemented – an overview of the implemented

components is provided in Figure 3.5.

3.3.4.1 Client Libraries

The described client libraries have been implemented both for Python 2.7 and Python 3

and have been integrated in the e-Campus display testbed. Additionally, we developed

client libraries in PHP and JavaScript for their use as part of interactive, Web-based display

applications to capture explicit or implicit user interactions and system events.
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3.3.4.2 User Interface

We implemented a set of Web-based user interfaces through which users can register to

collect analytics data by creating a new unique user identifier and assigning the required set

of injection modules—similar to configuration interfaces that can be found in other (Web)

analytics systems. Figure 3.6 shows an example of the user interface that users can access

(Figure 3.6a for the registration of new tracking identifiers; FIgure 3.6b for the configuration

of injectors).

3.3.4.3 Server-side System

We implemented core components of the Pheme back-end architecture including the Import,

Injector and Export components as well as a basic Pre-processing and Data Integration module.

Pheme has been initially implemented entirely in Python on top of Google’s App Engine

framework and runs in its entirety on Google Cloud services. The utilisation of existing

processing power in the cloud enables us to dynamically adapt to high server loads and

cope with potentially large incoming datasets and a high number of parallel requests. In

particular, processing components of Pheme (i.e. import, parsing of incoming requests, and

the application of appropriate mapping and export) are placed in separate process instances

within Google App Engine, and the number of instances automatically increases with the

number of incoming requests and the associated process load. The storage components are

separate to the processing components – we utilise Google Cloud Datastore that, similarly to

App Engine process instances, automatically scales and adapts to the incoming load of read

and write requests.

3.3.4.4 Evaluation

We note that the evaluation of Pheme can be found in Chapter 6, Section 6.2.

3.4 Capturing Viewer Mobility Data

In the previous section, we considered capturing display-oriented data directly from the signs.

In this section, we focus on the collection of viewer-oriented mobility data to complement

the remainder of the required set of analytics data (Figure 3.1). To explore the collection of

viewer mobility data, we have considered three distinct mechanisms:

1. viewer-based tracking using a mobile phone application (Section 3.4.1, Viewer-based

Tracking),

2. infrastructure-based tracking of viewers using Wi-Fi fingerprinting (Section 3.4.2,

Infrastructure-based Tracking), and

3. synthetic mobility traces using mobility models to generate viewer-oriented mobility

data (Section 3.4.3, Synthetic Analytics).
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Figure 3.7: Tacita trust relationship between stakeholders of open pervasive display networks – adapted
from Davies et al. [Dav+14].

Both the viewer- and infrastructure-based tracking approaches provide us with the ability

to collect detailed viewer mobility traces and understand their interactions and engagements

with signs beyond the scope of single display deployment. Due to the high sensitivity of

the involved datasets, we developed the synthetic analytics approach as a third alternative

to generate and collect comprehensive viewer-related mobility traces based on predefined

models.

3.4.1 Viewer-based Tracking

Our work on viewer-based tracking builds on top of the Tacita display personalisation system

proposed by Davies et al. [Dav+14]. Whilst in typical display personalisation systems,

providers and large commercial signage networks utilise video analytics and other techniques

to track individuals and tailor the content towards them, the approach initially suggested in

[Dav+14] builds on top of trust relationships of viewers with personalisable services and

content providers – by explicitly disconnecting the viewer from infrastructure providers such

as organisations owning large digital signage networks [Dav+14]. Figure 3.7 visualises the

core concept of the architecture in which display owners, content providers and users are

three separate entities. To respect viewer expectations of privacy, both viewer locations (to

determine their proximity to displays) and their preferences (to determine the kinds of content

they wish to see) are only shared with a trusted application the user prefers to personalise

– and are not shared to the signage network. As a result, the architecture protects sensitive

data and prevents signage network providers collecting large quantities of location traces and
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Figure 3.8: Tacita system architecture and data flow diagram (based on [Dav+14] and adapted
in [Mik+18d]).

personalisation preferences whilst still improving the user experience by supporting display

personalisation.

For our work on digital signage analytics, Tacita provides us with a way to collect

anonymised display sighting events and personalisation preferences. Detailed analytical

insights that have been captured and used in the context of Tacita and as part of a self-learning

digital signage platform are described in Chapter 4 (Reporting), and the use of Tacita for

actuation purposes are described in Chapter 5 (Automated Use of Pervasive Display Analytics)

while in the remainder of this section we focus on the use of Tacita for data collection.

3.4.1.1 Back-end Systems Architecture Design

We have restructured and redesigned the systems architecture initially proposed by Davies et al.

[Dav+14] and adapted it to the needs and requirements of in-the-wild displays deployment

and state-of-the-art location tracking systems. The Tacita architecture developed in the context

of this dissertation consists of five core components (Figure 3.8):

Trusted Content Provider Personalisable applications (described as Trusted Content

Providers) are trusted both by the viewer and the display infrastructure and are designed

to provide personalisable content for viewers through public displays. Viewers can

access trusted content providers through a dedicated application on their mobile phones

and provide their preferences. In addition, trusted content providers also serve the

content that is shown on displays. Typically, trusted content providers serve dynamically

generated Web-based content depending on the contextual information and preferences

of the requesting passers-by.

Display Gateway The Display Gateway serves as a gateway for connections to individual

display nodes that belong to a single organisation and might be located behind a firewall

or inside a closed network. The gateway protects individual display nodes from being

exposed on to a wider network and provides a public facing application programming

interface as typically individual display nodes are secured behind firewalls and within
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private networks to minimise the attack surface. To allow content personalisation,

however, display nodes are required to provide appropriate interfaces for third-party

applications. Requests for dynamic changes of content on request (typically based on

detected viewer presence) are sent by the trusted content provider to the appropriate

Display Gateway depending on the viewer’s location instead of communicating directly

with the display node that is closest to the viewer. trusted content providers request

screen time by providing the location, display and application identifiers to the gateway

which, in the background, maps the provided identifiers onto a physical display and

negotiates the (immediate) transition of content with the individual display node. Whilst

the interface of the display gateway facing the trusted content provider is standardised,

the communication with individual display nodes can be proprietary and is likely to be

specific to individual public display networks.

Public Displays Individual display nodes serve as ‘regular’ public displays and, depend-

ing on their configuration, cycle through their regular display content schedule. Further,

display nodes support an interface to retrieve messages from Display Gateways to

change their current display schedule on demand. After receiving a content scheduling

request from the Display Gateway, display nodes access the content from the Trusted

Content Provider—typically in form of a dynamic, Web-based application. The actual

content delivery with respect to individual viewers present in the space is conducted by

the trusted content provider exclusively. To enable trusted content providers to map the

requesting display to viewer sightings of displays to deliver the appropriate piece of

content, each display appends their unique location and hardware identifier to the HTTP

GET request when opening the display client.

Map Provider Map providers describe distinct services that supply maps and descrip-

tions of displays and personalisable applications. Maps are downloaded by the client

applications installed on the viewers’ mobile devices and updated on a regular basis.

Tacita Mobile Application Viewers can express their preferences for display applica-

tions and content through a dedicated mobile client. The client also allows viewers to

explicitly configure their levels of (location) data sharing and the content provider that

is trusted by the viewer.

This approach differs from the initial architecture proposed by Davies et al. [Dav+14] in

which third-party personalisable applications directly communicate with individual display

nodes to request a change of content and screen time. In the context of the existing networks of

public displays we found this approach infeasible for a number of reasons. Firstly, individual

display nodes are often situated behind a network firewall preventing any access to the

screens from the outside world due to increased security purposes. Secondly, the proposed

approach would require the introduction of appropriate interfaces and security measures

on every single display node, limiting the scalability of the system. As a result, we made

significant modifications to the original architecture and introduced the Display Gateway
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as a new component, shown in Figure 3.8. The Display Gateway provides a standardised

single interface for third-party applications that can be accessed to request screen time and

maintains a direct connection to display nodes part of the network. Incoming requests from a

third-party application are first validated and verified, and then mapped and forwarded onto the

corresponding display node. Each display network that becomes part of the Tacita framework

needs to supply at least one Display Gateway that maintains a list of associated displays and

supports the mapping of incoming requests to an actual display.

3.4.1.2 Mapping of the Public Display Network

In the Tacita architecture proposed by Davies et al. [Dav+14], displays announce their

personalisation capabilities including personalisable and interface endpoints through appropri-

ate protocols such as Bluetooth. The use of central repositories with maps of public displays

was described as an optimisation removing the need for the viewer to be in proximity of a

personalisable display in order to retrieve a list of applications and begin the configuration of

preferences [Dav+14]. However, state-of-the-art BLE beacon protocols including iBeacon are

not well suited to transmit large quantities of data such as application descriptions [Mal+16]

and hence in our re-design we focused exclusively on maps.

To support this, we developed a unified JSON-based map schema to accommodate the

description of personalisable display networks (i.e. multiple Display Gateways) and the

collection of supported personalisable applications for displays part of the network. In addition,

the map includes basic information about the set of displays with associated location metadata.

To detect viewers in proximity of displays, Tacita requires for each display the specification of

Trigger Zones, i.e. spatial areas in which the entrance and exit of viewers is detected and the

associated display is requested to dynamically change the content. Conceptionally, trigger

zones can be specified independent of potential technology choices using any proximity- or

geofence-based descriptions. As part of Tacita, location information are typically expressed

through proximity iBeacons2 and absolute geographical locations in the form of latitude and

longitude attributes. An example map description including a single display and personalisable

display application is shown in Listing 2.

3.4.1.3 Mobile Applications

The Tacita mobile application is the only component visible to the end user and serves as a

platform to express personalisation preferences (Figure 3.8). The mobile phone client consists

of two main features:

1. the detection of nearby displays in accordance the specifications supplied by the map

provider (i.e. in this case, the specification of BLE identifiers), and

2iBeacon is a Bluetooth Low Energy protocol developed by Apple and mainly used for indoor localisation.
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1 { "id": "24061166-c3ea-45e3-afc7-c027f9e82fdd",
2 "meta": {
3 "description": "e-Campus Displays",
4 "start_date": "02/12/2017",
5 "expiration_date": "02/01/2018",
6 "publication_date": "02/12/2017",
7 "map_version": "1.2"
8 },
9 "domains": [{

10 "name": "Lancaster University Campus",
11 "proxy": "https://example.com/content_request",
12 "entries": [{
13 "user_region_as_triggerzone": false,
14 "regions": {
15 "circular_regions": [{
16 "lat": "54.01093",
17 "long": "-2.78445",
18 "radius": "30m"
19 }]
20 },
21 "trigger_zones": {
22 "circular_regions": [],
23 "proximity_beacons": [{
24 "beacon_major": "24",
25 "beacon_minor": "6",
26 "beacon_type": "iBeacon",
27 "beacon_uuid": "d8e40b29-7649-428e-b80c-ba3ed0911fb4"
28 }]
29 },
30 "capabilities": {
31 "uuid": {
32 "display_id": "display-7",
33 "display_name": "Display Foyer 7"
34 },
35 "display_apps": [{
36 "name": "Bus Departures",
37 "callback_url": "https://example.com/tacita_callback",
38 "description": "Bus Departures description",
39 "icon_url": "https://example.com/tsp_bus_logo.png",
40 "homepage": "https://example.com",
41 "config_url": "https://example.com/config"
42 }]
43 }
44 }]
45 }]
46 }

Listing 2: JSON map description (initially published in [Mik+18d]).
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Figure 3.9: Tacita mobile application for Apple iOS (initially published in [Mik+18d]).

2. providing viewers with a utility to specify and express their preferences and ini-

tialise trust relationships among a set of personalisable applications (Trusted Content

Providers).

Figure 3.9 provides an overview of the basic features provided by the mobile phone client

to the user. After the first use of the application, viewers are presented with an overview of

all available Trusted Content Providers for personalisation (Figure 3.9, left). Each Trusted

Content Provider can be activated and deactivated at any time. Activating a Trusted Content

Provider leads to the initialisation of a trust relationship between the user and the selected

Trusted Content Provider – as from the point of switching on the viewer’s proximity to

displays will be shared with that particular Trusted Content Provider. The use of an integrated

Web-based configuration screen enables Trusted Content Providers to serve specific pages for

their application, hosted on their premises and even enable the Trusted Content Provider with

the ability to support authentication mechanisms such as OAuth2.

3.4.1.4 Opportunities for Data Collection

Tacita provides us with a unique platform for the collection of analytics regarding viewer

interactions and navigation patterns. In particular:

Trusted Content Provider Configuration As configuration pages are served from in-

dividual Trusted Content Providers as Web pages, we collect user interaction on the

Trusted Content Provider through simple Web analytics and server-side access logs.

This includes the preferences specified by the user and frequencies of configuration

page visits.

Display Proximity We are able to capture viewer ‘to’ display proximity events each

time the viewer enters a trigger zone. These logs include both data captured on the

viewer’s mobile phone client, and server side. First, the Tacita mobile phone client
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captures the timestamp of a viewer entering (and exiting) a trigger zone and supplements

the information with metadata associated with the trigger zone. After sending the

display proximity event to the Trusted Content Provider (in the form of a content

request), the Trusted Content Provider back-end captures and stores the incoming

request, and supplements the information with the timestamp of the incoming request.

This enables the Trusted Content Provider to capture potential latencies and delays

(under the assumption the client device is time synchronised). In accordance with the

system architecture (Figure 3.8), each incoming enter-report is immediately forwarded

from the Trusted Content Provider to the display gateway whilst removing any user

identifiable information.

Display Content As part of Pheme (Section 3.3: Capturing Traditional Signage Analytics

Data), we capture the content displayed of any display part of the signage network —

including Tacita requests and are therefore able to tell which content the display was

showing at the time the viewer was detected in proximity of a display.

All datasets including user identifiers are collected on the individual Trusted Content

Providers that viewers have activated. In addition, we log the behaviour and response rate of

display nodes to personalisation requests. This includes each incoming request on the display

gateway, both successful and failed messages to display nodes. In addition, Trusted Content

Providers can track whether their content was successfully shown by monitoring access to the

display client pages that are used to deliver content to displays.

3.4.1.5 Implementation

The back-end components of Tacita including the Display Gateway and an initial set of Trusted

Content Providers (such as personalised weather forecasts and travel) have been implemented

entirely in Python. The Tacita mobile phone client has been developed in Swift and made

available for iOS-based mobile devices in the Apple App Store3. We have integrated Tacita

into the e-Campus display deployment and made it available on over 45 displays across the

University campus. We have further expanded the deployment to the campus at the University

of Lugano in Switzerland.

To support the proximity detection of viewers near displays, we have utilised Bluetooth

Low Energy and Apple’s iBeacon standard. Whilst in principle trigger zones can be set to

arbitrary sizes, in practise the upper bound of the trigger zone size is mandated by the range

of the BLE-powered iBeacons and viewers’ mobile devices (typically around 10 meters) or

the type of (indoor) location tracking that has been used.

3.4.1.6 Evaluation

We note that the evaluation of this system is described in Chapter 6 (Trials), Section 6.3.

3Tacita can be downloaded at https://appstore.com/tacita.

https://appstore.com/tacita
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3.4.2 Infrastructure-based Tracking

While client-side tracking enables the creation of rich analytics, it is also possible to capture

analytics data using an infrastructure-based approach. Similar to client-side tracking, the

overall aim of infrastructure-based tracking in the context of digital signage is to capture

contextual information about viewer navigation patterns and to support display personalisation.

This is an alternative approach to collecting viewer mobility data as we proposed as part of

Figure 3.1. In this section we describe the most commonly used approach of infrastructure-

based tracking in the form of Wi-Fi fingerprinting – a commonly used technique across

commercial environments such as shopping malls. The advantage of infrastructure-based

tracking is that viewers are not required to install a dedicated application on their mobile

phones, and the environment is not required to be equipped with additional tracking technology.

Typically, data collected in the environment is used to understand common walk paths and

navigation patters inside the enclosed environment [Kha+13; Jay+16].

We have designed an infrastructure-based display personalisation system in the context of

LiveLabs, “a first-of-its-kind testbed that is deployed across a university campus, convention

centre, and resort island and collects real-time attributes such as location [...] from hundreds of

opt-in participants” [Jay+16]. In particular, LiveLabs has been deployed at a large convention

centre located in Singapore, collecting location information of all visitors present in the space

with a frequency of approximately 15 seconds. LiveLabs consists of an event-based API that

allows external services to access current location information at the point at which they have

been captured.

3.4.2.1 System Design and Architecture

The system architecture consists of six modular components that have been based on Tacita

(Section 3.4.1): context data fetcher, pattern recognition, content creation and selection,

infrastructure connectors, context store, and a real-time and event-based content trigger

engine.

Similar to Tacita, the system relies on proximity information of viewers to public display

and the specification of trigger zones around individual displays which are used to detect

viewer enter and exit events to change the content shown accordingly. Due to the availability

of different mechanisms that can be used to detect viewer proximity, we included the Context

Data Fetcher component that can be used to plug in any external source for location tracking

including Wi-Fi fingerprinting provided by LiveLabs [Jay+16]. Each external data source is

modelled as an individual process with access to a local context store through which location

update events are communicated to other system components in real time. Further, external

data sources are required to provide a unique user identifier and the users’ location points

as a basic set of information. The proximity detection of viewers to displays is computed

within the real-time content trigger module: each location point of a potential viewer is

compared with the set of trigger zones of displays to detect whether individual viewers

are within a display trigger zone. The system utilises an event-based approach: real-time
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Figure 3.10: System architecture for infrastructure-based tracking and public display personalisation
integrating LiveLabs [Jay+16] real-time location tracking.
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location updates are passed on to the real-time content trigger component that detects whether

viewers are in proximity to displays and finds corresponding rules for content selection for

individual viewers. Content preferences are computed on a constant basis within the pattern

recognition component that, based on historic navigation patterns stored in the data store,

determines potential viewer interests—for example, based on duration spent in certain rooms

and locations. The actual content and content selection rules are manually supplied by the

space owner and display providers and defined within the content creation and selection

module. Rules, for example, can consist of location and time dimensions. The infrastructure

connector component is, similar to the display gateway in Tacita, responsible for the mapping

of visitor proximity to the actual display and immediate content change requests on the display.

More details on the selection of content based on historical traces of viewers is described

in Chapter 5 (Automated Use of Pervasive Display Analytics).

3.4.2.2 Opportunities for Data Collection

In the context of infrastructure-based viewer tracking, collected datasets exclusively originate

from the space owner and can be categorised as server-side no sharing in accordance with our

data categorisation framework described in Section 3.3. Whilst advantages of this approach

include the absence of required viewer opt-ins and dedicated mobile phone applications, the

quality and accuracy of using infrastructure-based sensing may appear to be of lower quality

depending on the technology used.

However, Wi-Fi fingerprinting enables the collection of comprehensive navigation patterns

of viewers within a space beyond the vicinity of the display and provide us with “a broader

view of the surroundings” [Section 3.2.2, Space Owners] beyond the immediate vicinity of

displays. More specifically, the collected datasets include anonymised user identifiers, location

points within the space, date- and timestamps, and an accuracy measure. The rich dataset

allows us to compute viewer proximity to displays, dwell times at any location within the

space, and map user locations to specific conference venues and events. The resulting dataset

gives us insights into potential interests of individual viewers: for example, a long dwell time

in a certain conference room in the convention centre can be mapped onto a specific event and

used later-on for personalised content selection. In addition to viewer-related data, we also

capture content displayed on each digital sign within the venue that has been integrated in

to our system. The resulting dataset of viewer mobility paths can be enriched by accessing

Pheme to retrieve content shown and timestamps of associated displays.

3.4.2.3 Considerations

Whilst the collection of real-time location data is fundamental to this system, the use of the

collected information for the benefit of the visitor is important regarding the acceptance of the

system—in contrast to systems that collect mobility data or audience demographics purely for

the analytics and the benefit of the space or display owner.
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Using location traces to improve viewer experience requires the addition of a dimension

that allows the association of content with displays and date and time attributes to show

content in the future according to viewer presence in the past. To better understand which

display content works best for viewers and improve content selection algorithms, the lack of a

feedback loop (i.e. capturing viewer responses to content) provides an additional challenge

in the design and development of potential machine learning algorithms and understanding

which content worked best and was most effective. However, real-time location traces can

be a suitable mechanism to identify groups of users to target and, in particular, automatically

generate targeted content based on current contextual information from the vicinity of the

display without using potentially more privacy invasive technologies such as face recognition

or face identification.

3.4.2.4 Implementation

The system was integrated with LiveLabs [Jay+16] and the pervasive display deployment at

Suntec Singapore [LG 13] consisting of a large high-definition video wall and over 100 digital

signs located across the conference venue. The back-end components have been implemented

entirely in Python whilst the front-end components and content player were written using Web

technologies and AngularJS. The display network at Suntec is using the Four Winds digital

signage platform4. Due to the limited functionality in the version deployed at Suntec, we

implemented a dedicated Web-based public display client for dynamically displaying content

that has been shown in full screen through the Four Winds display player. The client page

and the back-end communicate through Web sockets, supporting real-time communication to

immediately change the content based on viewer proximity.

3.4.2.5 Evaluation

We note that the evaluation of this system is described in Chapter 6 (Trials), Section 6.4.

3.4.3 Synthetic Analytics

In Sections 3.4.1 and 3.4.2 we focused on the collection of mobility data from using viewer-

centric and infrastructure-based approaches respectively. However, the tracking of viewer

mobility data is not always possible in certain spaces, e.g. due to viewers unwillingness of

sharing relevant data, or the space not equipped with appropriate indoor location tracking

systems. For example, Wi-Fi fingerprinting requires appropriate Wi-Fi base stations deployed

throughout the space and time consuming configuration and initialisation. Additionally, the

tracking of viewer mobility data and behavioural patterns can be considered as highly sensitive

and privacy-invasive.

Following the viewer-centric analytics approach, we focus in this section on an alternative

way to collect viewer mobility data in a privacy-preserving way that can be applied in any

4https://www.fourwindsinteractive.com

https://www.fourwindsinteractive.com
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Figure 3.11: The basis for synthetic analytics are regular maps (left), which are annotated in a
subsequent process (middle) and automatically transformed into a graph-based structure (right).

space and environment. Leveraging previous work in mobility simulation, we have designed

a system that brings both mobility simulation and signage analytics together. The system is

composed of three main components: 1. an underlying spatial map data structure with an

encoded display view probability model, 2. a synthetic viewer mobility engine, and 3. an

interface for the integration of real-world datasets. Figure 3.1 visualises the general core

concept of the proposed approach: display-oriented analytics (e.g. content play logs) are

combined with synthetic viewer mobility traces. The outcome are viewer-centric analytical

insights on a comparable level as captured through viewer location tracking. We have designed

a prototypical synthetic analytics system that supports the creation of mobility models in the

context of the Lancaster University campus, and the combination with data collected as part

of the e-Campus display testbed.

3.4.3.1 Spatial Map and Probability Model

The underlying spatial map forms the foundation for our synthetic analytics system. Maps are

required to encode the spatial layout in which agents (i.e. instances of modelled viewers) will

be operating and consists of the locations of displays, properties of viewer movements, and

the probabilities of seeing a display and the content when walking by from individual spatial

locations on the map (e.g. based on the ‘viewable’ areas of a display) considering the likely

sight lines. We use a process in which we transform geographical maps into a graph-based

data structure and encode additional attributes. Figure 3.11 visualises the general process

in which the spatial map is encoded and translated into a undirected graph data structure

on which the mobility model can operate. As the mobility of viewers and, in particular,

display views are highly dependent on the locations of the displays, pathways, buildings and

their entrance and exit points, and other properties, we have first encoded display locations,
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pathways and buildings using a simple colour scheme (Figure 3.11, middle). Each display

location is represented by a green square whilst the probabilities of a passer-by present in the

vicinity of the display for seeing and engaging with the display is encoded using the alpha

value (e.g. the probability of 0.5% seeing a display from a node in a location corresponds

to the alpha colour value of 0.05). This probability value builds on our experience with

the digital signage deployment and has been chosen based on the placement and visibility

of the individual displays. For example, a more prominent placement of a display (e.g. a

display inside a building foyer facing an entrance) is more likely to be seen compared to other

displays across the University campus. Other colours are used to encode buildings, pathways,

entrances and exits. We use a simple approach that translates the colour-coded map into

a corresponding set of graph nodes and edges in which each node corresponds to a spatial

location of a building, pathway, entrance and exit, and display. Each nodes further include

metadata such as the display identifiers and probabilities of seeing an adjacent display. Nodes

are connected through edges on which the mobility model can operate and move.

3.4.3.2 Mobility Simulation

The mobility simulation component was designed to support an agent-based simulator in

which each virtual person and viewer are individual instances of a model – similar to related

work conducted in the area of mobility simulations [Bon02]. For the initial system, we have

developed the following three simple mobility models to reflect the majority of the population

typically present on the University campus.

On-Campus Student A model representing a student who lives on the premises of the

university and randomly changes their location between colleges, departments, and

lecture theatres once an hour during university core hours between 8.00am and 10.00pm.

More specifically, the model finds a destination every hour at random and chooses a

simple shortest path algorithm to move along the graph structure to the destination.

The student starts and ends the day at the same college building that it was randomly

assigned at the initialisation phase of the simulation.

Off-Campus Student A model representing a student who lives off-campus and com-

mutes onto the university premises by bus – reflecting the mobility patterns of the

majority of students. In this model, we assume that students arrive at a bus station that

is located in the centre of campus at an arrival time chosen at random between 8.00am

and 11.00am, and subsequently follow the identical movement patterns and strategies

of the On-Campus Student model. The Off-Campus Student model chooses a ‘leave

time’ between 3.00pm and 7.00pm at which time agents navigate back to the central

bus station.

Random Building Navigator A baseline model in which potential viewers constantly

move between two points on the graph chosen at random throughout the entire lifetime

of the simulation. This model is an important comparison against any other model in
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the simulator as it is able to explore a wide spectrum of mobility scenarios without any

limitations and assumptions of the other models regarding their movement patterns. The

single criteria of this model are the movement times: the Random Building Navigator

only moves between 8.00am and 10.00pm – following similar movement strategies as

the other models.

The synthetic analytics system is designed to generate synthetic mobility traces by creating

a pre-defined number of agents for each model (each instance can be only based on one model

but the system supports a mix of multiple instances based on various models). To generate

a realistic set of mobility traces associated to each agent, the mobility simulator performs

a number of predefined iterations and allows each agent to move along the graph structure

whilst agents are allowed to move to one neighbouring node that is connected through an edge

in each iteration. Of course, due to the mapping of nodes to the spatial layout of campus,

each iteration and movement of an agent from one node to another directly correlates to a

virtual person moving across campus within the given time frame. Therefore, each iteration

of the simulation translates to a time frame based on the preset parameters and size of the

spatial base layout that has been translated into the graph structure providing us with the

ability to associate a timestamp to each visit of an agent to a node if the start date and time of

the simulation is known. The use of appropriate parameters is particularly important due to

the graph structure and node directly correlating to the spatial map layout, i.e. edges between

adjacent nodes directly translating to a distance in the underlying map.

In each iteration of the simulation, individual agents are given the option to change their

position. For any agent, a range of tests are performed. If an agent visited a node within the

viewable area of a display, the encoded probability value is used in order to determine whether

the agent has glanced at the display and seen the content. Display glances are registered

and tracked as part of the individual agent metadata and can be exported later-on separate

to the entire set of visited nodes. The results are a comprehensive set of display glances and

movement traces. Both the display sightings and the history of nodes that have been visited

including associated timestamps are stored as part of the metadata of the agent. In addition,

each agent includes of an universally unique identifier.

In contrast to the display sightings collected as previously introduced in Section 3.4

(Capturing Viewer Mobility Data), we additionally gain comprehensive movement patterns

beyond the vicinity of displays for the entire (modelled) population of the University campus—

without the invasion of their privacy.

3.4.3.3 Modelling Synthetic Viewer Mobility Traces

We note that to support the creation of mobility models for digital signage analytics, we draw

on a body of work in the area of mobility modelling that has been a widely explored topic in

the context of other research domains. Researchers have used people mobility models in the

context of theme parks [Che+13; AML13]. Cheng et al. [Che+13] developed an “agent-based

simulation approach” [Che+13] which primary use was to understand the flow of people in
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a theme park and find opportunities for improving visitor experiences, reducing potential

bottlenecks in the flow of people across the park, and evacuation management [Che+13].

The authors have modelled the park as an undirected graph data structure in which each

node illustrates an attraction, and edges are paths between attractions. Each synthetic person

that moves across the park on the graph data structure is modelled as an individual and

independent agent making decisions which routes to take and when to move based on an

underlying movement model [Che+13]. In a similar context, Aravamudhan, Misra, and Lau

utilise a “network of queues” [AML13] in which queue behaviour and queue waiting time

measurements are composed into a model, enabling the computation new estimates of queue

waiting times for individual attractions within a theme park. Generally, mobility modelling is

often used in urban environments to capture the flow of pedestrians or visitors and measure

potential impact of changes in such environments. Similar to previous approaches, Pan et al.

have used an agent-based human mobility model to understand the behaviour of crowds in

evacuation scenarios [Pan+07]. Zhong et al. utilised a similar approach in the context of

evacuation of train stations to understand the flow of people and evaluate whether travellers

can be safely evacuated [Zho+08].

The use of simulation technology as a concept has previously also been explored in

the context of digital signage deployments. Ostkamp and Kray have created visual simu-

lations of displays situated in environments to explore potentiual locations for new display

deployments and measure the perception of such deployments with “augmented panoramic

imagery” [OK14].

3.4.3.4 Combination with Real-world Datasets

The core characteristic of our synthetic analytics system is the ability to bring together

synthetic movement traces with real-world datasets. In our use case, the output of the mobility

simulation consists of a list of display sightings per agent, enabling us to map a timestamp

to each of the display sightings and combining these with Pheme’s log of the content shown.

More specifically, each display sighting consists of the following attributes: 1. the unique

identifier of the agent, 2. display identifier and location, and 3. the timestamp of the display

sighting. In order to retrieve the content shown at any particular time for any display on

campus, we access Pheme via an API with the location identifier and timestamp and retrieve a

set of metadata for the piece of content that was displayed at the given location and time. The

metadata includes the name of the content, a unique content hash and, for Web-based content,

the full URL. We expand the set of display sightings with the retrieved metadata from Pheme

providing us with a foundation to compute new insights into the perception of content across

the entire display network. In particular, we are able to consider and track individual synthetic

viewers across multiple locations and displays without violating the viewers’ privacy and

enabling us to shift towards a viewer-centric analytics approach in the digital signage context.
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3.4.3.5 Implementation

The synthetic analytics tool has been implemented in its entirety in Python (total 1,796 lines

of code). Whilst the spatial layout of the University campus has been colour-coded with

standard image manipulation tools, the resulting encoded map was parsed using Pillow5 and

the extracted features were inserted into an undirected graph-based data structure provided

by NetworkX. The encoded campus map (2119 by 5122 pixels) resulted in 11,225 nodes

(6,827 nodes representing buildings, 4,398 nodes representing paths) and 29,539 edges. Each

node corresponds to a square on the map of 5 sqm. Models were implemented in the form

of Python classes, whilst agents were modelled as instantiations and objects of these classes.

Each mobility model class consists of a function that allows agents to return the movement

decision in each iteration of the simulation. To retrieve display content logs from Pheme,

we developed a dedicated export component that provides us with an API and the ability to

query the content shown for a specific display location and timestamp. In order to improve

the performance of the implementation by avoiding duplicate API calls, we implemented a

simple caching mechanism in which we store returned values from Pheme regarding historical

content shown in a local MySQL database—due to the nature of the data we do not request

such information twice.

3.5 Summary

In this chapter, we described the importance of data collection for digital signage analytics.

Concretely, we made the following four contributions.

1. We highlighted the potential for sharing analytics data sets and provided a framework

for describing potential combinations of data.

2. We highlighted the importance of viewer-centric analytics in the context of open

pervasive display networks.

3. We illustrated how digital signage analytics data can be collected and processed by

techniques brought together from the Web analytics domain.

4. We designed three distinct approaches to collecting viewer mobility data: client-based

tracking, infrastructure-based tracking and the use of synthetic mobility traces as a new

approach to addressing privacy-related issues.

In the following chapter, we will provide examples of novel display analytics reports that

utilise the datasets described as part of this chapter.

5Python Image Library



Chapter 4

Reporting

4.1 Overview

In this chapter, we explore novel analytics reports for the digital signage domain using the

previously described opportunities for data collection as a foundation. Concretely, we follow

the overall approach shown in Figure 4.1 and describe the opportunities particularly but not

limited to viewer-centric analytics that can be produced by combining display-oriented data

with viewer mobility patterns. We provide a set of example reports that have been created

from the use of synthetic analytics (i.e. the use of synthetic mobility traces), and subsequently

describe the extensions required to support analytics reports relating to display personalisation.

We further describe the commonalities and applicability of digital signage analytics to Web

analytics terminology, and demonstrate the potential of repurposing existing analytics services

for other domains using Pheme.

We note that in the context of this chapter we focus purely on developing and describ-

ing novel analytics reports by applying existing information visualisation techniques, and

describing the benefits and opportunities from different types of analytics reports for each of

the stakeholder groups identified in the earlier chapters. We are not seeking to develop novel

data visualisation techniques and algorithms for the extraction or detection of specific usage

Viewer Mobility Data

Display-Oriented 
Sign Analytics

Viewer-centric analytics 
Combining mobility traces 
with traditional analytics 
datasets of content shown on 
screens provides the ability to 
generate traces of viewer 
sightings of content across 
displays and providing 
viewer-centric analytics. 

Data Collection Reporting

Figure 4.1: Using display-oriented analytics and viewer mobility data as a foundation, we now focus
on novel viewer-centric analytics reports.
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patterns. Additionally, we do not seek to conduct a comparison of different data collection

techniques such as synthetic analytics and Tacita – instead, we purely focus on utilising data

originating from the different systems to highlight the opportunities of novel analytics reports

and insights that can be gained from such data.

Excerpts of this chapter have been published in the following peer-reviewed publications:

1. Mateusz Mikusz et al. “Repurposing Web Analytics to Support the IoT”. in: Computer

48.9 (Sept. 2015), pp. 42–49. ISSN: 0018-9162. DOI: 10.1109/MC.2015.260. URL:

http://doi.org/10.1109/MC.2015.260

2. Mateusz Mikusz et al. “Next Generation Physical Analytics for Digital Signage”. In:

Proceedings of the 3rd International on Workshop on Physical Analytics. WPA ’16.

Singapore, Singapore: ACM, 2016, pp. 19–24. ISBN: 978-1-4503-4328-2. DOI:

10.1145/2935651.2935658. URL: http://doi.acm.org/10.1145/2935651.2935658

3. Mateusz Mikusz, Sarah Clinch, and Nigel Davies. “Design Considerations for Multi-

stakeholder Display Analytics”. In: Proceedings of the 6th ACM International Sym-

posium on Pervasive Displays. PerDis ’17. Lugano, Switzerland: ACM, 2017, 18:1–

18:10. ISBN: 978-1-4503-5045-7. DOI: 10 .1145 /3078810 .3078830. URL: http :

//doi.acm.org/10.1145/3078810.3078830

4. Mateusz Mikusz et al. “Experiences of Mobile Personalisation of Pervasive Displays”.

In: ACM Transactions on Computer-Human Interaction – TOCHI (in preparation)

(2018)

5. Mateusz Mikusz et al. “New Challenges in Saturated Displays Environments”. In: IEEE

Pervasive Computing (2018)

4.2 Analytics Based on Viewer Data

Traditional digital signage analytics are largely display and content focussed, providing

only few insights into the experiences and interactions of passers-by with and across a

display network. In this section, we explore the opportunities that emerge by capturing a

comprehensive set of viewer mobility patterns and combining these with logs of content

shown on displays for the creation of novel analytics reports. In addition we consider user

interaction data captured through Tacita to create a novel set of retention analytics reports

specific to support personalisable display networks. We note that the example reports and

demonstrations of the usefulness of the insights are provided in the context of the Lancaster

University deployment (initially described in Section 1.3, p. 6).

4.2.1 Datasets and Methodology

As previously described in Section 3.4 (Capturing Viewer Mobility Data, p. 65), a number of

techniques can be used to capture viewer mobility data. In particular, we consider datasets that

https://doi.org/10.1109/MC.2015.260
http://doi.org/10.1109/MC.2015.260
https://doi.org/10.1145/2935651.2935658
http://doi.acm.org/10.1145/2935651.2935658
https://doi.org/10.1145/3078810.3078830
http://doi.acm.org/10.1145/3078810.3078830
http://doi.acm.org/10.1145/3078810.3078830
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are captured through mobility models (synthetic mobility traces), and viewer-based tracking

(originating from Tacita). We note that the use of infrastructure-based data capture techniques

was not possible due to the lack of an appropriate Wi-Fi location tracking system at Lancaster.

4.2.1.1 Synthetic Analytics

We consider the use of synthetic movement traces created using the synthetic analytics

approach first introduced in Section 3.4.3 (Synthetic Analytics, p. 76) utilising the following

mobility models: On-Campus Student, Off-Campus Student and Random Building Navigator

(see Section 3.4.3.2, p. 78 for more details).

Using these models, we executed the simulation with 2,000 agent instances for each

mobility model simultaneously resulting in a total of 6,000 agents constantly moving across

the spatial model of the University campus. We simulated a specific time period of 62 days

(1 October 2015 until 1 December 2015) and combined the computed mobility traces and

display sightings resulting from the simulation with the logs of content played from the

identical time period that were captured using Pheme (the dataset captured through Pheme

was initially described in Section 3.3, p. 59). The resulting dataset therefore consists of a

combination of both real and synthetic analytics data and provides a set of display sightings

and a log of content seen for each instance of an agent. This dataset enables us to create

analytical insights for individual content items across the signage network and the experiences

of viewers and passers-by – without the limitation to single displays or isolated spatial areas

of the deployment. These complex signage analytics insights would have otherwise required

the deployment of comprehensive tracking technology of individuals – going beyond what

current state-of-the-art analytics tools (e.g. face recognition software) are able to offer in the

digital signage domain.

We note that accuracy of reports generated using synthetic analytics are highly dependent

on the quality of the underlying mobility models. In future, movement and mobility traces

collected through various tracking technology could be used to inform the design of corre-

sponding models and ultimately improve the quality of the simulation. We recognise that our

approach is limited due to the use of simplistic mobility models and the lack of the considera-

tion of contextual events. For example, lecture timetables, bus schedules and automatically

collected room occupancy metrics (e.g. through the use of attendance monitoring software)

across the University campus could be used to inform the design of mobility models.

A complete description of the dataset captured through Pheme is provided in Section 6.2

(Pheme: Display-oriented Data Collection, p. 125) as part of the evaluation of the system.

4.2.1.2 Tacita

In addition to synthetic synthetic analytics as a source for capturing and generating mobility

traces, we also consider data captured from Tacita. The dataset resulting from Tacita has been

initially described in Section 3.4.1.4 (Opportunities for Data Collection, p. 71). In particular,

we are able to capture the following insights: configuration parameters of Trusted Content
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Providers (i.e. the viewers’ personalisation preferences), display sightings of viewers (i.e.

viewers are detected in proximity of displays), and the Trusted Content Provider that was

shown on the display when the viewers were detected in proximity of the display. We note

that we have conducted a long-term, large-scale trial that will be described in more detail in

Section 6.2 (Pheme: Display-oriented Data Collection, p. 125). The dataset emerging from

Tacita is used to create similar types of analytics reports and, in addition, a set of reports that

are specific to display networks that support the delivery of personalised content.

4.2.1.3 Comparing the Applicability of Synthetic Analytics and Tacita

Both synthetic analytics and Tacita have advantages and disadvantages as potential sources for

viewer mobility data. Whilst both approaches can be used to underpin the same categories of

analytics reports (as we illustrate in the subsequent sections), the data capture process differs

significantly and each of the approaches are applicable in certain contexts.

The synthetic analytics approach is particularly practical if certain technical, legal or

ethical constraints prevent space owners from applying viewer- or infrastructure-based tracking

mechanisms. Synthetic analytics relies purely on appropriate viewer mobility models and does

not require additional hardware to be deployed. If, for example, the deployment of Bluetooth

Low Energy beacons is impractical, synthetic analytics can be used as a solution in order to

gain insights on interactions and movement patterns. Whilst we applied synthetic analytics

to capture display sightings of viewers, additional information can be encoded in the model

to capture a broader set of insights – such as more broad behaviour and navigation patterns

that go beyond simple display sightings and provide further insights on peoples’ interactions

across a space.

In contrast, Tacita provides insights that are potentially of higher accuracy as display

sightings are based on Bluetooth Low Energy sightings instead of a synthetic model of user

mobility. Tacita also presumes that viewers (or users of the display personalisation system)

have explicitly opted in to the required display proximity tracking – leaving it up to the user to

decide whether to contribute data to the system (an opt-in and opt-out in the synthetic analytics

approach does not make sense). The use of Tacita, or more generally viewer-based analytics

tracking approaches, allows for additional features such as personalisation as described in

previous chapter to provide a visible benefit to the user in exchange for location tracking. We

note, however, that the deployment of a system such as Tacita requires substantial investment

from display and space owners: displays need to be equipped with appropriate hardware

infrastructure (e.g. Bluetooth Low Energy beacons), and a corresponding mobile phone

application and backend components are required to allow for capture and reporting of user

locations in the space.

4.2.2 Effectiveness of Displays

The access to mobility traces of individual people (in the case of synthetic analytics, individual

agents; and for Tacita, display sightings of users) enables us to understand the effectiveness
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Table 4.1: Ranking of public displays at Lancaster University based on synthetic analytics.

Ranking Display Location Total Views

1 Faraday Centre 270,625

2 Faraday Left 259,685

3 Faraday Right 250,820

4 Alex Square West 201,744

5 Nuffield External 152,750

. . . . . . . . .

14 ISS 11,521

15 Student Services 7,528

16 Human Resources 1,763

17 Cartmel College (2) 568

18 Cartmel College (1) 463

and visibility of displays deployed within a space based on their geographic location and

numbers of passers-by. Knowing the identities of each individual agent and their associated

display sightings enables us to calculate both the total number of viewers and the proportion

of unique viewers that are passing by displays across the space throughout the total length of

the simulated time period.

4.2.2.1 Reports Based on Synthetic Analytics

Firstly, we utilise the Random Building Navigator as a baseline to quantify the visibility of

displays. The mean number of display views across the entire display network is 73,299 (SD:

81,067). The numbers reported below are based on the combination of all three mobility

models (On-Campus Student, Off-Campus Student and Random Building Navigator).

Based on the number of total views for individual displays, we are able to calculate the

highest and lowest ranked displays, i.e. displays with the highest and lowest number of views

(in this case, we count repeating views of the same agent). Table 4.1 provides an overview of

the ranking of displays. Among the highest ranked displays, we find displays located outside

the Faraday lecture theatres, a building with three lecture theatres and one of the highest used

at the university explaining the high volume of agents passing by causing the highest view

counts. Additionally, entrances and exits of this building are often used to pass through to

adjacent buildings causing a high transit traffic. The fourth and fifth highest ranked displays

are Alexandra Square West and Nuffield, both located outdoors along main pathways on

campus often used by students to pass between colleges and lectures. The poorest ranked

displays include displays located in the outskirts of the campus in student accommodation

(Cartmel College displays), and displays located in buildings mainly used by members of staff

(Human Resources and ISS) which typically have a very little number of people passing by,

leading to very low view counts for displays located in these buildings.
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Figure 4.2: Mean ratio of unique visitors to total number of visits for each class of mobility model
(ordered by the ratio for the Off-Campus Student) for each display deployment. Low ratios indicate
displays that have a greater set of reoccurring visitors whilst high values represent displays with a
greater set of unique visitors (initially published in [Mik+16]).

While reports on viewer sightings could be achieved using conventional video analytics

(alongside with the cost of equipping displays with cameras), due to the ability to distinguish

between new and returning viewers, we were able to provide new insights including the mean

ratio of unique visitors to the total number of views for each display as shown in Figure 4.2.

Based on the analysis, we find displays with a lower ratio of unique viewers (i.e. displays with

a high proportion of returning viewers) are dominated by displays located outdoors along the

main pathway on campus (e.g. LEC and Nuffield displays), and near the main bus station

(Alexandra Square West). Similar to the previous findings based on the number of total views,

displays with a high ratio of unique viewers are located on the outskirts of the campus and in

student accommodations (e.g. Graduate College), and in central learning spaces (e.g. Learning

Zone).

Such insights into the ratio of unique viewers can be used for optimising the scheduling

of content per display, e.g. for displays with a higher ratio of unique viewers it might be

beneficial to ensure that only a small set of content items is scheduled to show to ensure that

passers-by have a chance to notice and see important pieces of content whilst on displays with

a high ratio of returning visitors, passers-by will have more opportunities to see a particular

piece of content.

4.2.2.2 Reports Based on Tacita

The data collected as part of Tacita enables us to create a comparable set of analytics reports

to those created using synthetic analytics. Whilst we are unable to capture actual display

sightings, we were able to capture Tacita users entering the proximity of a display (resulting

in a set of personalisation requests). Based on this dataset, we created a ranking of pervasive

displays based on the total number of personalisation requests received throughout the entire
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Table 4.2: Ranking of public displays at Lancaster University based on display personalisation requests
from Tacita throughout the lifetime of the service (initially published in [Mik+18d]).

Ranking Display Location Total Requests

1 Library (C-Floor) 968

2 Library (B-Floor) 950

3 InfoLab Foyer 844

4 Library (A-Floor) 786

5 Learning Zone 2 622

. . . . . . . . . . . .

36 Bowland College 10

37 Bowland Main (B-Floor) 10

38 Pendle College 10

39 Welcome Centre (2) 10

40 Welcome Centre (1) 6

(a) During lecture days and times. (b) During non lecture days and times.

Figure 4.3: Heatmap of proportionally popular displays on which personalised content was requested
(initially published in [Mik+18d]).
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deployment. Table 4.2 shows that the list of highest and least ranked displays is somewhat

comparable to the display rankings created in the synthetic analytics approach. Among the

highest ranked displays, we see displays located across various floors in the University library

(Library A-Floor, Library B-Floor and Library C-Floor with 968, 950 and 786 personalisation

requests respectively) and the Learning Zone (622). These displays are located in areas highly

frequented by students especially during typical exam and study times with high numbers of

personalisation requests to be expected. The third-highest ranked display is InfoLab Foyer (844

personalisation requests). This display is located in the foyer of a departmental building with a

high frequency of visitors and staff passing by and is part of the original set of personalisable

displays. Among the least ranked displays, we find Bowland College, Bowland Main and

Pendle College (each 10 views respectively). These reports confirm previous findings using

the synthetic analytics approach where displays located in University colleges retrieved only

limited exposure levels. The lowest ranked displays are Welcome Centre 1 and 2 (10 and 6

requests respectively) located in a remote part of the University campus typically only used by

campus visitors who have not been introduced to Tacita.

Using the same dataset as a basis, we created a set of heatmaps to further visualise common

areas on campus with a high and low numbers of display personalisation requests during

specific times. Figure 4.3a shows a heatmap of personalisation requests during typical lecture

times only (weekdays between 8am and 6pm excluding lunch breaks between 12pm and 1pm),

whilst Figure 4.3b shows personalisation requests during lecture-free times (weekends, and

weekdays before 8am, during core lunch times, and after 6pm). Comparing both heatmaps

we note that the variation is only marginal. During typical lecture times, we see an increased

number of personalisation requests in locations near lecture theatres, whilst in lecture-free

times the number of requests in typical study zones (e.g. the Learning Zone and library)

increases proportionally to the total number of requests captured in these time frames.

4.2.2.3 Stakeholder Analysis

The reports outlined above provide the following set of benefits to individual stakeholder

groups.

Display Owner Display owners can utilise the reports described above to understand

the level of visibility (measured in number of total views and unique viewers) of their

displays. This information can help stakeholders evaluate existing display locations, and

select appropriate types of content for displays. For example, for displays with a high

proportion of recurring viewers it may be more appropriate to schedule a broader set

of content items to offer a higher variety to a smaller viewer group. However, displays

visited by a large number of different viewers (and having a high volume of views) may

only need a smaller set of content items to maximise the visibility of individual content.

In addition, reports such as those described above can be used to measure the impact

of content scheduling changes applied by the display owner in order to understand the

potential influence of content to the behaviour of viewers.
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Space Owner The insights described above are useful for space owners to evaluate

existing display location placements. The number of total views and unique viewers can

be used to determine displays with large or small viewer sets – e.g. to remove displays

with only a very low visibility or prioritise maintenance work based on the number of

views. Additionally, viewer numbers of displays can also be used to understand the

general flow of individuals and crowds throughout their space in order to, for example,

optimise the flow in their space. Using synthetic analytics, future display locations can

be simulated and evaluated (e.g. by measuring the impact on the flow of individuals) in

order to determine whether a location offers benefits to display owners.

Content Provider The effectiveness of displays measured in views and unique viewers

provides detailed insights on the potential reach of content. Content providers can

decide based on the number of views which displays may be more or less appropriate

for their content. In addition, similarly to display owners who can experiment with

different types of content, content providers can measure the impact of different ways

in which the same content is delivered (e.g. different formatting) in numbers of views.

Viewer Whilst reports regarding the effectiveness are primarily targeted at administrators

and display providers, viewers are able to indirectly benefit from such reports by an

improved quality of the display deployment (e.g. better display placements) and more

appropriate content scheduling.

4.2.3 Network Visibility of Content

The knowledge of display sightings (both based on synthetic analytics and Tacita) enables

us to create reports regarding the content visibility in addition to the ‘content impressions’

metric commonly used in signage and Web analytics. We note that in contrast to the Web

domain, the fact that a content item was shown on a display does not mean that that the content

was viewed, e.g. due to the lack of audience or viewers not paying attention to the display.

The knowledge of display sightings, however, allows us to create more accurate estimations

of content views. Additionally, we can disconnect content from displays and consider the

visibility of content across the entire display network instead of a ‘per display’ basis.

4.2.3.1 Reports Based on Synthetic Analytics

Drawing on the synthetic analytics approach and using the Random Building Navigator as a

baseline, we computed a mean number per content item per day of 217 total views (SD=507)

and 116 unique views (SD=190). The most viewed content items include content that has been

scheduled onto one of the most viewed displays on campus exclusively (Nuffield External) and

content that is scheduled across the university campus. Content with the least views include,

not unexpectedly, content that has been scheduled on single displays only (e.g. ISS).

Understanding in more detail how viewers experience content and view the same piece of

content multiple times is particularly interesting for content that has been scheduled to show
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Figure 4.4: Cumulative distribution function of frequencies of content views for the three synthetic
analytics mobility models (initially published in [Mik+16]).

on multiple displays of the University campus. We can create reports that give us insights into

the frequency of views of content items seen repeatedly by the same user. Content providers

can benefit from such insights to optimise the design and distribution of content. For example,

content providers might wish to design their content appropriately if it is viewed repeatedly,

whilst other content providers might prefer to reduce the visibility of their content items across

a signage network. To retrieve insights into repetitive views for the same content items, we

have created a cumulative distribution function of the frequencies of content views (Figure 4.4).

Whilst the Random Building Navigator (Figure 4.4a) and On-Campus Student (Figure 4.4b)

view the same pieces of content with similar frequencies, the Off-Campus Student (Figure 4.4c)

views items with a lower frequency with the exception of a single piece of content viewed

with a noticeably higher frequency. This is likely due to the mobility patterns of the model:

students arrive at the central bus stop on campus which is located near the Alexandra Square

West display, typically only showing real-time bus timetables as the single piece of content,

and is therefore seen by most students arriving and leaving from this bus stop.

Using our simulated location traces in combination with content views, we can additionally

create reports to estimate the duration viewers spend looking at displays. We note, however,

that this statistic is highly approximate due to a number of factors. Firstly, the views are

an approximation themselves and based on probability and mobility models. Secondly, to

compute the mean durations viewers spend glancing at displays, we make use of previous

work focussing on measuring the mean time passers-by spend glancing at displays. Dalton,

Collins, and Marshall [DCM15], for example, suggest based on an eye-tracking study that

passers-by glance at displays for a mean duration of 0.318 seconds (SD: 0.261) whilst work
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Figure 4.5: Number of total requests per Tacita application per day (initially published in [Mik+18d]).

by Huang, Koster, and Borchers [HKB08] indicates based on observational studies a glance

period of 1-2 seconds. Using both figures as the lower and upper bounds, we are able to

compute mean view times between 1.15 and 5.43 minutes per content item per day aggregated

across all agents. The mean total view duration per content items equates to 20.33-95.88

minutes.

4.2.3.2 Reports Based on Tacita

Tacita data can also be used to generate the same types of analytics as described above

(Section 4.2.3.1). However, in Tacita users request personalisable content (Trusted Content

Providers) automatically when their presence is detected in proximity to a display. Using

these display sightings, we can produce new analytics that consider the visibility of such

personalisable content requests and therefore use it to provide insights about the usage of Tacita

applications. For example, we can consider the total number of requests of personalisable

applications issued by the users’ mobile devices when a display was detected in proximity to

understand better which applications are more popular. Figure 4.5 shows the total number of

requests per application per day across the University campus. Such a report can be used by

both display owners and content providers to better understand the popularity of individual
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Figure 4.6: Number of unique users per Tacita application per day (initially published in [Mik+18d]).
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Figure 4.7: Total number of unique users per Tacita application (initially published in [Mik+18d]).

content items and applications shown on the display network without the focus on individual

displays or users. Using content requests as a metric, the most popular applications include

Bus Timetables (personalised travel), Weather and Clock, whilst we find Twitter (personalised

social media) among the least requested displays. The spread and popularity of display

applications may reflect the property of public displays: users prefer not to retrieve highly

personalised content such as a newsfeed from their social media.

Whilst Tacita only captures anonymised user interaction and content requests, we can

use the anonymised unique user identifiers to further narrow down the reports and report

unique user metrics similar to what can be found in typical Web analytics. For example,

Figure 4.6 shows the number of unique users per day for each of the supported application. In

contrast to reporting the total number of requests, the reports using unique users enables us to

better understand the popularity of individual applications disconnected from the frequency or

mobility patterns of users that may ultimately lead to high or low requests.

Moving away from reports regarding individual days, we are able to confirm these findings

by creating reports considering the total number of unique users, i.e. users who have requested

an application at least once in the lifetime of the deployment. Figure 4.7 provides a bar

chart ordered in descending order by the application with the highest number of unique

users. The most popular application includes Bus Timetables, followed by the Welcome

application. This result indicates that whilst a large number of users configures and activates

other application, they choose not to deactivate the preconfigured Welcome application before

the first appearance at a display.
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4.2.3.3 Stakeholder Analysis

The reports outlined above provide the following set of benefits to individual stakeholder

groups.

Display Owner Display owners can gain a detailed understanding in the interaction

patterns of users with their displays and the types of content viewers have been interested

in across the entirety of the display network. In the context of Tacita, display owners

get insights into the types of personalisable applications that have received the most

interest among viewers.

Space Owner Space owners typically have only limited control over the displays de-

ployed in their space. Providing insights into the visibility of content across the entire

network (or across spaces owned by individual stakeholders) can provide crucial in-

sights on the types of content that is shown in the space, and the popularity of different

categories of content.

Content Provider The knowledge on the duration individuals viewed content items, and

how often content was viewed across the entire display network can be valuable to

content providers. For example, durations of content seen can be used to optimise the

amount of information presented on a screen (e.g. include less content on the display

if viewers see content less often or for shorter periods of time overall). Furthermore,

content providers can use these analytics reports as confirmation that content has

been scheduled and seen across a display network. In the context of personalisable

applications, analytics reports described above can be used for monitoring purposes in

order to understand whether certain applications receive viewer location information

and are successfully scheduled onto displays.

Viewer Viewers benefit from content-related reports indirectly by improved content

scheduling cycles and, more generally, an improved quality of the content presented.

Individual content can be better tailored towards viewers if, for example, content that

has been seen less frequently in relation to other content is prioritised across the display

network to improve its visibility.

4.2.4 Viewer-centric Analytics

We explored the creation of reports that capture the viewer experience and visibility of

content across the entire signage network. Being able to track individual display views and

associate these with individuals enables us to approximate the number of unique content

items individuals see on average. In the context of Tacita, we are able to create detailed

analytics regarding the kinds of personalisable applications users experience throughout a day

on average.
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Table 4.3: Aggregated count of unique and total content views per day per viewer for each mobility
model (initially published in [Mik+16]).

unique views total views
Mobility Model mean median SD mean median SD

Off-Campus Student 4.49 4.00 2.70 13.76 14.00 8.16
On-Campus Student 8.77 7.00 5.91 16.01 10.00 20.06

Random Navigator 8.14 7.00 5.36 16.02 11.00 17.75

4.2.4.1 Reports Based on Synthetic Analytics

Table 4.3 provides an overview of the median and mean number of total and unique content

items each of the agents in each of the mobility models view throughout the simulation within

a day. For example, the Off-Campus Student sees a mean of 4 different pieces of content in

a day, whilst the On-Campus Student and Random Building Navigator yield similar results

and see approximately 8-9 unique pieces of content throughout a day. However, both the

On-Campus Student and Random Building Navigator have higher content views (mean: 16)

within a day whilst the Off-Campus Student is generally exposed to less content (mean: 13.76).

Similar to the previous reports, the number of content items experienced again reflects the

specific constraints of the individual mobility models. For example, the agents of the Off-

Campus Student model arrive and depart from a central part of campus. In addition, the high

standard deviations for mean and median content views for all mobility models are likely a

result of the differences in content schedules across displays on the University campus. Some

displays, for example, consist of a high mix of different content items reducing the probability

to see the same content twice whilst other displays show a smaller mix of content that is also

distributed to other displays on campus.

Using similar datasets, we are able to report content repetition metrics, i.e. describing

the number of times a single viewer sees the same content multiple times. For the On-

Campus Student, Off-Campus Student and Random Building Navigator models, we are able

to report that viewers see the same piece of content on average 86.77, 54.63 and 94.86 times

respectively (SD: 22.82, 12.47, 26.02) throughout the simulated time period. These numbers

highly depend on the content schedule in pace during the simulated time period, in this case

indicating infrequent changes in the set of scheduled content items.

Similar to reporting the durations of looking at individual content items, we can use

the collected content sightings to create reports about the (mean) durations viewers spend

glancing at content items throughout the entire deployment and simulation. Using similar

estimates of average durations viewers spend looking at displays, the On-Campus Student,

Off-Campus Student and Random Building Navigator spend a total of 4.52-21.33, 5.26-24.82

and 5.26-24.83 minutes respectively looking at content in the simulated time period. During

a day, viewers spend only 5-25 seconds viewing content. Divided by the number of viewed

content items, this equates to less than 0.714 seconds for the On-Campus Student and Random

Building Navigator models and 1.25 seconds for the Off-Campus Student model.
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Table 4.4: User-centric statistics for the use of Tacita (initially published in [Mik+18d]); total number
of users: 147.

Metric mean median SD

Number of apps per user 2.68 2.0 1.52
Number of apps per user (excl. Welcome) 2.2 2.0 1.33
Number of total requests per user per day 134.8 55.0 208.08

Number of unique users issuing requests per day 4.59 3.0 4.51

4.2.4.2 Reports Based on Tacita

Once again, Tacita data can be used as an alternative to synthetic mobility traces for the

creation of reports. In addition, we can provide reports regarding the usage patterns of

individuals. Table 4.4 provides an overview of key statistics and metrics around the Tacita

service from a total of 147 users throughout the lifespan of the deployment. Tacita users

typically activated and requested a mean of 2.68 applications (Mdn: 2.0, SD: 1.52) out of the

total of eight available applications. If we exclude the pre-activated Welcome application,

Tacita users requested a mean of 2.2 applications (Mdn: 2.0, SD: 1.33) indicating that Tacita

users typically configure and activate applications in addition to the default settings.

To consider the volume of personalisation requests issued by users per day, we created

reports consisting of the number of personalised content requests users typically issue within

a day, and the number of unique users issuing at least one request per day. The mean number

of total requests issued on a daily basis is 134.8 (Mdn: 55.0, SD: 208.08). The high standard

deviation is likely due to the fluctuation of viewers on campus, e.g. weekends and holidays in

which the number of requests and users drops significantly. Further, we believe a small set of

users request high amounts of data whilst a separate set of users only issues a low number

of personalisation requests – either due to their navigation patterns only rarely leading by

displays or by their preferred usage of the service. For example, some users might choose

to disable the background location tracking of Tacita but prefer a more explicit usage model

in which personalisable applications are requested by explicitly opening the mobile phone

application. Over the whole deployment, we computed a mean of 4.59 unique users requesting

personalised content at least once each day (Mdn: 3.0, SD: 4.51). Similarly to the previous

report on total numbers of requests, the relatively high standard deviation reflects the nature

of the long-running deployment and the naturally low numbers of requests outside of term

times and during holidays.

Overall these reports enable us to consider that most users are interested in a very low

number of personalisable applications (Mdn: 2.0, SD: 1.52). Such low numbers of applica-

tions indicate that personalisable display deployments will have little issues with competing

applications for single users. However, the competition among different application providers

is likely to be high with users preferring to choose a low number of applications only.
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4.2.4.3 Stakeholder Analysis

The reports outlined above provide the following set of benefits to individual stakeholder

groups.

Display Owner Display owners can receive detailed insights into the viewer experience

throughout the entire display network measured by the number of (unique) displays and

content viewers typically consume throughout a day. Such numbers can be particularly

useful if display owners wish to explore alternative content scheduling algorithms to

understand the impact on the viewer experience. For example, if the total number of

content views is significantly higher than the number of unique content items seen,

display owners may adjust the content scheduling in order to give individuals the

opportunity to see varying content instead of the same content multiple times.

Space Owner Space owners can use the reports to understand how viewer experience is

influenced by displays deployed in their space and the exposure of viewers to content.

Such insights can be used to inform the decision on potentially allocating more or less

space for display deployments if the content exposure is too low or too high respectively.

Content Provider Understanding the frequency of display and content views can provide

valuable insights for content providers regarding the number of opportunities individuals

typically have to consume the content provided. Such understanding can then inform

the content delivery decisions (e.g. in the context of personalisable applications) or help

shape the design of content items and the level of information present. For example, if

viewers typically only see a small number of displays and content items throughout a

display network, content providers can design the content accordingly by including all

relevant information in single content items.

Viewer Viewers provided with access to the analytics reports described above can better

understand their own exposure to public displays and the content displayed across a

day and display network. In addition, viewers may benefit from an improved quality of

content scheduling algorithms and better designed content.

4.2.5 Display Personalisation Retention Analytics

The dataset captured through Tacita can be used to create an additional set of analytics

reports specific to describing viewer engagement and interactions with Tacita. In contrast to

analytics reports captured for purely commercial- and advertisement-based public displays

and billboards, the requirements for analytics reports in the context of Tacita are around

revealing and visualising insights into the viewer behaviour and usage of personalisable display

applications such as the ways in which users configure content and the spatial distributions of

requests for personalised content.
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Figure 4.8: Growth of Tacita users through-
out the deployment (blue) and unique num-
ber of users per day (red) (initially published
in [Mik+18d]).
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Figure 4.9: Cumulative distribution function of
frequency of revisiting the configuration pages
of individual Trusted Content Providers (ini-
tially published in [Mik+18d]).

4.2.5.1 Usage and Interactions

The assignment of a globally unique identifier to requests originating from Tacita users enabled

us to recognise recurring users and created viewer-centric usage reports throughout the lifetime

of the deployment. This included insights into the usage and interactions with Tacita including

the reporting of unique users (Figure 4.8).

Tacita is characterised by a set of unique interaction patterns that differ to these found

across mobile phone applications and traditional, interactive public displays. For example,

unlike interactions with many mobile phone applications, Tacita users are only required to

activate and configure the system once on their mobile devices. While passing by displays

that support display personalisation, users implicitly interact with displays and applications

simply by their phones detecting proximate displays and requesting applications that users

have previously activated – users are not required to actively launch Tacita on their mobile

device for further use.

Considering these unique interaction characteristics, we have created a set of reports

that allow display owners and content providers to better understand the usage patterns

and explicit interactions with configuration pages. Besides standard Web analytics that

can be captured on the Web-based configuration pages, we considered each time users

accessed and changed their preferences and calculated a cumulative distribution function

(Figure 4.9). The figure visualises the proportion of users who revisit the configuration pages

a number of times – expressing, in this case, that the majority of Tacita users configure their

applications once and only a very small proportion of users revisit the page again to adjust

configuration parameters. Such insights into interaction patterns can be crucial for the design

of personalisable applications. For example, low frequencies of revisiting configuration pages

may emphasise the importance of creating a good user experience as users are likely not

to revisit configuration pages. We note that due to the nature of the configuration pages,

user interactions within these pages, e.g. button clicks, scrolling behaviour and configuration

parameters, can be captured and reported using standard Web analytics techniques.
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(a) User retention report based on display personalisa-
tion requests .
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(b) User retention report based on configuration changes
of personalisable applications.

Figure 4.10: Tacita user retention reports with a per-day granularity (initially published in [Mik+18d]).
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(a) User retention during winter term.
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(b) User retention during spring term.

Figure 4.11: Tacita user retention reports with a per-week granularity (initially published
in [Mik+18d]).

4.2.5.2 Retention Rates

A common way to report on the loyalty of customers in retail or users in a mobile phone setting

are retention rates [RZ93]. Such retention rates can be used to describe the success of mobile

phone applications: if users are still accessing a mobile phone application after multiple days,

weeks or months it is considered as an indication for a successful application [Pel+18]. In

the context of personalisable public displays, similar reports can be created to describe the

lifespan of users requesting personalisable content on the display network. Whilst in mobile

phone usage statistics retention rates are computed by considering the time span between the

first and last time a user has opened an application, the metric can be adapted to our use case

by considering the first and last time viewers requested personalised content on displays or

explicitly visited the configuration page of a personalisable application.

To demonstrate the potential of the insights that can be gained from such retention reports,

we explored two different types of reports with different granularities. Firstly, we consider

retention reports on a per-day granularity showing the proportions of the activity lifespans
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based on the days counted between the first and last captured requests of viewers and between

the first and last interaction with application configuration pages (Figure 4.10). Secondly,

due to the nature of display personalisation systems (i.e. viewers are required to pass by

supported displays in order to be considered in the reports), we additionally created reports

with a lower granularity on a per-week basis accounting for the fact that some viewers

could be still using the system but happen to not pass by a supported display (Figure 4.11).

Figure 4.10a indicates a relatively high retention of continuous personalisation requests: after

ten days, over 50% of users continued issuing personalisation requests implicitly by walking

by displays indicating that Tacita has not been removed or disabled. In line with the cumulative

distribution function of frequencies of revisiting configuration pages shown in Figure 4.9,

the retention rate for configuration changes shown in Figure 4.10b shows a low retention

rate after the first day indicating that users very rarely revisit configuration pages to change

their preferences. Considering retention figures on a finer time granularity (Figure 4.11), we

observe that over 50% of viewers are still successfully requesting personalised content one

week after beginning to use the system – a metric that can be observed both during winter

and spring terms (Figures 4.11a and 4.11b respectively). We further observe that whilst the

majority of viewers cannot be observed after two weeks of usage, the proportion of ‘long-term’

users remains stable across weeks 2, 3 and 4.

4.2.5.3 Stakeholder Analysis

The reports outlined above provide the following set of benefits to individual stakeholder

groups.

Display Owner Display owners can utilise retention rates to determine the perceived

utility of the content (or personalisable applications) offered to the viewers. Very low

retention rates of certain categories of applications may suggest that the overall offering

of personalisable applications (and content) can be improved.

Space Owner Space owners gain insights into the popularity and uptake of novel tech-

nology deployed in their space. In the context of Tacita, for example, space owners

would likely have been involved in the installation, deployment and advertisement of

the application to visitors of the space. The use of retention rates can help space owners

understand their ‘return on investment’ and potentially have an influence on the future

deployment of technology for improving the experience of visitors or customers of the

space.

Content Provider Retention rates in the context of digital signs can be used to inform the

design of personalisable display applications and the content offered. For example, we

noted very low retention rates of users accessing configuration pages of personalisable

applications suggesting that users of such a system only configure the application

once or very few times. Such usage patterns may introduce a set of system design

requirements that may impact the design and development of applications.
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Viewer Viewers can utilise retention reports to learn more about their usage patterns of

personalisable applications and better understand why certain content was visible on

individual displays when passing by.

4.2.5.4 Limitations

We note that computing and reporting retention rates in this context is subject to a set of

limitations. In particular, whilst for mobile phone applications users actively interact with an

application (i.e. at a minimum open the application), such user behaviour cannot be directly

transferred into our use case: once Tacita applications have been configured and activated

viewers are not required to actively engage with the mobile phone application or the displays.

Instead, simply walking by supported displays is sufficient to automatically be detected in

the proximity of the display and request the activated set of applications. Equally, if viewers

do not pass by a display content requests are not issued but viewers could still be active

users of the system. Consequently, assuming that viewers stopped using the service after

the last content request does not take into account other potential reasons for viewers not

requesting personalised content such as viewers choosing different walking paths not leading

past displays or simply deactivating Bluetooth or other required functions on their mobile

phones while still considering themselves as a user of the display personalisation system.

These limitations are particularly important to consider when interpreting trends in retention

rates.

4.3 Using Web Analytics Engines for Display Analytics Report-
ing

Signage analytics can benefit from the wide range of reports and aggregations provided by

common Web analytics systems. As part of our exploration into the creation of analytics

reports relevant for the digital signage domain without ‘reinventing the wheel’ and with the

purpose to reuse the body of work existent in the Web analytics domain, we have created

a possible mapping from signage analytics terminology to Web analytics and developed a

corresponding injection module for Pheme. We subsequently used the developed mapping

and injection module to create a set of novel display-oriented analytics reports by leveraging

on an existing Web analytics engine.

4.3.1 Overview of Web Analytics Terminology

We first provide an overview of the capabilities that state-of-the-art Web analytics engines

provide – before developing an appropriate mapping of signage analytics to Web analytics

terminology.

Modern Web analytics emerged that implemented comprehensive on-client data collection

using JavaScript embedded in Web sites allowing to gain deeper insights into user behaviour

and interactions conducted on a single page – such as the Google Analytics tracking library
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Table 4.5: Attributes provided to describe Page View and Event hit types in Google Analytics based
on the Universal Measurement Protocol (UMP) [Goo18h].

Page View Hit Type Event Hit Type

Time on site Category, action, label, value

Bounce rate Grouping across attributes

Funnels Non-negative integer values

Entry & exit points Graphs visualisation for values

Content Link events to pages

Hierarchical URI / drill down User ID

Value is 1 Time

Referrer

Graph visualisation for page views

User ID

Time

[Goo18f]. In the Web, such JavaScript modules are capable of tracking similar user activity

to what was achieved through access logs, and beyond by tracking the user’s activity within

a single page (e.g. reporting button clicks and scrolling behaviour). In addition, powerful

analytics engines have emerged that automatically compute relevant metrics and insights upon

integrating a simple code snippet on the Web site. An overview of different attributes that can

be collected through modern Web analytics as part of page view and the more generic event

reporting types are provided in Table 4.5.

In Web analytics, the following key sets of metrics and insights are typically created and

offered to Web administrators and content providers.

Sessions A session often describes the thread and lifetime of a set of subsequent user

interactions conducted within a certain time frame. In typical Web analytics systems

such as Google Analytics the maximum time between the subsequent interactions

is defined as 30 minutes [Goo18g] – any interaction of the same user that has been

conducted in this time frame is associated to be part of the same session. Sessions are

key for the computation of other metrics and reports such as user interaction funnels,

i.e. the knowledge of the start and end of a coherent interaction thread is required to

create a funnel representing navigation patterns of single sessions.

Pageviews Pageviews are defined as a metric that describes “the total number of pages

viewed” [Goo18i] where a single pageview is defined as “an instance of a page being

loaded (or reloaded) in a browser” [Goo18i]. Pageviews can be associated with addi-

tional attributes such as the time spent on site to provide further insights (Table 4.5). In

this case, pageviews are aggregated across pageviews from any user, i.e. if individual

users load a particular page multiple times.
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Visits Visits count the number of individual visitors that have accessed a website. While

pageviews typically aggregate over any pageviews that occur, including multiple

pageviews from a single user, a visit describes the number of sessions a user has

started on a Web site [Goo18i]. Visits can be further broken down to distinguish be-

tween unique visitors (i.e. counting unique visitors only once in a given time frame)

and recurring visitors (i.e. only considering visitors who have previously visited a Web

page).

Bounce Rates Bounce rates define the proportion of visits that are not followed by

any subsequent pageview of the same user within the domain, i.e. the proportion of

visitors that ‘bounce’ away from the website after only opening a single page [Goo18b].

Bounce rates are used as a indication of the interactivity of both the Web site and

visitors. Depending on the nature of the Web site, low or high bounce rates may indicate

a problem or just reflect intended behaviour [Goo18b].

Funnels Funnels (initially described in Section 2.4.2.1, p. 35) typically visualise an

interaction or behaviour flow. For example, funnels in Web analytics are used to show

an overview of the overall traffic flow within a Web site – i.e. which proportion of

visitors views a sequence of Web pages [Goo18f]. Funnels can also be utilised to

visualise the flow of custom-defined events or e-Commerce-related purchasing patterns.

Referrers and Traffic Sources Referrers and traffic sources describe the originating or

referring Web site of a visit or pageview event. Examples of referrers and traffic sources

can be other, external and internal Web sites as well as direct traffic that has not been

referred from another Web site through a automated forwarding or hyperlink [Goo18i].

Conversion Rates Conversion rates describe the proportion of viewers that have com-

pleted a goal that was previously defined by the Web site administrator or content

provider. Examples of goals can include “a completed sign up for your email newsletter

(a Goal conversion) or a purchase (a Transaction, sometimes called an E-commerce

conversion).” [Goo18a]

4.3.2 Mapping from Signage to Web Analytics Terminology

We developed a mapping that emphasises the similarities between the digital signage and Web

analytics domains. In order to report pageviews and events to Web analytics systems, a core

set of attributes need to be mapped which typically include meta data about the document

that has been opened (including title, domain and URI), the user performing the event (e.g.

a globally unique user identifier), and the, if applicable, the referring Web page. In digital

signage, we can simply use some of the core metrics recorded as part of signage deployments

and map these directly across – an overview of the mapping of individual attributes is shown in

Table 4.6. The mapping presented leads to changes in the meaning of metrics reported through

Web analytics as shown in Table 4.7. Pageviews and page impressions can be directly mapped
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Table 4.6: Mapping of individual attributes from digital signage analytics to Web analytics’ attributes
(based on UMP [Goo18h]).

Web Analytics Attribute Digital Signage Analytics Attribute

Tracking identifier Tracking identifier is passed through

Query time Time delta between the actual content change (reported by
individual displays) and the mapping and injection to the Web
analytics platform (allows to account for potential processing
and mapping delays)

Client identifier Unique identifier of the display reporting analytics

Hit type The hit type that is reported; ‘pageview’ for content reports or
‘event’ for more generic analytics reports

Document location URI to the reported content that is shown on a display

Document host Source host of the content reported (if available)

Document path Path to the content reported (if available)

Document title File name of the content reported

Content description File name of the content reported

Table 4.7: Mapping of reports from Web analytics to digital signage analytics’ metrics (partially
described in [Mik+15]).

Web Analytics Metric Digital Signage Analytics Metric

Page views / page impressions Content impressions on displays

Referrers Identifier of display showing the content

Unique visitor Individual display active as part of the display network and
reporting content

Visitors All displays active as part of the display network and reporting
content

Session Active period of individual displays (i.e. a new session is started
if the display has not reported content for a certain time period)

Time on site Duration of a display showing an individual piece of content

Page title Title or file name of the content that was shown

Page URI Source URI (local or Web-based depending on the display) to
the content item shown

Location Geographical location of the display

Browser Renderer used to show the content

Operating system Underlying operating system of the display and the signage
player software
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onto content impressions; the metadata about content shown on displays can be mapped onto

the document metadata (including content titles and URIs). Whilst in this scenario we do not

have individual users, we use the user metadata attributes to distinguish between individual

displays accessing content. Therefore, user identifiers are used to provide identifiers of the

display accessing a piece of content. To understand content change patterns and provide us

with the ability to filter for individual displays, we were required to make the reporting display

visible in the analytics dashboard. Traditionally, in Web analytics systems individual users

are anonymised and invisible, and are only reported as part of larger aggregates. In the case

of digital signs, such an anonymisation of displays is not required. Instead, we deliberately

make display identifiers visible by mapping these values onto the referrer attribute which can

be provided for any Web event hit type – causing the display identifier to directly appear in

reports and provide us with the ability to conduct further filtering.

We note that the mapping provided in Tables 4.6 and 4.7 is focussed on a display-centric

mapping, designed to capture and map across predominantly data from digital signs not

considering the audience. However, other mappings depending on the purposes and desired

results can be possible. For example, a closer relationship between users of the digital world

(i.e. Web users) and physical world (i.e. passers-by) could be directly mapped translating

‘display content view impressions’ to ‘page views’. The results, e.g. number of impressions

for given Web sites would directly translate to the number of views of certain content items

displayed on digital signs across a signage deployment. In order to support such reports,

digital signs need to be able to capture glances and views, e.g. through the use of visual

analytics and face recognition solutions. These technologies could be combined with other

recognition systems such as Tacita to support more comprehensive metrics including ‘unique

visitors’ of content items – presupposing that the re-recognition of individuals can be achieved

across spatially distinct displays and deployments.

4.3.3 Example Reports and Visualisations

Using Pheme, we are able to put analytics into existing digital signage deployments and utilise

Web analytics as an example for third-party visualisation and reporting purposes through the

mapping described above. We note that the visualisations and aggregations in the following

subsections were solely the result of the mapping and did not require additional fine tuning of

the dashboard – further emphasising the conceptual similarities between the Web and digital

signage analytics domains. The visualisations draw on the data modelling described as part of

the display-oriented data collection in Section 3.3.2 (Client-side Data Collection, p. 60).

4.3.3.1 Display-oriented Performance Reports

Figure 4.12 shows the incoming data stream as part of the Google Analytics real-time dash-

board. Digital signs reporting content appear as ‘active users’ and referrers in the dashboard

together with the currently shown piece of content in the form of a string. Due to the mapping

of display identifiers onto the user identifier attribute, the number of ‘active users’ directly
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Figure 4.12: Pheme real-time reports produced through Google Analytics.

maps onto the number of currently active displays (i.e. displays that are showing content).

Additionally, the list of referrals shows the names and identifiers of active displays. Standard

features of the dashboard can be used: clicking on a referrer results in a filtering of real-time

insights about the selected display.

As described in Section 3.3.2 (Client-side Data Collection, p. 60), we additionally utilise

the custom Events hit type to describe the physical power state of displays to detect mal-

functioning displays and signage players. As shown in Figure 4.13, the analytics dashboards

provides an overview of reported event types (e.g. ‘unresponsive’) and any other customisable

event type. The analytics dashboard consists of the ability to filter for any custom event type

and value and retrieve the set of referrals which directly map onto the corresponding displays.

The ability to create aggregates and historical reports can be used to, for example, capture

the reliability of a signage network over time. Such insights are crucial for the success of

a display network as they allow network administrators and providers to easily determine

malfunctioning devices.

4.3.3.2 Specific Reports for Content and Service Providers

In open display network scenarios, content providers do not necessarily know the distribution

of their content items across display networks. However, understanding the content display

patterns for individual content items across single or multiple display networks is a crucial

piece of information for both display owners and content providers – helping to inform the
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Figure 4.13: Pheme event reports produced through Google Analytics.

Figure 4.14: Pheme content reports produced through Google Analytics.
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Figure 4.15: Detailed report of displays showing a particular piece of content produced through
Google Analytics.

understanding of both the reach of content and the general performance of a signage network.

Such reports are particularly important for content providers (as described in Section 2.4.1)

to verify that their content has been played across a signage network in line with agreements

with display owners. By applying the example of a basic mapping of the previously described

pageviews, we are able to produce comprehensive content reports and aggregations throughout

the entire lifespan of a display and piece of content. Figure 4.14 shows the overview of

displays (i.e. referrers) that were reported showing content, allowing administrators to drill

down on a per-display basis or filter for specific content items instead to identify which display

has been showing a particular piece of content at which times. For example, Figure 4.15

shows an overview of the distribution and impressions of a particular piece of content across

the entire digital signage network – allowing both display owners and content providers to

understand the visibility scope of particular pieces of content.

4.4 Summary

In this chapter, we introduced a set of novel viewer-centric analytics reports for digital signage

based on our approach of combining display-oriented analytics with viewer mobility data.

Concretely, we have made the following contributions:

1. We have presented a set of novel viewer-centric analytics reports that illustrate the levels

of insights that can be gained when considering viewer sightings of displays across

a network of displays – including reports showing the effectiveness of displays, the



4.4 Summary 110

visibility of content across the display network, and the visibility of content to viewers.

Our analytics reports were drawing on both synthetic mobility traces and the display

sightings captured through Tacita.

2. We used Tacita as a use case to presented a set of analytics reports specific to supporting

a display personalisation system. In particular, such reports included reports regarding

usages and interactions, and an overview of using ‘retention rates’ (and its limitations).

3. We illustrated that leveraging existing Web analytics engines enabled us to create a

set of novel sign-oriented analytics reports. In particular, we presented a mapping

from signage to Web analytics terminology, and designed and developed an appropriate

injection module for Pheme that allowed us to report display and content related reports

for the e-Campus display network.

In many analytics systems the end product is the set of reports provided. However,

analytics data can also be used to inform the content shown and the behaviour of the signage

network. In the following chapter, we describe the automated use of collected and computed

analytics data on pervasive displays, e.g. to improve the quality of the network and the viewer

experience.



Chapter 5

Automated Use of Pervasive Display
Analytics

5.1 Overview

In the previous chapters we focussed on data capture (Chapter 3) and reporting aspects

(Chapter 4) of next generation display analytics systems. However, analytics insights could

also be used to drive content scheduling decisions on digital signs. In this chapter, we focus

on the design and development of a novel content scheduling system and present the Lottery

Scheduler, a new approach to dynamic content scheduling that supports both traditional content

scheduling and provides the ability for context- and event-based scheduling. In particular,

we describe how the Lottery Scheduler can be used as a solution given the high number

of potentially conflicting content scheduling constraints and requirements that are likely to

emerge in future open pervasive display networks that use analytics data to inform the content

selection.

Excerpts of this chapter have been published in the following peer-reviewed publication:

1. Mateusz Mikusz, Sarah Clinch, and Nigel Davies. “Are You Feeling Lucky?: Lottery-

based Scheduling for Public Displays”. In: Proceedings of the 4th International

Symposium on Pervasive Displays. PerDis ’15. Saarbruecken, Germany: ACM, 2015,

pp. 123–129. ISBN: 978-1-4503-3608-6. DOI: 10.1145/2757710.2757721. URL:

http://doi.acm.org/10.1145/2757710.2757721

5.2 The Need for Dynamic Content Scheduling

A key challenge in a future analytics-driven signage system is how to incorporate the analytics

insights into content scheduling decisions. In this section, we introduce existing content

scheduling approaches from the digital signage domain, and also provide an overview of

basic scheduling algorithms that have been developed in the context of fundamental task and

process scheduling research.

https://doi.org/10.1145/2757710.2757721
http://doi.acm.org/10.1145/2757710.2757721
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5.2.1 Existing Content Scheduling Approaches

Traditionally, content scheduling for public displays is carried out using predefined timelines

or playlists that consist of a detailed description of when and where a certain piece of content

should be shown – either for individual displays or for a group of displays. Examples of a

commercial system with such complex timeline-based scheduling capabilities include Sony

Ziris [Son] and BroadSign [Bro] that provided users with comprehensive user interfaces,

allowing detailed control of content shown on individual displays within the signage network.

The use of a combination of scheduling techniques has been used in a number of research

works including [Fin+96; MCL01; Chu+03; Elh+14]. For example, researchers often utilised

interaction-driven content scheduling (i.e. based on explicit input of the viewer through

mobile phones [Dav+09]) combined with simple cycling through a predefined set of content

items [KGR08]. Further research, such as work conducted by Storz et al. [Sto+06] and

Elhart et al. [Elh+14], explored the design and development of scheduling systems that allow

the specification of a range of scheduling constraints including a server-based scheduler

that manages the content selection on a network of displays. Elhart et al. [Elh+14] further

developed a scheduling language that allows the specification and formalisation of complex

content scheduling constraints and requirements in digital signage.

The scheduling approaches above typically lack consideration for contextual and other

events that may influence the scheduling decision of current or future content. The need

for digital signage players that support dynamic interventions and content changes becomes

crucial when considering contextual information alongside analytical insights for content

scheduling decisions. For example, digital signage systems can learn and adapt to a certain

behaviour or an audience that is currently moving through a space by passing on analytics

information of the audience to digital signs situated in their proximity. A digital signage

player deployed in the space could consider such real-time insights and use that information

to dynamically inform the scheduling decision of the currently shown content item. Whilst

state-of-the-art signage players only support intervention for a very limited set of context such

as direct content interactions and input, the support for the described scenario would require a

highly dynamic and flexible scheduling system.

5.2.2 Scheduling in Operating Systems

The problem of scheduling content onto a public display can be seen as a resource alloca-

tion problem: a number of content items (likely to have originated from a distinct set of

stakeholders) representing ‘tasks’ compete over limited screen real-estate representing the

‘resource’. In the context of operating systems, a number of resource allocation and process

scheduling techniques have been developed considering varying constraints and requirements –

some of these resource allocation techniques have formed the basis for the content scheduling

algorithms described above. To provide an overview of fundamental task scheduling tech-

niques, Panwalkar and Iskander [PI77] conducted a survey of techniques developed in early

research. The authors of [PI77] categorised scheduling approaches into three overarching
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classes: priority-based scheduling (tasks are allocated based on specific attributes such as

due dates by prioritising tasks with the earliest deadlines first or the number of resources

requested), heuristics (tasks are allocated based on more sophisticated mathematical rules that

take additional factors into considerations such as intended task loads), and other rules (tasks

are allocated based on rules designed for a specific purpose, or a combination of priority-

based approaches and heuristics) [PI77]. Specific to operating systems, Arpaci-Dusseau and

Arpaci-Dusseau provide an overview of existing scheduling approaches including ‘first in, first

out’, ‘shortest job first’, ‘shortest time to completion’ and ‘round robin’ (switches between

jobs after each process execution cycle, i.e. tasks receive an equal amount of time slices to

complete their jobs) [AA15].

Examples of more sophisticated scheduling algorithms include Stride Scheduling, a “deter-

ministic allocation mechanism for time-shared resources” [WW95] developed by Waldspurger

and Weihl. W. In this approach, resources (over which a number of tasks are competing)

are allocated ‘deterministic time slices’ whilst the access to such resources is represented

by tickets. Tasks that have been allocated a number of tickets hold ‘access rights’ to these

resources. In return, the scheduler executes (competing) tasks in strides that are inversely

proportional to the number of tickets a task holds; i.e. a task with twice as many tickets is

given twice as much access to resources compared to other tasks [WW95].

An alternative approach for the distribution of tasks in a resource-constrained context

is Lottery Scheduling, first introduced as a“flexible proportional-share resource manage-

ment” [WW94] approach by Waldspurger and Weihl. The system was motivated by the

challenge to schedule a large set of computational tasks competing for a limited set of avail-

able computing resources. To provide a way of ‘fair’ scheduling and distribution of tasks, the

lottery scheduling approach provides a mechanism for modelling rights to resources in the

form of lottery tickets that are allocated to tasks waiting for resources. Once the allocation of

lottery tickets is complete, a lottery is held to determine the allocation of resources to tasks.

Waldspurger and Weihl state that this approach “effectively allocates resources to competing

clients in proportion to the number of tickets that they hold” [WW94], i.e. providing a fair

yet effective way to distribute resources to tasks reflecting their requirements. Changes to the

allocation of lottery tickets reflecting changes in the resource requirements are immediately

reflected in the subsequent draw allowing the Lottery Scheduler to dynamically and quickly

respond to changes.

In addition to the proportional distribution of lottery tickets, Waldspurger and Weihl devel-

oped additional, modular mechanisms to allow tasks that influence the resulting draw [WW94].

First, the scheduler supports the transfer of lottery tickets between tasks. For example, if

a task is waiting due to another task using up or blocking resources, the pending task may

temporarily transfer tickets to the blocking task to enable a faster execution. In order to enable

high prioritisation of certain tasks, the authors provide the ability for a ‘client’ (i.e. the entity

holding resources) to create a large number of tickets and allocate these to the task that is to be

prioritised—defined as “ticket inflation”. For more detailed resource allocation within a single

client or task, the scheduler allows the creation of internal “ticket currencies” used within an
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internal group of tasks. Finally, Waldspurger and Weihl provide “compensation tickets” to

clients that utilise only a subset of allocated resources to guarantee a proportional distribution

of lottery tickets and proportions in future lottery draws [WW94].

5.3 Lottery Scheduling for Digital Signage

In order to facilitate the requirements for a dynamic scheduling system that can both consider

scheduling constraints defined by users as well as react to frequent changes in the context

of the sign, we have designed a lottery-based scheduling system for digital signs that builds

on top of the approach initially introduced by Waldspurger and Weihl [WW94]. The lottery

scheduler is highly modular and configurable and has the ability to resolve complex scheduling

requirements and constraints though the use of lottery-based algorithms.

5.3.1 Applicability of Lottery Scheduling to the Public Display Domain

The allocation of resources to clients to perform certain computational tasks by an operating

system can be transferred into the digital signage domain: the time and screen real estate for

content play-out on digital signs is highly limited and typically a resource for which content

providers and advertisers compete. The concept of lottery scheduler provides a simple yet

effective approach to select a ‘winning’ tasks whilst allowing for consideration of potentially

conflicting scheduling constraints and requirements in the form of lottery tickets and ticket

allocation techniques. The lottery scheduler can be easily adapted into the digital signage

domain: competing stakeholder requirements can be represented by varying lottery ticket

allocation techniques that allocate lottery tickets to available content items. By performing

a random draw on the available set of lottery tickets, the digital sign can find at any given

point in time an eligible content item to show – whilst the distribution of lottery tickets shifts

the probabilities for certain content items to be shown with respect to the requirements and

constraints provided by stakeholders. In comparison to other scheduling approaches such as

stride it provides a simple solution yet enough flexibility to consider additional scheduling

constraints and requirements. We believe that using the lottery scheduling approach will allow

the break-down of complex scheduling decisions into smaller, distinct problems formulated

as a collection of lottery ticket allocators that contribute to the overall scheduling decision.

Additionally, a number of external and contextual events may influence content scheduling

decisions at any given point of time, introducing an additional level of complexity regarding

the scheduling decision and mirroring the need for ticket re-allocation seen in operating

systems. We emphasise that, however, the lottery scheduling approach solves the issue of

determining which content item to show from a set of eligible content items. Common content

scheduling systems for public displays allow the definition of additional scheduling constraints,

e.g. making certain content items available at certain days or time ranges only [SFD06]. Whilst

such scheduling constraints could be implemented by allocating zero tickets to ineligible

content items, we believe that such an approach would create an overhead as each individual
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lottery ticket allocation component would be required to identify the eligibility of individual

content items in addition to determining the number of lottery tickets to be allocated. In order

to illustrate the applicability of the lottery scheduling approach for public displays, we describe

how the Lottery Scheduler can be used to address a set of typical scheduling requirements that

emerged based on experiences from the e-Campus display deployment [SFD06; Sto+06].

Ratio-based Scheduling Ratio-based scheduling describes the ability of display owners

to express ratio-based preferences as to which content receives proportionally more

screen time compared to other content. For example, display owners may prefer to

prioritise content supplied by themselves over content that is supplied by the space

owner or a separate organisation. In the context of the Lottery Scheduler approach,

ratios can be simply expressed through the proportional allocation of lottery tickets to

certain content items. Of course, factors such as the length of a content item (i.e. for

videos) needs to be taken into consideration when allocating an appropriate amount of

lottery tickets to calculate the screen time correctly.

Viewer Linger Times Viewer linger times serve as an example for considering contextual

events taking place in the immediate vicinity of individual displays. In some cases,

viewers may linger for longer or shorter periods of time in front of a display which may

be considered for content scheduling purposes. For example, displays located near a

shop may attract only short glances, whilst displays located in waiting areas at airports

or train stations have the potential to longer glances of passers-by. The use of lottery

scheduling allows the system to dynamically adapt to viewer linger times and schedule

content accordingly to, for example, increase probabilities that certain content items are

seen by the passers-by.

Prioritisation of New Content In digital signs with a large volume of content could use

a ticket allocation strategy based on the age of individual pieces of content to prioritise

more recent content. The advantage of such an approach minimises the delay in which

more recent content appears on digital signs and make it visible to viewers. The

prioritisation of new content can be implemented by simply allocating proportionally

more lottery tickets to newer content, e.g. based on a linear or exponential function

depending on the desired output.

Targeted Content and Personalisation Display personalisation systems, such as Tacita

[Dav+14; Mik+18d] provide display owners and content providers with the ability to

dynamically tailor the content to the passers-by and additionally support long-term

personalisation. For dynamic personalisation, multiple passers-by are likely to be

competing over screen time with each other and the ‘regular’ content schedule for a

display. The use of a lottery ticket allocation based on requested items and a random

draw allows the sign to quickly determine a piece of content to show whilst still

taking competing content requests under consideration. For supporting long-term

personalisation (i.e. considering viewer presence in a space or area and adapting the
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Figure 5.1: Snapshot of an allocation of lottery tickets for 13 distinct content items using recency-
, duration-, random- and ratio-based lottery ticket allocation modules each representing different
stakeholder requirements.

content over a longer time [Dav+14]), a similar approach can be taken in which lottery

tickets are allocated based on the presence of viewers in the wider context of a display.

The lottery scheduling approach further supports the implementation of complex schedul-

ing scheduling requirements by mixing a set of lottery ticket allocations strategies. For

example, to support both long-term personalisation and ratio-based scheduling, a mix of

multiple lottery ticket allocation modules could be applied at the same time. In this case, a

single scheduling system would support both long-term scheduling requirements and these

that require immediate changes to the scheduling approach. Of course, the use of different

lottery ticket allocation approaches influences the overall probability of certain content items

to be scheduled onto the display and needs to be further considered when applying a mix of

lottery ticket allocation approaches.

Figure 5.1 provides a snapshot of an example lottery ticket distribution for a set of eligible

content items using four lottery ticket allocation mechanisms in order to help to express how

the lottery scheduling approach can be utilised to resolve potentially conflicting scheduling

requirements from distinct stakeholders. In this example, lottery tickets are allocated using

the following strategies: recency-based (i.e. lottery tickets are inversely proportional to the

last time the content was played), duration-based (i.e. shorter content items are prioritised

by assigning lottery tickets in proportion to the duration of the content), random (i.e. lottery

tickets are randomly allocated), and ratio-based (i.e. with respect to predefined content ratios

to prioritise certain content over others). Each lottery ticket allocation has been given a total of

1,000 lottery tickets that are then allocated based on the methods described. Each lottery ticket

allocation mechanism can be a direct representation of different stakeholder requirements. For

example, the recency-based lottery ticket allocation can represent the requirement of content

providers to prioritise distribute play times of content evenly and therefore prioritise content
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that has not been shown. In contrast, display owners may prefer that content is played in

accordance to a predefined set of ratios to prioritise local content over other content. As a

result, a number of requirements likely conflicting can be defined in a set of individual lottery

ticket allocations to content items – directly impacting the probability of individual content

to be selected. The random draw enables a prompt selection of content to be shown despite

the set of conflicting scheduling requirements. For example, in the context of personalisation,

despite user requests, other content can be still scheduled on the display ensuring that viewers

cannot overtake displays for a long period of time – no disadvantage for users who have not

opted in for display personalisation. We note that Figure 5.1 shows a snapshot of lottery

ticket allocations at a specific point in time – lottery tickets are constantly reallocated in order

to account for potential changes in the context that may be considered by a lottery ticket

allocator.

We note that the lottery scheduling approach in the context of digital signage also imposes

a set of limitations as certain content scheduling requirements cannot be met. For example,

the visualisation of content items in a predefined order cannot be guaranteed when a drawing

is used to determine the next item to show – even if the probabilities have been adjusted by

allocating a corresponding amount of lottery tickets. More generally, if display owners require

to show content items as part of a timeline in which full control is given for exact dates and

times in which certain pieces of content are played, their specific ordering, and potentially

other demands, the lottery scheduling approach would not be an appropriate scheduling

solution.

5.4 Lottery Scheduling System Architecture

5.4.1 System Architecture Overview

Considering the requirements above, we designed and developed the first Lottery Scheduler

for the digital signage domain. This consists of a series of components as shown in Figure 5.2.

As described in the previous section, content management systems typically support the

specification of basic constraints defining the availability of individual content items (e.g.

based on date and time). In order to simplify the design of individual lottery ticket allocation

modules, we integrated an optimisation into the system architecture of the Lottery Scheduler

in which the filtering component removes ineligible content items before the execution of

the lottery ticket allocation components. By applying this optimisation, we reduce the level

of complexity and duplication across other components – lottery ticket allocation modules

are not required to additionally review the basic eligibility of individual content items. The

Lottery Scheduler executes the following set of processes in sequence:

1. constraints processing on the given set of scheduled content items and filtering of

content items that are not eligible to show;
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Figure 5.2: Lottery Scheduler system architecture (initially published in [MCD15]).

2. lottery ticket allocation to the remaining set of content items based on strategies defined

within each lottery ticket allocator, and

3. random lottery draw; the content item associated with the winning ticket becomes

immediately visible on the display.

The Lottery Scheduler consists of the following components: scheduling pipeline manager,

context and constraints parser, filtering and lottery ticket allocation pipelines, configuration,

context store and an analytics module. Each of these components are described in more detail

in the subsequent sections.

5.4.2 Scheduling Manager

The Scheduling Manager component orchestrates the data flow across all system components

and consists of event-based interfaces for receiving and processing updates from other compo-

nents such as the context and constraints parser and sensor manager if the content schedule

description was updated or if relevant contextual events from online or physical sensors have

been reporter respectively. The manager component initiates new lottery scheduling draws

when necessary and interacts with the remainder of the digital signage player ecosystem to

pass on ‘winning’ content items to be shown on the display.
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5.4.3 Context and Constraints Parser

The Context and Constraints Parser is responsible for pulling and processing content schedules

for the individual display. Such content schedules are typically retrieved from web-based

interfaces, for example, in the form of an XML-based Content Descriptor Set accessed through

the Channel system (initially described in Section 1.3, p. 1.3). Retrieved content schedules

are transformed into a standardised, object-based format that can be processed from the

subsequent components of the scheduling system. The Context and Constraints Parser is

highly modular allowing additional parser modules to be written to interact with APIs of other

back-end systems that use a different format to describe content schedule descriptions.

5.4.4 Context Store

The Context Store acts as a repository for analytics data and contextual events captured through

internal or external sensors. The ability to react to such data to provide dynamic scheduling

decisions is one of the core advantages of the lottery scheduling system. The definition of

a ‘sensor’ in this case is broad and include external Web-based APIs and physical sensors

connected to the sign. Any component part of the Lottery Scheduler ecosystem can feed

information into the context store. For example, the context and constraints parser or sensors

may provide real-time information about current audience counts present in the vicinity of the

display. Other components of the Lottery Scheduler such as individual filters and lottery ticket

allocators can access any information stored in the context store and utilise the information to

inform their filtering and ticket allocation decisions. Both filter and ticket allocation modules

can feed information into the context store themselves such as recent allocation decisions and

winners of the random draw to support more ‘intelligent’ lottery ticket allocation based on

previous decisions (e.g. to support the prioritisation of most recently added content items).

5.4.5 Filtering

The Filtering component identifies the set of eligible content items from the total set of content

items scheduled for the particular display. Within the Filter, data flows through a predefined

set of filters. In order to support a wide range of constraints, we have designed the Filtering

component following a pipeline model in which a series of individual filters are called in turn.

Each individual filter returns a set of eligible content items; and upon passing through all

available filters, the output of the filter pipeline is the intersection across all sets returned from

each Filtering component. Any of the remaining content items are eligible to be shown on the

display at the given point in time and contextual state. The resulting set of content items is

returned back to the Scheduler Manager where it will subsequently be passed to the Lottery

Scheduler component.
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Figure 5.3: Ticket allocation component of the Lottery Scheduler (initially published in [MCD15]).

5.4.6 Lottery Ticket Allocation

The lottery ticket allocation component is the core component of the overall lottery scheduling

ecosystem and responsible for both the allocation of lottery tickets and the random draw at the

end of the process. This is the next component in the pipeline after the filtering and receives

a set of content items, any of which eligible to be shown on the display at the point in time.

To represent different, co-existing scheduling requirements, the Lottery Scheduler provides

the ability to include multiple lottery ticket allocation modules which can run simultaneously

(Figure 5.3).

More specifically, the lottery ticket allocation component maintains a common lottery

pool into which each lottery ticket allocator can add their lottery tickets. Each lottery ticket is

associated to a single content item from the set of eligible content items. Each lottery ticket

allocator operates autonomously but is allocated a fixed set of lottery tickets to distribute and

access to the set of eligible content items by the lottery manager. In addition, each lottery

ticket allocator has access to the context store and configuration component. Whilst each

lottery ticket allocator could take an arbitrary amount of time to complete the ticket allocation

process, the manager has the ability to interrupt individual lottery ticket allocators after a

given time threshold and perform the draw on the allocated set of lottery tickets. To avoid an

unwanted interruption, ticket allocators can indicate their internal state and report if the ticket

allocation process has finished. Once the scheduling manager has decided that the draw will

take place (either due to exceeding the maximum time for ticket allocations or if all ticket

allocators have reported a ‘ready’ state), the manager will perform a random draw from the

available pool of tickets. The content item associated with the winning ticket will be returned

to the manager class and immediately shown on the display.

The user of the lottery scheduling system (typically represented by the display owner) has

the ability to decide which lottery ticket allocation modules are used. In addition, the system

allows the specification of the number of lottery tickets each module can access to allocate
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and add to the pool of lottery tickets. This provides administrators with the ability to influence

the scheduling decision and, for example, prioritise certain scheduling decisions over others

by allowing ticket allocators to only access a limited amount of lottery tickets. Due to the

modular design, new lottery ticket allocators that implement new scheduling strategies can be

integrated easily.

5.4.7 Configuration

The Lottery Scheduler has been designed with modularity and configurability in mind allowing

display owners and other stakeholders to individualise and influence the behaviour of the

overall ecosystem. Preferences regarding the activated set of filter and ticket allocation

modules including the specification of a maximum of available lottery tickets are stored

within the configuration component and made accessible to any other system components.

In addition, default content lengths, frequency of content changes and potential analytics

back-ends for reporting content changes can be configured and stored within this component.

5.4.8 Analytics

The analytics component within the Lottery Scheduler is conceptionally designed to capture the

state of the Lottery Scheduler and capture both content scheduling decisions and contextual

changes and events. This component supports the integration of third-party or external

analytics engines such as Pheme (introduced in Section 3.3, p. 59) and reports events in real

time.

5.5 Implementation

The Lottery Scheduler has been implemented as a component within Yarely, a digital signage

player initially developed by Clinch et al. [Cli+13] and deployed in the context of the e-Campus

display test-bed described in Section 1.3 (Research Context, p. 6). Yarely is a highly modular

system and consists of a five components relevant for digital signage (Figure 5.4): Scheduler,

Subscription Manager, Analytics Manager, Sensor Manager, and the Lifecycle Manager. All

Yarely components communicate through the Internal Eventing System implemented on top

of ZeroMQ1, a distributed messaging system allowing isolated components and processes to

communicate over low-level sockets. Yarely orchestrates both the retrieval of content schedules

for individual displays through the Subscription Manager using the Content Descriptor Set

format as well as the playback of content on the actual display.

The Lottery Scheduler was implemented in Python (1,051 lines of code) as a direct

replacement of the Scheduler component within Yarely. Each of the Lottery Scheduler

components have been implemented as individual Python modules. Within the filter and

Lottery Scheduler components, each filter and lottery ticket allocator are implemented as

separate Python-based classes with common input and output specifications, enabling an easy

1https://zeromq.org

https://zeromq.org
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Figure 5.4: Yarely system architecture developed by [Cli+13] (reproduced from [Cli+13]).

extension with new filters and ticket allocators. Whilst filters were implemented to run in

sequence, the lottery ticket allocation has been parallelised in that each ticket allocator runs

in a separate thread to improve the overall system performance. Lottery ticket associated to

individual content items are stored in a common queue from which the manager performs a

random draw. The description of the winning content item is passed on through the appropriate

ZeroMQ channel to the display component of Yarely in order to make the actual content

immediately visible on the display.

5.6 Evaluation

We note that the technical feasibility of using the Lottery Scheduler, its system performance

and the integration into an existing public display network is evaluated in Section 6.6.

5.7 Summary

In this chapter, we introduced opportunities for utilising insights and reports gained through

signage analytics tools for actuation on the sign. In particular, this included:

1. The motivation for the need of novel scheduling on digital signs in the context of

open pervasive display networks in which a high number of potentially conflicting
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requirements and constraints influence content scheduling decisions on digital signs,

and

2. The design and development of a novel lottery scheduling approach for digital signage

providing means to support context- and event-based scheduling to allow feeding

analytics back into the sign.

In the following chapter, we will describe small- and large-scale trails evaluating previously

introduced concepts and systems, e.g. the Lottery Scheduler system and Tacita.



Chapter 6

Trials

6.1 Overview

In the previous chapters, we introduced systems and concepts that enable us to collect relevant

analytics data, create novel analytics reports for the digital signage domain, and benefit

from such analytics report by designing underlying technology for systems that are capable

of automatically using the collected datasets to improve the effectiveness of signs (e.g. by

providing personalised or targeted content to the passer-by).

In this chapter, we focus on the evaluation of the systems introduced in the previous

chapters including the data collection, reporting and actuation strands. Beginning with

data collection, we provide evidence for the performance and reliability of Pheme that has

been integrated in the context of the e-Campus display test-bed and used to inject analytics

data into existing third-party analytics engines for report creation purposes. As one of our

major contributions of collecting viewer-related mobility data we describe the design of our

long-term in-the-wild-trial of Tacita. We provide detailed insights into the accuracy and

reliability of using Bluetooth Low Energy beacons for the capture of viewer behaviour in the

proximity of digital signs, the system latencies of our backend implementation, and conduct an

analysis of application usage patterns. Subsequently, we conduct an evaluation of Wi-Fi-based

collection of viewer mobility data focussing on providing insights into the accuracy and

reliability of using Wi-Fi fingerprinting for the detection of viewer proximity to displays. We

provide a detailed description of a controlled walk-by experiment, reporting on the accuracy

and performance of the approach for different types of display location and varying system

parameters. In addition, we highlight the benefits and costs of both approaches and discuss

their applicability for each stakeholder group. We conclude this chapter by providing an

evaluation of the Lottery Scheduling approach and provide insights into its performance and

scheduling accuracy in the context of the e-Campus display deployment.
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6.2 Pheme: Display-oriented Data Collection

The Pheme architecture has been introduced and discussed in Section 3.3 (Capturing Tra-

ditional Signage Analytics Data, p. 59) and Section 4.3 (Using Web Analytics Engines for

Display Analytics Reporting, p. 102). In the subsequent sections, we will focus on the evalua-

tion of Pheme and associated injectors by providing a description of the integration of Pheme

into a large display network, and evidence for the successful implementation and usage of an

injector module that inserts incoming datasets in real-time into Google Analytics, a third-party

analytics engine.

Excerpts of this section are based on the following publication:

• Mateusz Mikusz, Sarah Clinch, Rachel Jones, Michael Harding, Christopher Winstanley,

and Nigel Davies. “Repurposing Web Analytics to Support the IoT”. in: Computer

48.9 (Sept. 2015), pp. 42–49. ISSN: 0018-9162. DOI: 10.1109/MC.2015.260. URL:

http://doi.org/10.1109/MC.2015.260

6.2.1 Integration into e-Campus

We integrated Pheme into our existing e-Campus test-bed (introduced in Section 1.3, Research

Context) allowing us to conduct a long-term evaluation of the collection of an incoming stream

of analytics reports and the mapping of requests into third-party analytics services.

Pheme was integrated into the e-Campus display test-bed by utilising the dedicated Pheme

client libraries (initially described in Section 3.3.2.2) into the Yarely signage player as a

direct replacement of Yarely’s Analytics Manager module, providing access to all Yarely

environmental variables and the context store and enabling the monitoring of content changes

and incoming events from sensors and other internal and external sources.

The use of our client library allowed us to integrate Pheme into the existing code base

of the signage network with minimal effort. Listing 3 shows a simplified version of the

Yarely scheduling procedure with the integration of Pheme: the integration of Pheme con-

sisted of the creation of a new method that allowed the specification of tracking identifiers

and configuration parameters (_initialise_analytics(self) – in our case this method

reads the required configuration parameters from a configuration file) and the call of the

track_pageview_async(self, new_item) to report a new content scheduling event to

Pheme. In order to minimise the latencies between the point at which the content appears on the

display and is reported to Pheme, we placed track_pageview_async(self, new_item)

immediately after the function call that initiates the content to be made visible on the display.

Additionally, the track_pageview_async(self, new_item) method is executed asyn-

chronously allowing the remainder of the scheduler process to continue without blocking on

the HTTP request that is performed to the Pheme back-end in order to report the scheduled con-

tent item event. The Pheme client library additionally includes a local timestamp of the event

occurrence to account for any potential transmission latencies. In addition to reporting content

changes, we integrated track_event_async(self, category, event, value, label)

https://doi.org/10.1109/MC.2015.260
http://doi.org/10.1109/MC.2015.260
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1 from phemelibrary import PhemeAnalytics
2

3

4 class SchedulingManager(ApplicationWithConfig):
5 """ The Scheduling Manager is the global class controlling the scheduling
6 of Yarely, including the Lottery Scheduler. It is requesting new content
7 items from the scheduling component and makes these visible on the display.
8 """
9

10 def _initialise_analytics(self):
11 analytics_tracking_id = self.config.get(
12 'Analytics', 'tracking_id', fallback=None
13 )
14 self.analytics = PhemeAnalytics(analytics_tracking_id)
15

16

17 def item_scheduling(self):
18 # Perform Filtering
19 self.filtered_cds = self.filter_pipeline.filter_cds(self.cds)
20

21 # Initiate Lottery Scheduling
22 new_item = self.scheduler_pipeline.get_items_to_schedule(1)
23

24 # Make new content visible on display
25 self.display_manager.display_item(new_item)
26

27 # Report content change to Pheme
28 # Initialise analytics component if not yet activated.
29 if not self.analytics:
30 self._initialise_analytics()
31 self.analytics.track_pageview_async(new_item)

Listing 3: Code snippet of the Pheme display client integration into Yarely (simplified).

into Yarely’s Sensor module to report dynamic content requests issued as part of the Tacita

personalisation system.

To allow more detailed insights into engagement and interaction patterns, we further

integrated Pheme into individual display applications to support the tracking of button clicks

on touch-enabled displays. The integration is similar to common Web Analytics and supports

the on-site tracking of viewer interactions. We note that, however, the e-Campus display

network consists of non-touch enabled displays only and the tracking of interaction on touch-

enabled displays was only deployed for a single, short-term test.

6.2.2 Mapping and Injection Module Integration

In order to provide evidence into the extendability of Pheme as a platform to inject analytics

data into third-party services, we developed an injection component that implements the

introduced mapping of sign analytics to Web analytics terminology (Section 4.3, p. 102)

– used to inject the stream of incoming analytics data to Google Analytics. In addition to

demonstrating the extendability of Pheme and usability of the overall framework, the injector
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Figure 6.1: Pheme statistics from the start of the trial using the Google Analytics Injector.

enables us to collect and process large quantities of analytics data from the e-Campus display

test-bed.

In particular, the injection module has been designed to map and inject incoming signage-

specific analytics data to Google Analytics in real time, i.e. to perform the mapping to a

compatible data model and inject the data stream immediately via HTTP requests. The

modularity of the Pheme system and the existence of appropriate base classes enabled the

development of the injection module with minimal effort. Listing 4 shows a code snippet of

the Google Analytics injector consisting of 23 lines of Python code.

The injector extends HTTPPostInjector, a base class implementing HTTP Post requests

to any external service. The pre_inject(self) implemented in the child class is automati-

cally called by Pheme for each incoming dataset which is made available in self.data. The

pre_inject(self) method is required to return the mapped dataset in the form of a Python

dictionary which are automatically injected into the third-party system using a standard HTTP

request. In this case, the HTTPPostInjector implemented a simple HTTP Post request to

the external service with the mapped dictionary in the payload. The URIs of the target API of

the external service ar specified within the pre_push(self) method.

6.2.3 Reported and Captured Analytics Data

The Pheme trial was initiated in August 2014 and has been in daily operation for over four

years. In this time period, Pheme has collected and processed a total of 159,264,530 analytics-

related events yielding a database of 73.67 GB (excluding indices). Pheme typically receives

approximately 3.8 requests per second which typically are reported analytics events using the

dedicated analytics reporting API.

Over the course of the data collection period, the number of reporting displays has

increased from 21 (August 2014) to 65 (August 2018). Figure 6.1a provides an overview of

the number of referrers over the past 365 days retrieved from Google Analytics (i.e. reported

through Pheme’s Google Analytics injector). Figure 6.1b visualises the number of daily

pageviews since the start of the trial – consisting of a mean daily pageview requests of

16411.04 (Mdn: 16467.00, SD: 5291.78). The high standard deviation is likely caused by
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1 from .base_injectors import HTTPPostInjector
2 from .constants import google_analytics
3

4

5 class InjectorGoogleAnalytics(HTTPPostInjector):
6

7 def pre_push(self):
8 self.api_path = google_analytics.API_COLLECT_PATH
9 self.api_url = google_analytics.API_URL

10

11 def pre_inject(self):
12 """
13 Converting self.data to a data structure compatible with Google
14 Analytics based on UMP. This method returns a dictionary that
15 can be directly pushed to Google Analytics as JSON.
16 """
17

18 # Output dictionary
19 ga_data = dict()
20

21 # Mapping of general analytics metadata
22 ga_data['cid'] = self.data.cid
23 ga_data['tid'] = self.get_linked_tid()
24 time_difference = timezone.now() - self.data.created
25 ga_data['v'] = google_analytics.PROTOCOL_VERSION
26 ga_data['t'] = hit_type
27 ga_data['ua'] = self.data.request_user_agent
28

29 if hit_type == HIT_TYPE_PAGEVIEW:
30 # Pageview specific
31 ga_data['dl'] = self.data.dl
32 ga_data['dh'] = 'http://signanalyticsproject.appspot.com'
33 ga_data['dp'] = self.data.dp
34 ga_data['dt'] = self.data.dt or "None"
35 ga_data['cd'] = self.data.cd or "None"
36

37 # Mapping for other hit types can be inserted here.
38

39 return ga_data
40

41 def __str__(self):
42 return "Google Analytics injector to report display content changes."

Listing 4: Pheme example injector implementation to support Google Analytics.
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Table 6.1: Number of reported content requests to Pheme over the 365 days by content type.

Content Type Request Count Mean Duration [s] SD [s]

All 2376 21.60 25.97

Image 2098 16.77 4.11
Stream 9 80.33 112.97
PDF 54 16.07 1.66
Video 155 87.30 67.87
Website 53 16.47 6.98
Other 7 19.44 3.34

the increase of displays over time. Similarly, the constantly increasing number of reported

pageviews is a result of the growing display test-bed. The figures show the high stability

of Pheme and the Google Analytics injector with only two noticeable drops of incoming

requests throughout the entire trial (at the end of 2016 and in July 2017). Both instances were

a result of multi-day power cuts caused by flooding (December 2016) and damages caused by

construction work (July 2017) causing the e-Campus test-bed to shut down.

To further analyse the response and accuracy of reported content requests and injections

into Google Analytics, we consider the number of content items, content times and resulting

average play times for content items reported from displays via Pheme to Google Analytics.

Due to the data retention policy of Google Analytics, detailed insights (e.g. logs including

referrer, reported content views and average time spent for each content item) can only be

retrieved for a period of one year. Therefore, to analyse the accuracy and plausibility of

reported content through Pheme to Google Analytics we consider logs provided in the past

365 days (Table 6.1). In total, displays reported to Pheme 2376 unique content items which

were visible on displays on a mean of 21.60 seconds (SD: 25.97). We categorised the content

into six distinct content types: image, stream, video, website and other. Typically, e-Campus

displays have been configured to show static content for a duration between 15-20 seconds

whilst videos and streams are shown for the duration of the video – leading to a higher

mean play time as well as higher standard deviation due to different video lengths across the

content items. In contrast, content items of type image have a low standard deviation of the

content playout time suggesting consistent durations – reflecting the case and configuration of

e-Campus displays.

6.2.4 Example Reports from Pheme

We note that a set of example reports that can be computed based on the Pheme dataset

and utilising the Google Analytics injector have been introduced in Section 4.3 (Using Web

Analytics Engines for Display Analytics Reporting, p. 102).
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6.3 Tacita: Client-based Tracking

In this section, we evaluate the user experience, accuracy of the system data for public display

analytics and provide system benchmarks for Tacita. The system was initially introduced

in Section 3.4.1 (Viewer-based Tracking, p. 66) as a mechanism to collect viewer-centric

analytics data about passers-by whilst at the same time allowing viewers to personalise the

content on nearby displays. Due to the large amount on user interaction and mobility traces

data collected, the underlying dataset can be utilised to create analytics reports on viewer

interactions with displays as initially described in Section 4.2.5 (Display Personalisation

Retention Analytics, p. 98).

Excerpts of this section are based on the following publication:

• Mateusz Mikusz, Peter Shaw, Nigel Davies, Sarah Clinch, Ludwig Trotter, Ivan Elhart,

Marc Langheinrich, and Adrian Friday. “Experiences of Mobile Personalisation of

Pervasive Displays”. In: ACM Transactions on Computer-Human Interaction – TOCHI

(in preparation) (2018)

6.3.1 Methodology and Datasets

6.3.1.1 Integration in the Context of e-Campus

In order to allow us to conduct a long-term and in-the-wild trial of Tacita, we integrated the

system into the e-Campus display test-bed and deployed it as a service to students, staff and

visitors across the University campus. In order to fully support Tacita, substantial additions

were required to the previously introduced systems and components including the Lottery

Scheduler, particularly regarding the interactions of displays with the Display Gateway and

associated interfaces (Figure 6.2, highlighted in blue). Figure 6.3 provides an overview of

the communication and data flow between the Display Gateway and subsequent components

within the Lottery Scheduler.

In the subsequent section, we provide a brief overview of the additions and implementa-

tions of individual system components.

Display Gateway Interfaces

The Display Gateway was initially introduced in Section 3.4.1.1 and serves as the application

programming interface for third-party applications requesting screen time, e.g. based on

viewer presence at a particular location in the vicinity of the display. The Display Gateway

communicates with individual display nodes through a two-way communication channel

enabling displays to receive and process content scheduling requests in real time. We modelled

the interface for communicating with the Display Gateway as a virtual sensor within Yarely’s

Sensor Management component (Figure 5.4). Similar to other components in Yarely, the

sensor has access to the internal communication channels and the Context Store of the Lottery

Scheduler (Figure 6.3). The Display Gateway includes the description of the request time



6.3 Tacita: Client-based Tracking 131
Tacita Mobile 
Application

Map 
Provider

Trusted Content 
Provider

Display
Gateway

Displays
Status 

Response
Content 
Request

Receives 
Map Updates

Subscribes 
to Map Updates

Content 
Request

Status 
Response

Sche-
dule Requests

3

1

2

7

6

5

4

Tacita Mobile 
Application

Map 
Provider

Trusted Content 
Provider

Display
Gateway

Displays
Status 

Response
Content 
Request

Receives 
Map Updates

Subscribes 
to Map Updates

Content 
Request

Status 
Response

Sche-
dule Requests

3

1

2

7

6

5

4

Figure 6.2: Tacita system architecture focussing on the Display Gateway and interfaces on the display
node.
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and the Content Descriptor Set of the requesting third-party application in the payload of

the request. The sensor validates incoming messages (e.g. ensuring the trusted source and

expected format) and forwards the request, similar to subscription updates, to the Context

and Constraints Parser for further processing using the internal eventing system of Yarely.

The Context and Constraints Parser processes the CDS by parsing and transforming it into an

internal object-based format and stores it within the Context Store for further consideration.

Due to the use of the CDS format, we support the full stack of features as part of the CDS such

as nested content items (i.e. content that is composed of multiple items), content scheduling

requirements and constraints (e.g. content date and time availabilities).

Filtering and Ticket Allocation

After parsing and storing requests in the Context Store, the Context and Constraints Parser

module initiates a new Lottery Scheduling process to allow the filtering and lottery allocation

components to immediately consider and react to changes in the context of the display. The

lottery scheduler has the opportunity to re-evaluate the previous content decision and determine

whether the currently shown item is still appropriate. In order to support Tacita, we have

considered the following two approaches (Figure 6.3): supporting Tacita via (a) the Tacita

Ticket Allocator, and (b) the Tacita Filter Module. In the case of approach (a), the probability

for the requested item is dependent on the number of lottery tickets that have been made

available for the Tacita Ticket Allocator in relation to other potential ticket allocators, and

the number of tickets the ticket allocator has associated with the requested content item. In

the case of approach (b), the Tacita Filter has already removed any content that has not been

requested by a client – leaving the remaining set of eligible content items with requested

content only. Therefore, the lottery process will yield the requested content item in any case

(e.g. if multiple content items have been requested, one content will be determined at random).

This approach is particularly useful to support walk-by personalisation in which case we

ensure that passers-by will always see the requested content under the assumption that a

content scheduling request has been successfully issued. To maximise the user experience and

ensure that personalised content is provided to the user as often as possible, we have chosen

to implement approach (b) for the entire duration of the trial.

6.3.1.2 Trial Context and Collected Datasets

To support the evaluation of Tacita including all components, we collected a large set of

quantitative measures as part of an in-the-wild study at Lancaster University. The study

duration consisted of 206 consecutive days (from May 2017) and 44 displays equipped with

BLE beacon sensors. During the study, a total of 226,620 events were captured including

24,565 content personalisation requests from a cohort of 147 users. We only consider users

who installed Tacita on their mobile device and issued at least one content personalisation

request within the study, enabling us to remove users without any intentions of using the
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Figure 6.4: Tacita users at Lancaster University over the study period (initially published
in [Mik+18d]).

system. Figure 6.4 provides an overview of the growth of the user base during the study period

including fast growths during periods of active recruitment.

To enable accurate and comprehensive data collection for the subsequent analysis of Tacita,

we instrumented all components of the Tacita ecosystem (i.e. Trusted Content Providers, the

Display Gateways and the Tacita Mobile Client applications) to capture system and user

interaction events and the following timestamps:

1. BLE beacon sightings (i.e. display proximity) on the mobile phone,

2. requests received from the Tacita Mobile Clients to Trusted Content Providers,

3. requests received from Trusted Content Providers to Display Gateways,

4. display opening and showing the content from the requested Trusted Content Provider,

and

5. viewers accessing the configuration page of Trusted Content Providers through the

Tacita Mobile Client.

The above mentioned timestamps have been captured as follows. Event (1) has been

logged on the user’s device with a timestamp at the point at which the iOS background process

detected the beacon in proximity to the user’s device and called the location tracking method

of the Tacita Mobile Client application. In addition to the timestamps, the Tacita Mobile

Client creates a unique request identifier (UUID version 4) to each beacon sighting, enabling

us to trace and capture the latencies of the request through the chain of subsequent API

requests throughout the Tacita ecosystem from the Trusted Content Provider to the Display

Gateway and display nodes. Events (2), (3) and (4) were logged on our backend systems

with the associated timestamp, and server clocks have been synchronised for those events that

were executed on separate servers. We compute the latencies between system components

by matching associated requests using the unique request identifier. The mapping of beacon
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Figure 6.5: Overview of the content delivery process in pervasive display systems together with critical
events affecting the proximity detection performance. Beacon entry (1) and exit detection deltas (3)
depend on the underlying proximity detection technology, whereas system latency (2) depends on
network and system performance (initially published in [Mik+18d]).

sighting to each display, and the subsequent analysis of beacon sightings and associated

content requests have been conducted on server-side based on the requests that have been

recorded on Trusted Content Providers.

In addition to system logs and timestamps, we captured user interactions with Trusted

Content Providers through the Tacita Mobile Client by logging access to the configuration

pages on our backend. In particular, this included capturing occurrences of users accessing the

configuration page of a Trusted Content Provider and changing their preferences – including

the configuration values, timestamps and anonymous user identifiers.

6.3.2 Viewer Detection Accuracy and Performance

We first conducted an analysis of the dataset to better understand (1) the accuracy of beacon

sightings for display analytics purposes, e.g. for determining viewer dwell times in the prox-

imity of displays, and (2) the latency and performance of the overall system implementation

to support walk-by personalisation as one of the most challenging personalisation techniques.

6.3.2.1 Beacon Detection Accuracy and Performance

The timely detection of proximate BLE beacons is fundamental to accurately detect the

viewer’s proximity to displays. In particular, Tacita relies on BLE beacon detection to deliver

personalised content to a viewer as they pass by a display, i.e. support walk-by personalisation.

The detection of BLE beacons through the viewer’s mobile devices therefore has a high impact

on both the delivery of personalised content and the detection of viewer behaviour in the

proximity of displays. To better understand the potential latencies and performance impact,

we decompose the chain of beacon detection and API calls into individual steps and measure

each step of the Tacita chain in detail. We illustrate the complexity of system components

involved in viewer detection and potential errors affecting the detection accuracy and overall

system performance in Figure 6.5:

(1) Beacon Entry Detection Delta specifies the time delta between the viewer entering

the proximity of a display (and the adjacent BLE beacon) and the time the background

location tracking detects the proximate beacon to send the request to the infrastructure.
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This delta can be positive if the proximity was detected after the viewer has entered

the viewable area of the display and negative if the proximity was detected before the

viewer entered the viewable area of the display.

(2) System Latency specifies the subsequent latencies that occur due to the API calls to

Tacita system components. In particular, this includes the API call from the viewer’s

mobile device to the Trusted Content Provider, and subsequent calls to the Display

Gateway and the display node in proximity to the viewer.

(3) Beacon Exit Detection Delta specifies the detection of a viewer leaving the range of

a beacon. Similarly to the entry detection delta, the delta for leaving a beacon range can

be negative if the detection takes place before the viewer leaves the area and positive if

the detection takes place after the viewer leaves the area.

The accurate determination of viewer behaviour in proximity to the display is highly

influenced by the above mentioned latencies. In particular, latencies (1) and (2) impact the

accurate detection of the viewer entering the viewable area of the screen – affecting both

the timely delivery of personalised content to the display as the viewer walks up to or by

the display, and the accuracy of display analytics using BLE beacons to determine when the

viewer has entered the viewable area and which piece of content they may have seen. In

addition, the accurate detection of viewers leaving the proximity of the display is important

for the accurate computation of display analytics related metrics including viewer dwell times,

and to enable the system to remove personalised content and free up display real estate when

the viewer is no longer able to see the display. We note that latencies (1) and (2) are affected

by a combination of the beacon transmission power, frequency in which the beacon payload is

transmitted and the background and location processing of the viewer’s device. We are not

able to influence the operating system background tasks and libraries, however, the beacons

transmissions were configured to at least cover the viewable area of the displays.

In the subsequent sections we highlight both the entry, exit and system latencies in more

detail.

6.3.2.2 Prototype System for Beacon Detection

In order to better understand the influence of latencies induced by the iOS operating system

libraries and background location tracking tasks for the detection of nearby BLE beacons

(iBeacons), we designed and conducted a controlled experiment. We utilised a controllable

BLE iBeacon that provided us with the ability to accurately control the Bluetooth transmission

start and end times. As a mobile device, we utilised an iPhone 6 as one of the most common

mobile devices and a prototype mobile application implementing the following two distinct

beacon detection mechanisms:

Monitoring: Core Location Framework Apple provides with the Core Location Frame-

work the ability to monitor for the proximity of BLE beacons in the background, i.e.
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with the mobile device in standby. In accordance to the Apple Developer Guidelines, a

maximum of 20 beacons (a tuple of beacon major, minor and unique identifiers) can be

registered for background location tracking – limiting the total number of supported

beacons presumably to protect the resources of the user’s mobile device. The developer

is only required to implement handlers for beacon entry and exit events which are

called by the operating system. Fine-grained controls over the tracking frequency are

not possible. We note that for beacon detection, Apple describes the Core Location

Framework as the recommended implementation way – however, it requires the user to

permit ‘background location tracking’ for the mobile application utilising this frame-

work. The Core Location Framework also represents the technique used in the Tacita

Mobile Client. We note that in the subsequent sections we refer to this technique as

monitoring.

Ranging: Core Bluetooth Framework The Core Bluetooth Framework allows develop-

ers to range for proximate Bluetooth devices – including BLE beacons. This method

requires the device and the application using this technique to be active and in the

foreground. In contrast to monitoring, using the Core Bluetooth Framework allows

the specification of ranging frequencies and therefore provides us with the ability to

develop custom entry and detection algorithms. We note that the subsequent sections

we refer to this technique as ranging.

We captured timestamps on the machine running the controllable beacon of the trans-

mission start and end, and on the mobile device client of the subsequent beacon entry end

exit detection events that were transmitted to a virtual Trusted Content Provider for logging

purposes. Both the mobile device and Trusted Content Provider were located on the same local

area network minimising network-related transmission delays. We performed 10 repetitions

for beacon entry and exit detection each. For the monitoring mode, we compare two states of

the mobile device: active (i.e. with the screen turned on and the phone unlocked) and inactive

(i.e. with the screen turned off and the mobile device on standby). For the ranging mode, we

only use the mobile device in active mode as active ranging in background is not permitted as

per iOS developer guidelines.

Upon determining the latencies of beacon detection times on the mobile device, we

designed a follow-up experiment in a realistic setting investigating the influence of physical

layouts on the transmission and detection accuracy. We designed the experiment based on

the typical walk-by scenarios in which the content needs to change in time for the viewer

before passing by the display and therefore allowing to capture accurate analytics in a timely

manner. We performed this experiment by identifying a representative display deployment

within the e-Campus displays network. The display was equipped with a single BLE beacon,

and typical hardware (Mac Mini late 2014, Intel Core i5 processor with 2.6 Ghz, 8GB memory

and macOS 10.10.3), and the experimenter equipped with the similar prototype application

and mobile device described previously. The display was located in the foyer area of an office
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Figure 6.6: Floor plan of the controlled walk-by experiments to capture beacon entry and exit detection
latencies (initially published in [Mik+18d]).
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Table 6.2: Median, mean and standard deviation for enter region (beacon detected) and exit region
(beacon lost) events (seconds). We note that the ranging functionality in iOS is only available with the
phone in active state (initially published in [Mik+18d]).

Enter Region Exit Region
Condition Phone State Median Mean SD Median Mean SD

Monitoring standby 2.0 3.11 2.48 29.25 28.73 2.01
Monitoring active 0.57 0.88 0.84 30.05 29.78 0.86
Ranging active 0.73 0.71 0.30 10.37 10.33 0.27

building (Figure 6.6). As shown in Figure 6.6, we identified three typical ways in which

viewers approach and pass by the display:

(A) The viewer approaches the display from upstairs through an open staircase introducing

the difficulty of detecting the viewer as passing through floors,

(B) The viewer walks towards the display on the same floor – representing the most common

form of walk-by personalisation in our display deployment, and

(C) The viewer walks towards the display on the same floor from a starting point that is

separated from the display through a concrete wall.

We conducted walk-by experiments using our prototype application (i.e. capturing in-

sights for both ranging- and monitoring-based detection techniques), capturing the following

timestamps:

1. the viewer entering the viewable area of the display, i.e. the first opportunity the display

can be seen (visualised in yellow in Figure 6.6),

2. the mobile device detecting the proximate beacon (entry event), i.e. the earliest time at

which the system is able to react to the viewer,

3. the viewer leaving the viewable area of the display, and

4. the mobile device detecting that the viewer has left the proximity to a beacon (exit

event).

For each of the three routes, we conducted 10 repetitions with the mobile device in

active mode enabling both ranging and monitoring and ensuring that a WiFi connection was

established at all times.

6.3.2.3 Beacon Entry and Exit Detections – Controlled Lab-based Experiment

We first consider the results of the stationary experiment in which we illustrate entry and exit

detection latencies induced by the operating system and potential background processes. The

resulting latencies in detecting entry and exit are shown in Table 6.2.
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Table 6.3: Median, Mean, and standard deviation for beacon entry detection from entering and leaving
the viewable area of the display respectively (initially published in [Mik+18d]).

Enter Region Exit Region
Route Condition M [s] Mdn [s] SD [s] M [s] Mdn [s] SD [s]

(A) Ranging 3.19 2.73 3.66 10.22 10.50 1.85
(A) Monitoring 3.66 −1.01 15.72 26.32 31.65 10.68

(B) Ranging 5.58 5.48 3.7 10.18 10.30 1.59
(B) Monitoring 5.10 4.89 3.24 31.37 43.89 39.38

(C) Ranging 1.65 0.90 1.95 12.07 11.56 2.96
(C) Monitoring −1.23 −0.2 7.21 33.14 36.35 11.42

The entry detection (i.e. simulating the case in which the viewer enters the proximity to

a display) performs well across both background location tracking and Bluetooth ranging

with the device in active mode. However, the standard deviation for the background location

tracking technique is slightly higher suggesting the potential impact of other background

processing tasks running on the operating system yielding Bluetooth ranging as the most

reliable and stable beacon detection technique. In contrast, the device in standby mode

yields a noticeably higher standard deviation for detecting beacon entry with a median of

approximately 2 seconds. Considering the average walking time of ≈ 1.4 m/s, we note

that using Bluetooth ranging and location tracking as detection modes lets the viewer move

approximately 1-5 meters before their proximity to the display is detected depending on the

mode of their mobile device. Providing the typical range for BLE beacons (and Bluetooth

transmission in general) is approximately 10 meters, the latency would still allow the system

to react to the viewers presence in the viewable area fast enough to change the content in time

– providing that the beacons have been configured with an appropriate signal strength.

The exit detection (i.e. the viewer leaving the viewable area of the display) performed

significantly worse for both monitoring and ranging as a technique compared to the entry

detection with a median delay of 29.25 seconds (SD: 2.01) and 30.05 seconds (SD: 0.86)

with the device in standby and active modes respectively. We believe that this is a result of

iOS treating background location tracking for leaving areas with either a lower performance,

or applying larger thresholds before an exit event has been sent to the client application.

Using ranging as a technique, we were able to achieve a significantly better and more stable

performance with a median of 10.37 seconds (SD: 0.27). Due to the relatively stable exit

detection (low standard deviations), we believe that the event is nevertheless suitable for

display analytics purposes. However, if the display infrastructure relies on prompt and

accuracy exit events to free up display real estate and remove personalised content, both

monitoring and ranging may be unsuitable.

6.3.2.4 Beacon Entry and Exit Detections – Controlled Walk-by Experiments

After measuring potential delays caused by the operating system and system libraries, we

now highlight the results from our controlled walk-by experiments that enable us to measure
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potential delays caused by the spatial layout and other intrusions. The resulting entry and exit

latencies for the three routes are shown in Table 6.3.

Taking beacon detection into more realistic settings we observe highly variable results

depending on the walking path and detection technique used. Similarly to the results observed

in the controlled lab-based experiments, ranging yielded more consistent latencies with a

significantly lower standard deviation for both entry and exit detection across all routes whilst

monitoring performed faster considering entry detection only with means of −1.01, 4.89 and

−0.2 seconds for routes A, B and C respectively. Both routes A and B originate in closer

proximity to the display which is likely the reason for the better performance compared to

route B which originates further away and simulates the case of a viewer walking towards

the display. The higher standard deviation for monitoring is likely the cause of unknown

background processes of the operating system and radio modules which may have an impact

on the detection times. Additionally, we observe negative means in the monitoring technique,

i.e. the detection of BLE beacons prior to the user entering the viewable area of the display.

In contrast to the entry detection latencies, we observe a significant improvement of using

ranging instead of monitoring for exit detections. In addition to a lower delta for detecting

viewers exiting the viewable area of a display, we are also able to observe a lower standard

deviation yielding a better consistency in the detection times. The mean detection time using

monitoring as a technique was captured at 31.65 (SD: 10.63), 43.89 (SD: 39.38) and 36.35

seconds (SD: 11.42) for routes A, B and C respectively. In contrast, we were able to capture

mean delays using ranging at 10.50 (SD: 1.85), 10.30 (SD: 1.59) and 11.56 seconds (SD:

2.96). Fast and reliable exit detection is important for both freeing up display real estate once

the viewer has left the viewable area and to capture display analytics with a high confidence.

We believe that whilst the current state-of-the-art technology for detecting viewer proximity to

BLE beacons (i.e. the monitoring technique) is not yet suitable for accurate display analytics

purposes, investigating ranging as an alternative highlights the opportunities for potential

future improvements to the technology.

We note that entry and exit detection latencies are highly dependent on (1) the spatial

layout of the area in which the display and BLE beacon have been placed, (2) potential

background task and radio processing on the viewer’s mobile device, and (3) the technology

used to detect viewer proximity. For example, the mean detection for route B using monitoring

as a detection technique (4.89 seconds) allows the viewer to walk ≈ 6.5 meters before

successfully being detected in the proximity of the display. BLE beacons therefore need

to be configured accordingly with appropriate transmission power and frequency to ensure

a fast enough detection for delivering personalised content to viewers walking by. Using

such display sightings to calculate viewer-centric display analytics highlights the currently

low accuracy and reliability of the dataset, particularly for detecting viewers who leave the

viewable area of displays – a crucial insight for calculating dwell times and other analytics

metrics.
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Table 6.4: Median, mean and standard deviation (seconds) of the latencies between Tacita system
components (initially published in [Mik+18d]).

System Components Median [s] Mean [s] SD [s]

Mobile to Content Provider 0.09 2.15 16.52
Content Provider to Display Gateway 0.02 0.19 5.82

Display Gateway to Content Show 1.33 3.16 7.19

Mobile to Content Show 1.66 4.8 11.75

Figure 6.7: System response latencies [seconds] for the chain of Tacita system components (Mobile:
Tacita Mobile Client; TCP: Trusted Content Provider; DG: Display Gateway; Content Show: requested
content shown on the nearby display) (initially published in [Mik+18d]).

6.3.3 System Component Latencies

In addition to the latencies resulting from detecting proximate BLE beacons, we further

investigated system-related latencies that may occur when proximity sightings and content

requests are passed through the Tacita system components. As shown in Figure 6.5, such

system- and network-related latencies are particularly crucial to ensuring that personalised

content is delivered fast enough to an individual passing by a display. The assignment of a

random globally unique identifier to each request issued by the viewer’s mobile device (i.e. at

the point at which a proximate BLE beacon was detected), we are able to trace and time each

request throughout the chain of APIs and system components.

An overview and aggregation of the request timings captured through our in-the-wild

study are shown in Table 6.4 and Figure 6.7. In particular, we consider the following latencies:

Mobile Client to Trusted Content Provider describes the latency from the point at

which the mobile phone detects a proximate BLE beacon to the point at which the

request has arrived at the Trusted Content Provider. The Tacita Mobile Client transmits a

timestamp of the time at which the beacon was detected, allowing us to capture potential

latencies that include transmission delays relating to the mobile network.
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Trusted Content Provider to Display Gateway describes the latency from the point at

which the Trusted Content Provider issues content requests that arrive at the Display

Gateway.

Display Gateway to Content Shown describes the latency from the point at which the

Display Gateway issues a request to the display node, and the display node shows the

content on the display (captured through logs on the Trusted Content Provider). In

particular, this latency includes potential processing and display scheduling latencies

that may occur on the display itself. If a display has not shown the requested content,

we consider this as a failed request in the subsequent analysis.

Overall Latency – Mobile Client to Content Shown describes the overall latency from

the point at which the Tacita Mobile Client detects a proximate beacon and requests the

content to be shown to the time at which the display shows the requested content.

Considering the overall latency, we were able to capture a median of 1.66 and mean of 4.8

seconds (SD: 11.75). These measures highlight that just considering system and networking

performance, Tacita is fast enough to respond to content scheduling requests and support

walk-by personalisation. In addition to the network performance, the previously discussed

latencies for detecting beacons on the mobile device need to be further considered with regards

to configuring the beacon range accordingly.

Considering the latencies between individual system components, we firstly observe a

median latency of 0.09 seconds (mean: 2.15, SD: 16.52) between detecting a proximate BLE

beacon and the request arriving at the Trusted Content Provider. Whilst for the majority

of cases this latency is low, the high variance suggests the potential impact of poor mobile

data connectivity and network connection. In particular, such issues may arise when viewers

transition between in- and outdoor locations or the mobile device switches from a cellular

data connection to Wi-Fi. We measured the delays between Trusted Content Providers and

Display Gateways at a median of 0.02 seconds (mean: 0.19, SD: 5.82) as the lowest latencies

in the chain of system components. This is likely due to the negligible network latency (both

systems were located on the same virtual network) and short processing and parsing times.

The second highest latency was identified between the Display Gateway sending the request to

a display node and the display node showing the requested content (median: 1.33, mean: 3.16,

SD: 7.19 seconds). Despite the Display Gateway keeping an open communication channel

with each display node, the high latency is a result of completing the scheduling process on

the display node itself. In particular, for each incoming personalisation requests, display nodes

have to issue a new lottery scheduling request to enable a dynamic change of content creating

a noticeable processing overhead. We note that there is a potential to improve this latency by

simplifying the scheduling process on the display node and, for example, always prioritising

personalisation requests.

In order to measure the reliability of the overall Tacita system, we consider the total

number of daily content requests and those requests that have been issued by a Tacita Mobile
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Figure 6.8: The total number of daily requests issued to Trusted Content Providers across all client
applications (top left); originating from the iOS-based Tacita Mobile Client (top right); originating
from iLancaster (bottom left); and the number of daily failed requests (bottom right) (initially published
in [Mik+18d]).

Client but have not yielded the personalised content to be shown on nearby display nodes.

Figure 6.8 provides an overview of the total number of request counts, requests issued by the

individual mobile client applications (iLancaser and the Tacita Mobile Client), and the number

of failed requests (i.e. requested content has not appeared on the display). We observed that

Tacita was able to handle large amounts of daily requests (peaked at over 750 on certain days)

of which the majority originated from the Tacita. The number of failed requests over the

entire study was measured at approximately 20% of the entire amount of issued requests.

However, we note that requests can fail for various reasons. For example, if a viewer has

requested multiple Trusted Content Providers to show on a proximate display, at most only

one of these will be scheduled to be shown on the display – leaving the remainder of requests

to fail. Additionally, proximate display nodes may consider different scheduling requirements

and contextual events that overrule the incoming personalisation request from the Display

Gateway.

6.3.3.1 Accuracy for Analytics Data Capture

Based on the statistics reported previously, we gained a high level of insights into the perfor-

mance and accuracy of using viewer-based tracking technology in the form of BLE beacons

to detect viewers in the proximity of displays and measure their dwell times. In particular, we

observed that viewers are detected entering the viewable area of displays with only a small

delay (using monitoring as a technique between −1.23-5.10 seconds; Table 6.3). Whilst this

is often fast enough to support walk-by personalisation, it also provides an accurate measure

for display analytics purposes to, for example, capture the content that viewers may have

seen when walking by displays, or to simply count the number of (unique) viewers across a

network of displays.
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Table 6.5: Details of application adoption showing the percentage of total users who issued at least
one content request to the Trusted Content Provider and the availability of the Trusted Content Provider
during the study period (initially published in [Mik+18d]).

Category Trusted Content Provider Availability (%) Users (%)

Transport and Navigation Bus Departures 100 65
News and Information Weather 100 40
News and Information World Clock 100 34
News and Information News 100 23
Entertainment Live TV 100 21
Social Networks Twitter News Feed 100 8
Entertainment Pictures 86 7

In contrast, using viewer-based tracking via BLE beacons to compute dwell times, i.e.

a metric that is highly reliant on an accurate detection of viewers leaving the viewable area

of a display, has proven to be challenging. Using monitoring as a technique (representing

the current state-of-the-art for tracking viewers whilst their phone is in standby mode), the

captured delays in our controlled experiment ranged from 26.32-33.14 seconds (Table 6.3)

depending on the route. In particular, the standard deviations measured ranging across 10.68-

39.38 seconds (Table 6.3) show the high variability in the results making it almost impossible

to provide an accurate measure.

6.3.4 Usage Pattern Analysis

In addition to the purely systems- and performance-focussed evaluation of Tacita, we addi-

tionally investigate the usage patterns across the entire deployment.

6.3.4.1 Trusted Content Provider Usage

During the lifetime of the trial, we had a total of seven Trusted Content Providers across

four categories available to any user (Table 6.5). In order to understand better the types of

applications users favoured, we focus entirely on daily content requests as a metric – allowing

us to filter out users who only explored the Tacita Mobile Client and configuration pages

without using and requesting Trusted Content Providers to be shown on displays. We note that

whilst the majority of Trusted Content Providers were available throughout the entire trial, the

Pictures application was only available for 86% of the lifetime of the trial. Considering the

number of unique users per Trusted Content Provider, we are able to identify Bus Departures,

Weather and World Clock as the most commonly used Trusted content Providers whilst Live

TV, Twitter News Feed and Pictures were the least requested content. In particular, the Twitter

News Feed is the only example of a social network related application indicating that these

category of content are the least interesting to the audience. Considering the total number of

daily requests per application (shown in Figure 6.9), we can observe similar patterns in which

the most frequently requested content include Bus Departures, Weather and World Clock. We
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(a) Total number of requests per day. (b) Total number of unique users per day.

Figure 6.9: Number of daily requests for each available Trusted Content Provider (initially published
in [Mik+18d]).

note that due to the preselection of Welcome for any new Tacita user, we exclude this Trusted

Content Provider from further analysis and discussion.

Considering the number of daily requests (Figure 6.9a) and daily unique users per Trusted

Content Provider (Figure 6.9b) we can observe similar usage patterns regarding the most

and least commonly requested content. In addition, the figures reflect the periods in which

the Tacita service was actively advertised and users opportunistically recruited across the

University campus (62 days since the start of the study), and holiday periods in which the vast

majority of the campus population was not present (84-114 days since start of the study).

Considering the available Tacita Mobile Clients (i.e. the native iOS-based client application

and the integration into iLancaster), we observe that the majority of users utilised the native

iOS clients – as shown in Figure 6.8. Further, the majority of beacon sightings were issued

automatically with the Tacita Mobile Client in the background while only a small number of

requests (324 in total, 1.4%) were a result of a manually triggered content request. In total, 65

users requested content manually whilst being present in the proximity to a Tacita-enabled

display of which the majority of the requests were captured on the first day of usage. Only a

subset of 10 users continued to manually request content on subsequent days highlighting the

importance for supporting walk-by personalisation that requires only minimal interactions by

the user to foster long-term and persistent usage.

A clear challenge in the deployment of display personalisation systems is the determi-

nation of conflicting requests on individual displays, i.e. how to handle multiple viewers

requesting different content on the same display and therefore competing over screen real

estate. In the context of the Tacita trial, however, we observed only a very small number of

conflicting requests, i.e. requests from at least two individual users that arrived to any Trusted

Content Provider for the identical display within a 30 second time window (the average time

personalised content remains visible on a display). We observed a mean of 0.4 competing

requests per day (Mdn: 0.0, SD: 0.07) illustrating the currently low significance of this issue.
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Figure 6.10: Numbers of requests of Trusted Con-
tent Providers per display location (green: low
number of requests; red: high number of re-
quests) across all applications (initially published
in [Mik+18d]).

Figure 6.11: Dwell times of viewers in front of
displays (green: low dwell times; red: high dwell
times). The dwell times have been normalised
based on the displays with the highest and low-
est dwell times respectively (initially published
in [Mik+18d]).

6.3.4.2 Spatial Request Patterns

Due to the ability of associating viewer beacon sightings and content requests to spatial

locations, we are able to analyse in which locations viewers have typically requested content.

This provides us with insights into the availability of the system across the entire display

network, and the general viewer behaviour.

We are able to observe beacon sightings and requests to Trusted Content Providers from

all of the enabled displays across the University campus. Figure 6.10 provides a heatmap of

the proportions of requests across each individual display (green indicates proportionally low

numbers of requests whilst red indicates proportionally high numbers of requests). We are

able to confirm expected patterns of content requests: locations on the university campus that

are characterised by a high volume of students and staff also yield a high volume of content

requests including the library, learning areas and displays located along the main path. In

contrast, we observe low numbers of requests in locations along the outskirts of the campus,

departmental buildings and the university conference centre. In addition to content requests,

the ability to use beacon entry and exit events allows us to compute viewer dwell times for

each display location. Whilst we outlined the limitations of this metric in the previous section

(particularly regarding the inaccuracy and high latency of the exit event), we used the start and
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exit events to compute estimated user dwell times. Figure 6.11 shows a heatmap of display

locations and proportional dwell times (green indicating short dwell times, red indicating

long dwell times). Displays with the proportionally highest dwell times include the university

conference centre, library, learning areas and lecture theatres – reflecting the expected patterns

in the context of the campus.

The insights into viewer behaviour including mobility patterns highlight that beacon sight-

ings are a suitable technique to capture and express viewer-centric analytics reports. However,

as stated previously, we note the limitations of using beacon sightings for the computation

of dwell times and emphasise that the results are only indicative. Future technological ad-

vancements, however, have the opportunity to provide a higher quality and accuracy of dwell

times which are a crucial metric in public display analytics. With regards to the delivery of

personalised content, dwell time measures could be used to optimise content delivery for

individuals. For example, if display locations and/or certain times have been identified to

typically feature high dwell times, the prompt delivery of personalised content shortly after

the request was issued by viewers becomes less important as the viewers are likely to remain

in the viewable area of the display. In contrast, for display locations characterised by very

short dwell times suggesting that viewers are walking by the display instead of dwelling inside

its viewable area, the timely delivery of personalised content becomes important.

6.3.4.3 User Retention and Usage Duration

We note that we have introduced a set of analytics reports specific for display personalisation

networks (including retention reports) in Section 4.2.5 (Display Personalisation Retention

Analytics, p. 98). We used these reports to highlight the opportunities of novel display

personalisation retention analytics. In this section, we focus on using similar types of reports

to provide further insights into the validity of the Tacita trial and its results. In particular, we

describe the measured retention rates and typical durations of usages of Tacita. In order to

understand how long viewers have used the system, we use content requests as an indicator

and measure the time periods (in days and weeks) over which we see continuous requests

from single users. We note, however, that such content requests are only issued if users walk

by displays, the viewer’s mobile phone detects the proximate BLE beacon and a request was

successfully transmitted to the Trusted Content Provider. Therefore, if content requests have

not been observed for a certain duration, these may not necessarily be a cause of the user

deciding to uninstall the Tacita Mobile Client or deliberately stop using the service – instead,

it may be a result of the user’s mobility patterns.

In order to capture a first insight into the retention and usage behaviour, we first count the

number of consecutive weeks in which we observe content requests from individual users, i.e.

counting the number of weeks between the first and last content request. This approach builds

on the assumption that our typical user base consists of students and university staff members

from which we would expect at least a single content request (i.e. BLE beacon sighting) per

week. In order to ensure a valid representation of usage patterns, we only consider viewers
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(b) Spring term

Figure 6.12: Retention weeks by term (initially published in [Mik+18d]).
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(a) Requests issued to Trusted Content Providers by
Tacita users walking by displays.

0 10 20 30 40 50
Days since first use

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 u
se

rs

(b) Revisits of configuration pages of Trusted Content
Providers by Tacita users.

Figure 6.13: Retention days (initially published in [Mik+18d]).

who first started using Tacita in the first five week of the term and discard any new user who

started using the service in the last five weeks of term as this set of users would have not

been able to use Tacita for a total of five weeks. Figures 6.12a and 6.12b show the retention

statistics for the University winter and spring term respectively. Across both terms, we observe

a comparable decline in the proportions of users across the weeks. However, we also observe a

small but stable set of users who continue to use Tacita over the duration of five weeks until the

end of the measurement period. This finding suggests that the implementation of the service

was stable enough to retain a set of users, and provide opportunities for display analytics to

trace the behaviour and movement patterns of individuals over longer period of times. This

finding is particularly important for potential future research such as A/B-testing of different

display content and measuring the potential impact on viewer behaviour and mobility patterns

across an entire space.

Figure 6.13a provides more detailed insights into the usage of Tacita over a period of

14 days. In line with the week-based retention statistics introduced above, we additionally

computed mean Tacita usage durations as the delta of the first and last day content requests
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were issued by users. We observed that ∼ 37% of users are still issuing requests after seven

days, and ∼ 22% of users after 14 days form the first day requests have been observed –

showing that the highest fall of users takes place within the first week of use.However, as

suggested by the week-based usage insights, a stable proportion of users remains to issue

content requests over a period of multiple weeks. We note that there can be various reasons

for the decline. Firstly, users are required to permit the Tacita Mobile Client to access their

location while the mobile client is not actively used in the foreground. In iOS, an additional

notification appears after using Tacita for approximately two days reminding the user about

the active background location tracking feature in Tacita and giving another opportunity to

deactivate the location tracking feature. Secondly, in addition to granting permission for

location tracking, users must also turn on Bluetooth and activate at least one Trusted Content

Provider for display sightings to be successfully reported. Further, various external factors

may impact beacon detection including the viewers mobility patterns (they must pass by a

Tacita-enabled display) and maintain an active network connection via Wi-Fi or cellular data.

Despite this high burden of requirements, we observe high conversion and usage rates over

the first weeks of the trial and are able to maintain a stable user base – allowing us to capture

valuable insights about the quality and performance of the overall system.

Whilst display sightings are issued automatically upon beacon sightings and do not require

explicit interactions of the user, users are required to explicitly visit configuration pages of

Trusted Content Providers if they wish to apply changes. In addition to retention statistics

based on observed content requests, we computed retention statistics for users explicitly

accessing configuration pages of Trusted Content Providers – considering the delta between

the first and last time users have accessed the configuration page. Figure 6.13 provides an

overview of the proportion of revisiting a configuration page throughout the study period. We

observe that 75% of users visit the configuration page once and 50% visit the configuration

page a second time.

6.4 Infrastructure-based Tracking

In this section, we evaluate the suitability and system performance of Wi-Fi fingerprinting as

an example of an infrastructure-based approach for tracking viewers within a defined space

without the requirement for a dedicated mobile client application. This system was initially

introduced in Section 3.4.2 (Infrastructure-based Tracking, p. 73). The focus of our evaluation

lies particularly on gaining insights regarding the accuracy, reliability and performance of

Wi-Fi fingerprinting as technique used to detect viewer proximity to public displays. We note

that in contrast to Tacita, the computation and proximity detection of viewers to displays is

achieved solely on the infrastructure side. This work also provides insights into the deployment

of a display analytics system in the context of a large, commercial environment.
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Figure 6.14: Flow diagram for infrastructure-based personalisation.

6.4.1 Methodology and Datasets

6.4.1.1 Integration in the Context of LiveLabs

The system operates in an environment that has been equipped with infrastructure-based

mobility tracking technology of visitors entering and navigating within the space. Viewer

mobility data is captured using Wi-Fi fingerprinting technology developed and deployed as

part of LiveLabs [Jay+16]. Whilst a client device (e.g. a smartphone or tablet) is still required,

users are not required to install a dedicated client application such as Tacita. By connecting

to a Wi-Fi network available in the space, the location tracking provided by LiveLabs is

initialised. For each device connected to the network, backend components provided by

LiveLabs compute the location of the client device based on Wi-Fi fingerprinting printing.

This is a contrast to the approach taken by Tacita in which the location (and display proximity)

is computed by the client device itself by detecting Bluetooth Low Energy beacons. In order

to conduct the trials described in the subsequent sections, we implemented the following

middleware components:

1. location pattern recognition of viewers,

2. capturing a log of real-time viewer location information (context data fetching), and

3. detecting viewer proximity to displays and dynamically delivering the best-matching

content to the viewer (infrastructure connector).

An overview of the data flow including the main components is provided in Figure 6.14.

Whilst the infrastructure-based personalisation system consists of a total of six components
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initially introduced in Section 3.4.2 (p. 73), we specifically focus on the components that

implement required interfaces to support personalisation.

Context Data Fetching

The Context Data Fetching component accesses external information and makes these available

to the remainder of the system. In particular, the following set of contextual data is accessed

and processed:

Real-Time Location Tracking Visitors to the experimental space are tracked using Wi-

Fi fingerprinting. In order to be tracked by the system, viewers were required to

connect to a Wi-Fi network accessible by LiveLabs. Whilst the location information

is collected and computed on the infrastructure-/server-side, viewers’ mobile devices

serve as beacons as their location is determined based on the Wi-Fi connection and

signal radio signal strengths. Accessing the current location information from the

infrastructure-servers in real time is a crucial part of the overall system. The real-time

location tracking module accesses the location tracking interface of the infrastructure in

a fixed time interval of 5 seconds and fetches the current location data of all individuals.

This data is provided in the form of a single comma separated values file (each line

represents the current location of a user and consists of their anonymised MAC address

and location point). The raw data is processed and parsed, and subsequently stored in

the contextual store. The location data further serves as a foundation for subsequent

processing such as pattern recognition.

Display Configuration Similar to other public display systems, we had to provide a

mechanism in which display locations, trigger zones and content schedules could be

defined and considered by the system. We therefore designed a simple user interface

in which space owners and administrators can define required parameters including

trigger zones and the default set of content items that each display is showing. The

Context Data Fetcher component retrieves this set of configuration parameters in a

regular interval and makes it available to the remainder of the system including the

content scheduling and user to display proximity detection components.

After successfully fetching, parsing and storing new location and other contextual data,

the processing module additionally distributes a ‘location update’ event to the main event loop,

triggering the content selection and proximity detection modules. We note that additional

contextual data can be processed and stored by simply creating additional modules within this

component.

Pattern Recognition

The Pattern Recognition component accesses historical mobility traces stored within the

internal contextual data store in a fixed time interval and performs a set of mobility pattern
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recognition algorithms. The mobility traces serve as a key source for gaining an understanding

of viewer preferences but are not linked to individuals using their clear names or other identifi-

able information. Instead, mobility traces are linked to hashed MAC addresses providing a

basic level of anonymity whilst still enabling the recognition of individuals returning to the

space. Locations of people present in the space are captured in approximately 5-20 second

intervals (depending on the processing load on the external Wi-Fi tracking system) and stored

in the internal Context Data Store.

The system was designed modularly and supports the execution of multiple Mobility

Pattern Recognition algorithms on the same dataset. To demonstrate the levels of insight

that can be gained from analysing the location traces, we designed a simple location scoring

algorithm. The algorithm requests mobility traces of the previous day, and maps all location

points to rooms. In a subsequent step, it computes the total time spent per user and room. As a

result, the algorithm provides a scored list of the top five rooms in which users have spent the

most time throughout an entire day—and discards the remainder of the places a user visited.

This result is written back into the Context Data Store and made available to other components

of the system.

Infrastructure Connector

In order to support the content selection and scheduling, we developed a novel spatio-temporal

content scheduling approach. The decision which content to show at a certain location and

point of time is highly dependent on its current context, particularly the viewers present

in the proximity of the display and the analytical insights gained both about the viewers.

Therefore, we define the decision on which content to show as a function dependent on the

viewers identity (used to retrieve their preferences), their location and the current date and

time. Equally, space owners and content providers need to be able to create display schedules

that define under which circumstances content is delivered to displays and viewers.

Through the definition of ‘rules’, we allow the specification of the content that is to be

shown on displays based on three parameters: the location in which someone has spent the

most time (due to the use of the simple scoring algorithm), the date and time frame for which

the score was computed, and the content that is to be delivered out. We support the definition

of an arbitrary amount of rules, allowing the creation of complex content schedules and

supporting the consideration for viewer interests.

During a content scheduling process, the content selection components first accesses the

current set of location points of anyone present in the space (Figure 6.14). In a subsequent

step, the module iterates over every person’s location and compares it with the predefined

trigger zones of displays to detect whether an individual has been in proximity to a display. If

an individual was detected in proximity of a display, the system accesses the contextual data

store to find matching rules based on the above defined function (i.e. the viewers anonymised

identity, the location and the current date and time). If a single matching rule was found, the

back-end selects the associated piece of content to be delivered out to the display that belongs
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Figure 6.15: Flow diagram for infrastructure-based personalisation (display interfaces).

to the matching trigger zone. If multiple rules have been associated to an individual’s context,

or multiple viewers have been detected in the proximity of a single display, appropriate conflict

resolution mechanisms need to be performed to determine the final piece of content to be

shown on the display. A simple solution, for example, can be the selection of a rule and

content at random but further, more complex algorithms for such conflict resolution can be

developed.

Due to the content selection on the infrastructure-side, we a simple Web-based client is

required on the display side in order to visualise the selected content items (Figure 6.15).

The display client consists of an communication interface to retrieve new content scheduling

commands from the infrastructure. After receiving a content scheduling request from the

back-end server, the request gets passed on to the Content Parser module for parsing and

verification. Content scheduling commands consist of a simple description and hyperlink to

the content (in the form of a simplified version of the Content Descriptor Set) which gets

passed on to the Content Visualiser module. This module retrieves the content from the remote

location and shows it on the display until the arrival of the subsequent content scheduling

command.

Implementation

The display client (content visualisation component for digital signs) was implemented on top

of AngularJS, a JavaScript framework, and HTML. The back-end components and infrastruc-

ture connectors were implemented on top of the Tornado Web Framework and Python 3. Each

component of the back-end system are implemented as individual Python-based modules,

whilst content data fetchers (real-time location tracking and display configuration) are repre-

sented by Python classes, enabling a simple extension with additional context data fetching

modules. Infrastructure connectors are, likewise, implemented as individual modules provid-

ing the ability to support a set of heterogeneous display infrastructures using a single back-end

instance.
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6.4.1.2 Trial Context and Collected Datasets

To support the evaluation of our infrastructure-based tracking mechanism, we conducted a

controlled experiment in a real-world setting in the context of a large convention centre in

Singapore. The convention centre spans across approximately 42,000sqm, over six stories

and can hold up to 10,000 visitors. As previously described in Section 3.4.2, we utilise the

LiveLabs [Jay+16] infrastructure deployed at the convention centre to retrieve current location

readings. Due to the high visibility of the digital signage deployment, and limitations in

the deployment of prototypical research system in the context of a commercial space, we

conducted a set of controlled walk-by experiments only. Walk-by experiments allowed us to

gain insights into the performance of the overall system, and the suitability of Wi-Fi-based

location tracking for display analytics purposes and for the delivery of personalised content.

For designing and conducting the walk-by experiments, we followed a methodology

initially described by Davies et al. [Dav+14] in which they introduced two key metrics:

content accuracy and content exposure [Dav+14] defined as follows:

Content Exposure defines the proportion of time a personalised piece of content is

visible on the screen while the viewer is in the viewable area of the display, i.e. the

exposure of the content to the viewer. [Dav+14] describe this metric as “the effectiveness

of the system at showing content to the viewer.” From a display analytics perspective,

content exposure is a direct result of the timely and accurate detection of a viewer in

the visible area of a display and therefore fundamental to the computation of accurate

analytics insights.

Content Accuracy defines the proportion of time the requested (personalised) content

could have been seen by the viewer whilst the viewer was present in the viewable area

of the display. Whilst this metric appears to be less relevant from a display analytics

perspective as it is purely focused on content delivery aspects, capturing the content

accuracy provides insights into the performance of the overall system and into the

accuracy of the location tracking technique used.

We designed an experiment around the content exposure and content accuracy metrics by

conducting a series of controlled walk-bys. We identified five representative display locations

and walking routes within the convention centre (Figure 6.16):

Central A typical display located on the main floor of the conference venue with the

viewer walking towards the display whilst remaining on the same floor level throughout

the experiment.

End of corridor (1) The display is located within the main floor of the conference venue

on the edge of the area that is covered by the Wi-Fi location tracking system. The

viewer is walking towards the display and turning around the corner at the end of the

path.
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Figure 6.16: Floor plans showing the main floor of the convention space for each of the five exper-
imental settings visualising the display location and its orientation (green circle), differently sized
trigger zones (small, medium and large), and the paths of the walk-by experiments. Dots represent an
approximation of the granularity of location points provided by the Wi-Fi location system (the floor
plans provide an approximation only and have not been drawn to scale).
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End of corridor (2) This display location is similar to ‘end of corridor 1’ but is located

at the opposite end of the conference venue.

Side Entrance Whilst the previously mentioned display locations focused on the viewer

remaining on the same level throughout the experiment, we further investigated the

potential interference of the viewer changing floor levels throughout the experiment.

This display is located on the main floor of the convention centre, however, the viewer

appears in the trigger zone of the display (and enters the boundaries of the location

tracking coverage) through an escalator from the level below.

Main Entrance To further investigate the potential interference of the viewer changing

levels, we chose the displays at the main entrance as the final location. In contrast to

‘side entrance escalator’, the viewer transitions across three levels of which the bottom

level and the main floor are covered by the location tracking system. The display is

located on the main floor just at the end of the escalators.

In addition to different display locations and their characteristics, we varied the trigger

zone (i.e. the spatial boundaries which viewers have to cross to be recognised in the viewable

area of the display and trigger a content request) from small (i.e. trigger zone is identical to the

viewable area of the display), medium (i.e. trigger zone approximately doubled in size) and

large (i.e. trigger zone additionally increased and optimised for a high content exposure). For

each display location and trigger zone size, we conducted ten repeating walk-bys, capturing

the following timestamps: viewer entering the viewable area of the display, viewer leaving

the viewable area of the display, content appearing on the display (i.e. the time the system

recognised the viewer in the viewable area of the display) and content reverting back to the

normal content. In the subsequent section, we provide detailed insights into the accuracy and

performance of the system by focussing on content exposure and content accuracy metrics.

6.4.2 Impact of Trigger Zone Sizes

We begin our analysis by exploring the potential impact of different sized trigger zones on

the performance of the overall system aggregated across all display locations and repetitions.

Considering the box plots for each trigger zone type showing content accuracy and content

exposure (Figure 6.17 and Table 6.6), we observe an increase of both content accuracy and

content exposure with the size of the trigger zone. In particular, the small trigger zone

(equalling the size of the viewable area of the display) shows very low content accuracy and

content exposure measures (mean: 0.027 and 0.047 respectively), highlighting the limitations

of the current location tracking technique. Medium- and large-sized trigger zones provide

better results, whilst the large trigger zone reaches the highest means of 0.166 and 0.384 for

content accuracy and content exposure respectively.

In ideal settings in which viewers are detected with the highest accuracy, we would expect

an inverse correlation between the content accuracy and the size of the trigger zone (i.e. larger

trigger zones leading to a decrease of the content accuracy). However, we observed a reverse
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(a) Trigger zone: Small (b) Trigger zone: Medium.

(c) Trigger zone: Large.

Figure 6.17: Box plots of accuracy and content exposure measures across all display locations for
each trigger zone size.

Table 6.6: Content accuracy and content exposure measures across all display locations for each trigger
zone size.

Content Accuracy Content Exposure
Zone Size Mean Median SD Mean Median SD

Small 0.027 0.000 0.110 0.047 0.000 0.188
Medium 0.138 0.000 0.213 0.271 0.000 0.400
Large 0.166 0.101 0.203 0.384 0.260 0.417



6.4 Infrastructure-based Tracking 158

effect to our assumption in which the content accuracy and content exposure improved with

the size of the trigger zones (Table 6.6) – the low content accuracy measure likely caused by

the delayed detection of the viewer before entering and after leaving the viewable area. Both

the low content accuracy and content exposure metrics suggest that viewers can be detected

soon enough to deliver content in time, however, the entry and exit detection latencies and

accuracies appear to be low potentially leading to inaccurate analytics insights. In addition

to the impact on accurately detecting a viewer approaching a display, the use of large trigger

zones further impacts the potential scalability of the system. For example, if a number of

displays are present in a constrained space, such displays may likely have overlapping trigger

zones if the zones were configured to be very large. This consequently increases the number

of potential viewers present in the viewable area of multiple displays, making it challenging

to decide when to show which piece of content – and to capture individual display sightings

and dwell times.

For digital signage analytics, it is particularly important to accurately detect when viewers

enter the viewable area of a display – for example, to create accurate reports on audience

sizes and the number of viewers passing by. In order to better understand the delay in which

the underlying location tracking system detects viewers entering the space, we analysed the

time from the viewer entering the viewable area to the time the system detects the viewers’

location inside the trigger zone. Figure 6.19 shows a density plot of the delays for each trigger

zone size – negative delays indicate that viewers were detected before entering the viewable

area of the display while positive delays indicate that viewers were detected after entering

the viewable area. In general, we observe an improvement of the detection latency for small

(mean: 20.257, median: 20.4, SD: 14.828 seconds), medium (mean: 12.664, median: 8.7,

SD: 20.895 seconds) and large trigger zones (mean: 6.781, median: 5.4, SD: 18.946 seconds).

We note that with the increased trigger zone sizes, however, we observed a wider spread of

the detection latencies indicating a high amount of noise and variance – leading to lower

consistency in the detection of viewers in trigger zones.

6.4.3 Impact of Display Location Characteristics

To further investigate the potential impact of different display locations, we assume the ‘best

case’ and only consider measures resulting from large trigger zones for each display location –

allowing us to eliminate the potential impact of the accuracy and latency of the underlying

location tracking system.

By using content exposure as the primary metric, we identify Main Entrance as the best

performing display location (mean: 0.701; SD: 0.427). Whilst Central, End of Corridor (1)

and End of Corridor (2) yield similar average performance results, we observe Side Entrance

to be the display location with the lowest measures despite the large trigger zone (mean:

0.153; SD: 0.304). The low performance is likely a result of the unique characteristics of that

location: viewers suddenly ‘appear’ in the viewable area of the display through an escalator

that starts outside of the coverage area of the location tracking system. In contrast, whilst
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(a) Central (b) End of corridor (1)

(c) End of corridor (2) (d) Main Entrance

(e) Side Entrance

Figure 6.18: Box plots of content exposure and content accuracy measures for each display location
and large trigger zone.

Table 6.7: Content accuracy and content exposure measures for each display location and large trigger
zone.

Content Accuracy Content Exposure
Location Mean Median SD Mean Median SD

Central 0.174 0.119 0.198 0.437 0.363 0.449
End of corridor 1 0.142 0.000 0.230 0.348 0.000 0.435
End of corridor 2 0.184 0.097 0.232 0.283 0.263 0.288
Side Entrance 0.075 0.000 0.143 0.153 0.000 0.304
Main Entrance 0.260 0.237 0.182 0.701 1.000 0.427
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Figure 6.19: Density plots showing the delay of content turning on after/before the viewer enters the
viewable area of the display for each trigger zone size across all display locations.

viewers also ‘appear’ in the viewable area of the display located at the Main Entrance, both the

start of the escalator and the entire journey are within coverage of the location tracking system

– leading to an improvement in the observed measures. For any location, the observed content

accuracy appears to be rather low – likely an impact of the trigger zone that is significantly

larger than the viewable area of the display. Additionally, we note that across all locations

standard deviation measures were high suggesting a high variability in the captured measures.

To summarise, we observe that display locations and walk paths in which the viewer has

already been present in the space and detected by the infrastructure-based location tracking

system prior to approaching the display yield higher content exposures. We believe that this

is a result of the limitations emerging from using Wi-Fi-fingerprinting and the low accuracy

such systems currently impose. In order to counter balance the low accuracy, the use of large

trigger zones may become necessary – further impacting on the usability of the system an

metrics for analytics purposes and limiting the scalability of the system regarding large counts

of displays and viewers.

6.5 Comparison of Viewer Mobility Tracking Approaches

As introduced in Section 3.4 (Capturing Viewer Mobility Data, p. 65) and evaluated in the

previous sections, viewer- and infrastructure-based tracking are two approaches that can

be utilised in order to capture mobility traces of viewers to provide a foundation for novel

digital signage analytics. In this section, we describe the usability, benefits and costs of both

approaches for each of the four stakeholder groups (display owner, space owner, content

provider and viewer) and provide an overview of overall stakeholder independent benefits and

drawbacks for each of the approaches.
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6.5.1 Display Owners

Viewer-based Tracking

The instantiation of viewer-based tracking introduced in the context of this thesis utilised

Bluetooth Low Energy beacons as the preferred location tracking mechanism. Of course,

Tacita as the underpinning system is technology-agnostic and can be implemented using

alternative location tracking mechanisms. If the location technology chosen requires the

installation of appropriate sensors, costs for display owners may consist of the equipment and

installation. Regardless of the technology chosen, display owners have to further provide the

locations of their displays and associated capabilities (e.g. provision of personalised content)

to the relevant viewers in the form of, for example, mobile phone applications or through other

means.

The use of viewer-based tracking allows display owners to be independent from space

owners as a distinct stakeholder group regarding the provision of appropriate location tracking

technologies such as Wi-Fi fingerprinting. The use of viewer-tracking approaches can therefore

be appropriate in environments where infrastructure-based tracking is not feasible (e.g. when

appropriate Wi-Fi hotspots are not available), space owners are not willing to share location

data due to commercial interests or legal reasons, or for very large display deployments that

would require the integration of infrastructure-based tracking systems from a large number of

independent spaces.

Infrastructure-based Tracking

The costs of using infrastructure-based tracking in the context of public display deployments

lies particularly around access and integration. Display owners are required to integrate two

potentially distinct systems (i.e. the display network with backends that provide location

information of visitors present in a space) – an approach that does not scale with the number

of distinct spaces in which displays are deployed.

The use of infrastructure-based tracking, however, allows display owners to draw on

existing technologies and minimises the need for installations of additional sensing technology.

Additionally, the use of mobile phone clients in order to enable viewers access to the system

are not required in the examples provided in the context of this thesis. The use of infrastructure-

based tracking is therefore appropriate in spaces that already provide all necessary capabilities,

and where display owners wish to instantiate location tracking that is less reliant on viewers

and their acceptance of potential third-party applications required in order to conduct the

location tracking.

6.5.2 Space Owners

Viewer-based Tracking

The use of viewer-based tracking approaches may have impacts on the space owner. For

example, the placement of displays equipped with sensing or beaconing technology in order
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to enable viewer-based tracking may raise some concern among both space owners and

visitors of spaces. If viewer-based tracking is utilised in part in order to enable the provision

of personalised content (such as via Tacita), space owners may further be impacted by the

changing content displayed.

However, the use of viewer-based tracking may provide a cost benefit and shift of respon-

sibilities to space owners. In order to achieve location tracking, space owners are not required

to equip their spaces with appropriate tracking technology but can rely on other stakeholders.

This is particularly beneficial if the installation of location tracking hardware within the space

is technically, financially or legally not feasible.

Infrastructure-based Tracking

Drawing on the example of Wi-Fi fingerprinting as an approach to infrastructure-based location

tracking of viewers, space owners are required to equip their space with an appropriate set of

Wi-Fi base stations that are capable of supporting Wi-Fi fingerprinting. Additionally, space

owners are required to provide access to interfaces of such base stations in order to enable the

computation of locations of devices that are present in the space and connected to the Wi-Fi

network. In order to ensure the accuracy and performance of the location tracking, regular

tests and calibrations may be required.

The use of infrastructure-based tracking has a number of benefits. In particular, space

owners are in full control and ownership of the location data captured. In contrast to viewer-

based tracking, location data origins from a known and trusted source (e.g. systems provided

by space owners or contracted third-parties). However, depending on the infrastructure-based

technologies employed (e.g. Wi-Fi fingerprinting), visitors are still required to carry a mobile

device in order to enable the location tracking within the space. The use of infrastructure-based

tracking technologies can be the appropriate choice for space owners if the required hardware

capabilities are available or can be installed.

6.5.3 Content Providers

Viewer-based Tracking

In the context of this thesis, content providers benefit from viewer mobility traces by enabling

reports regarding content views across a display network, and enabling the provision of

personalised content to viewers based on their preferences and locations. In order to utilise

mobility traces, however, content providers are required to implement appropriate application

programming interfaces. To enable the creation of viewer-centric reports (e.g. insights into the

network visibility of content across a display deployment), content providers have to further

supply access to logs of, for example, viewers or displays requesting certain types of content

items.

By utilising viewer-based tracking to obtain access to mobility traces, the benefits for

content providers lie particularly on the limited use of single or small number of client

applications (e.g. Tacita) minimising implementation and data integration work.
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Infrastructure-based Tracking

In contrast to viewer-based tracking, with the infrastructure-based tracking approach content

providers are required to obtain mobility traces from individual space owners as the likely

owner of the data produced. If content providers serve large numbers of distinct display

deployments likely placed in environments that are owned and controlled by different stake-

holders, the implementation and integration work is likely to grow with each deployment site.

Different spaces are likely to heterogeneous location tracking technologies and interfaces for

accessing the data.

However, obtaining mobility traces from space owners provides a trusted source of

information. In particular example of the infrastructure-based tracking introduced in the

context of this thesis, content providers are further able to access comprehensive location

traces that go beyond of simple display proximity sightings of viewers as provided by Tacita.

Such data can be utilised by content providers to better understand the potential impact of

content shown to passers by (e.g. measure the impact of advertisement campaigns by analysing

the viewers location traces after seeing a specific content item).

6.5.4 Viewers

Viewer-based Tracking

In order to support Tacita and enable the creation of meaningful insights, viewers are required

to install a dedicated mobile phone application (e.g. the Tacita Mobile Client) and, in addition,

allow the client application to access the viewers’ location while the application is in the

background (this is required in order to allow the application to listen for nearby beacons

while the phone is in standby). The installation of a client application may have a number

of implications for viewers. The background location tracking and processing has likely

an impact on the battery lifetime due to additional energy use. Furthermore, the use of

background location tracking can cause an invasion of the viewer’s privacy.

By using viewer-based tracking, however, viewers are able to deactivate location tracking

at any time. In the example of Tacita, viewers can choose between the deinstallation of Tacita

from their mobile device, revoking of the permission to access their location, or by turning off

location tracking within the client application itself. Furthermore, certain applications may

provide a direct benefit to viewers. For example, Tacita allows viewers to request personalised

and more relevant content when approaching displays nearby.

Infrastructure-based Tracking

In contrast to viewer-based tracking and the use of Tacita, infrastructure-based tracking takes

away control from viewers and, in the context of Wi-Fi fingerprinting, it is sufficient for

viewers to connect their mobile devices to the Wi-Fi network. Their location data is then

automatically computed on the infrastructure side in real time. This can cause significant

privacy-related issues where viewers may not necessarily be aware of the location tracking
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capabilities taking place in the environment. Due to the lack of awareness, it may be not

obvious how viewers can (temporarily) opt out and deactivate location tracking in order to

protect their privacy.

With the use of infrastructure-based tracking, however, viewers are also not required to

install a dedicated client application reducing the burden of use. Furthermore, due to the data

capture and processing taking place on the infrastructure, impacts on battery lifetimes and

energy use are reduced to a minimum whilst providing a comparable service to the viewer.

6.6 Lottery Scheduling

The Lottery Scheduler was initially introduced in Section 5.3 (Lottery Scheduling for Digital

Signage, p. 114) as a mechanism for supporting analytics-driven digital signs. We evaluate

the Lottery Scheduler by investigating its applicability for typical digital signage networks

and deploy it in the context of e-Campus. In particular, we analyse the ratio-based scheduling

approach implemented in the form of a ratio-based lottery ticket allocation component. We

focus on the performance of the lottery scheduler system and its content scheduling accuracy.

The performance of the system is particularly important to support prompt responses and

reactions to contextual changes that may yield immediate content changes such as content

personalisation.

Excerpts of this section are based on the following publication:

• Mateusz Mikusz, Sarah Clinch, and Nigel Davies. “Are You Feeling Lucky?: Lottery-

based Scheduling for Public Displays”. In: Proceedings of the 4th International

Symposium on Pervasive Displays. PerDis ’15. Saarbruecken, Germany: ACM, 2015,

pp. 123–129. ISBN: 978-1-4503-3608-6. DOI: 10.1145/2757710.2757721. URL:

http://doi.acm.org/10.1145/2757710.2757721

6.6.1 Benchmarking

6.6.1.1 Apparatus

We performed our benchmarks on a typical e-Campus machine – a Mac Mini with the

following specifications: 2.6 GHz Intel Core i5, 8 GB 1600 MHz LPDDR3 SDRAM; 1 TB

HDD. The machine runs MacOS 10.10.2 (Yosemite) with Yarely as a digital signage player

consisting of the Lottery Scheduler as the scheduling component. To understand the impact of

the numbers of lottery tickets and content items, we performed a benchmark of the system

with 1,000 and 10,000 tickets respectively and varying numbers of content items. We used

simple dummy content items (images of 1000x1000 pixels and 0.6 MB in size) and repeated

each combination of lottery tickets and content items 30 times.

https://doi.org/10.1145/2757710.2757721
http://doi.acm.org/10.1145/2757710.2757721
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(a) 1,000 lottery tickets. (b) 10,000 lottery tickets.

Figure 6.20: Lottery scheduler lab-based benchmarks with 0-10,000 content items with low and high
numbers of lottery tickets (initially published in [MCD15]).

(a) 1,000 lottery tickets. (b) 10,000 lottery tickets.

Figure 6.21: Lottery scheduler lab-based benchmarks with 0-50 content items with low and high
numbers of lottery tickets (initially published in [MCD15]).

6.6.1.2 Results

The results of the performance benchmarks are visualised in Figure 6.20. Overall, an increased

amount of lottery tickets available to allocate to content items leads to an increased delay in the

time taken to perform the lottery ticket allocation and to yield a content item to schedule. The

time taken to finish the ticket allocation process increases by a mean of 7.77 with a ten-fold

increase of lottery tickets (Figure 6.21). This increase is likely a result of our implementation

choice for the lottery scheduler: the ticket allocation process utilises Python-based Queue

objects. Therefore, each lottery ticket allocation results in a context switch across Python

threads performing the ticket allocation and provides an overhead in the processing time. The

filtering of ineligible content items due to constraints defined in the Content Descriptor Set is

performed prior to the ticket allocation and is therefore independent of the number of available

and allocated lottery tickets.

In more detail, the increase in the number of content items is directly correlated with the

time taken to complete content scheduling decisions.



6.6 Lottery Scheduling 166

The mean time taken of the lottery (including ticket allocation and random draw) for

1,000 tickets are 181.60, 736.0, 1477.47 milliseconds for 100, 1000 and 10000 content items.

Figure 6.20a visualises the linear relationship between the number of content items and the

duration of the total scheduling decision mainly dominated by the filtering time. Considering

the time for completing the lottery execution, we observe that at the point at which the number

of content items outgrows the number of available lottery tickets the time to execute the lottery

duration remains constant (Figure 6.21a). In the case in which the number of content items

is smaller or equal to the number of available content items, we observe the time taken to

complete the lottery execution to be directly correlated with the number of lottery tickets

(Figure 6.21b).

Considering the filtering and other components of Yarely in the benchmarking, we see that

the performance of other Yarely components is unaffected by lottery scheduler components

with the increased number of lottery tickets. However, some components are affected by

the increased number of scheduled content items. The filtering of ineligible content items

takes 171.47, 950.57 and 10405.70 milliseconds for 100, 1000, and 10000 content items

respectively. This is due to the implementation of the filtering component that loops through

every single scheduled content item and applies a range of filters. However, as shown in

Figure 6.20 the time complexity increases linearly with the number of content items. In

previous work, the overall time taken to complete a scheduling decision in Yarely was

measured with approximately 1.5 seconds (including a 0.6 second fade animation between

content items) [Cli+13].

The overall performance of the content scheduling process (including filtering, lottery

ticket allocation, and randomised draw of the ‘winning’ content item) is significantly faster

for lower numbers of content items. For 100 content items, the overall scheduling process

is completed in less than 0.3 seconds using 1,000 tickets. In contrast, larger numbers of

scheduled content items take noticeably longer to complete the scheduling process. The

overall scheduling time for 1,000 and 10,000 content items with 1,000 tickets each are

1.66 and 11.58 seconds respectively. In our experience from the e-Campus display network,

however, we found that displays are typically subscribed to approximately 30 content items

each (mean 31.33, median 28.5, max. 107). The lottery scheduler therefore meets the

performance expectations of typical display networks. Of course, the performance for larger

amounts of content items can be improved in various ways. For example, the filtering and

lottery ticket allocation processes can be initiated ahead of time instead of at the time at which

the content decision is required, i.e. well before the currently played content item reaches

the end of its content playback time. However, the drawbacks can include a reduced ability

to react to changes in the context of the display that may take place before the new content

decision is required but after the scheduling of the subsequent content item has been initiated.
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6.6.2 Accuracy in a Real-World Deployment

6.6.2.1 Apparatus

To further investigate the accuracy and reliability of content scheduling requirements (Sec-

tion 5.3.1, p. 114), we investigated the performance of the Lottery Scheduler in a real-world

setting in the context of e-Campus. The content and display management system for e-Campus

features the ability to group individual content items into ‘Channels’. Additionally, display

owners can specify content playback ratios per channel if multiple channels have been sched-

uled onto a single display to prioritise individual channels over others (described in further

detail in Section 1.3, p. 6).

Utilising the channel system and existing content, we created four content channels within

the Channel system and allocated a demonstrative set of content items from content available

in the Channel system. In particular, the four channels were configured with the following

parameters:

• Channel A: 16 images, 0.51 playback ratio / air time,

• Channel B: 4 images, 0.25 playback ratio / air time,

• Channel C: single 60-second video, 0.12 playback ratio / air time, and

• Channel D: 4 images, 0.12 playback ratio / air time.

We configured the Lottery Scheduler with a single lottery ticket allocation module for

the ratio-based allocation of lottery tickets, and provided 10,000 tickets for allocation. The

scheduler was executed on a single display for continuous 12 hours subscribed to the channels

described above. With regards to the implementation of the Lottery Scheduler, all content

items were played for their full duration, i.e. the video for its full duration of 60 seconds and all

other content item types for a default content playback time of 15 seconds. The total duration

of all content items across the four channels was therefore 420 seconds. In the analysis, we

consider the accuracy of the content playback with regards to predefined ratios.

6.6.2.2 Results

We first consider the playback ratios produced by the ratio-based ticket allocation approach in

comparison with the expected (i.e. pre-configured) channel ratios described in the previous

subsection. As shown in Figure 6.22, the overall channel ratio accuracies are close to the

expected ratios after an initial phase of high variations. In particular, the system approximates

expected ratios (0.51; 0.25; 0.12; 0.12 for Channels A, B, C and D respectively) within a short

time period:

• After 15 minutes: 0.65; 0.16; 0.07; 0.12,

• After 30 minutes: 0.59; 0.22; 0.11; 0.08,
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(a) Absolute ratios per channel – paler marks indicate
expected ratios.

(b) Deviation from observed and expected ratios per
channel.

Figure 6.22: Accuracy of the lottery scheduler using a ratio allocator and sample e-Channel content
(initially published in [MCD15]).

• After 45 minutes: 0.50; 0.25; 0.13; 0.13, and

• After 720 minutes (12 hours): 0.52; 0.24; 0.12; 0.12.

Over time, the observed ratios converge toward the predefined ratios: for example, the dis-

crepancy between the expected and observed ratios for channels A, B, C, and D was measured

after 45 minutes at 0.01, 0.00, 0.01 and 0.01 respectively. The lottery scheduler requires a

short initialisation period only (approximately 15-30 minutes) to provide an acceptable level

of accuracy – we note, however, that the random draw of content items across channels has a

small impact on the observed ratios.

Considering the playback of individual content items within channels, we observe that

each content item is played almost equally. This reflects the implementation of our ratio-based

ticket allocation module: content items within an individual channel receive an equal amount

of lottery tickets (based on their content playback length) and have therefore equal probabilities

in the random draw with regards to the overall playback time. As an example case, we further

investigated the content playback times within Channel D. Overall, we observe that content

items from Channel D have only occupied around nine minutes of content playback time

within the first hour of the accuracy benchmarking whilst the four items within Channel D

have occupied between 1.16 and 3.23 minutes, i.e. between 12.86 and 35.77% of content

playback time of the channel – in contrast to the expected content playback times as an

even distribution of 2.25 minutes each, i.e. 25%. After four hours, the playback times of

content items within Channel D have further improved. The channel occupied approximately

30 minutes of the total four hours of content playback, whilst each individual item within

the channel played for 6.00-8.91 minutes (i.e. 20.04-29.79% of the channel playback time).

Towards the end of the twelve hour experiment, Channel D has occupied approximately 87

minutes whilst each item consisted of a playback time between 16.16 and 25.70 minutes (i.e.

18.64–29.65% of the channel playback time).
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In addition to the accuracies with respect to content playback ratios, we were able to

observe behaviour not typically seen in other content scheduling approaches such as round

robin. Due to the nature of the Lottery Scheduler of using a random draw to determine the

‘winning’ content item for playing on the display, in some cases the same content item is

shown on the screen consecutively. Within our 12 hour experiment, we were able to observe

content items to be played for up to three times in a row, resulting in an increase of the

playback time of an individual image from 15 to 45 seconds in our configuration. We note that

such behaviour can be overcome by utilising additional filtering or ticket allocation modules.

For example, a filtering component could consider a previously played content item in the

current round of content scheduling as an ineligible content item and exclude it from content

scheduling until a subsequent round. Alternatively, an additional ticket allocation module

can be implemented that prioritises content items that have not been played within a certain

time period. However, such filtering and ticket allocation modules in combination with the

ratio-based ticket allocation may lead to a higher discrepancy between the predefined and

observed channel ratios.

6.7 Summary

In this chapter, we described a set of trials that sought to provide real-world insights into the

effectiveness of our display analytics technology probes. In particular, we have made the

following set of contributions.

• We conducted an evaluation of Pheme in which we presented the integration of Pheme

and its client libraries into the e-Campus display test-bed, and collected a large quantity

of data over a period of over four years. We showed the feasibility of the Pheme

architecture for leveraging existing third-party analytics engines by providing insights

into the implementation of the Google Analytics injector and its deployment in the

context of e-Campus.

• We conducted a thorough evaluation of collecting viewer-centric analytics data and

providing personalised services to individuals in the context of Tacita. We highlighted

the benefits and limitations of the system by investigating the accuracy and performance

in the context of an in-the-wild deployment, and particularly focussed on systems-

related benchmarks and viewer detection latencies. We showed that it is feasible to use

the system to capture accurate insights about individuals, and fast enough to support

walk-by personalisation.

• We further evaluated Wi-Fi fingerprinting in the context of a large, commercial conven-

tion centre as an alternative mechanism to capturing viewer behaviour and movement

patterns. We conducted a set of walk-by experiments in the context of a large convention

centre providing insights into the performance and accuracy of the underlying location

tracking system and the overall system implementation.
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• We evaluated the performance of the lottery scheduling approach through a set of

benchmarks, and evaluated the system through a long-term and in-the-wild deployment

in the context of the e-Campus display deployment. We demonstrated the feasibility

and reliability of the lottery scheduling approach as the main scheduler for e-Campus.

In the next chapter, we provide an overview of the contributions of the dissertation as

a whole, and elaborate on future directions and opportunities in the areas of digital signage

analytics.



Chapter 7

Analysis, Conclusions and Future
Work

7.1 Overview

In Chapter 1, we described the emergence of digital signage and pervasive display networks

and the importance of gaining detailed insights into the impact of digital signs and content on

viewers. Whilst in related domains such as Web analytics it has been possible to measure the

cause and effect of, for example, advertisement campaigns through comprehensive tracking

and analytics mechanisms, in the physical world it is less obvious how the direct cause and

effect of displays on individuals can be measured. Motivated by a scenario of a local shop

owner which identified the potential of future digital sign analytics that could capture the

cause (viewer seeing a piece of content on a display) and its effect (offline purchase of the

advertised product), we described the vision of viewer-centric analytics.

In Chapter 2, we provided an overview of related work in the areas of digital signage

analytics. We first introduced audience models and metrics that have been developed to

describe viewer interaction in front of individual displays such as the Audience Funnel

developed by Michelis and Müller [MM11]. We then provided an overview of data capture

techniques (e.g. Intel AVA [Cav11] that utilised video computing technology to capture

audience numbers and demographics), ways to report analytics data (e.g. funnel and flow

diagrams), systems and deployments that utilise analytics data for display actuation purposes

(e.g. targeted advertising) and the use of digital signs in specific contexts (such as retail). The

majority of previous work focusses on individual displays and are limited in their ability to

capture overarching analytics and provide insights into the impact of digital signs and the

content shown.

Looking to explore analytics beyond individual signs, in Chapter 3 we conducted an

extensive literature review identifying categories of data that can be captured by different

stakeholders in open pervasive display networks. We provided a framework that supports

the description of potential combinations of analytics data owned by distinct stakeholders.

Utilising the framework, we highlighted the potential benefits that emerge from sharing
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analytics data across these stakeholders and identified the importance of new viewer-centric

analytics in the context of open pervasive display networks. We provided insights into the

design and development of Pheme, an analytics platform that supports leveraging third-party

analytics systems through the specification of injection modules. We also presented the design

and development of two systems enabling the capture of viewer mobility data: a viewer-centric

approach (including a corresponding back-end system design and implementation) in which

we utilise client-based tracking technology captured through viewer mobile phones, and

an infrastructure-centric approach in which we designed a middleware platform that utilises

viewer mobility tracking through Wi-Fi fingerprinting. As both approaches require the tracking

of individuals within a space and potentially introduce a number of privacy-concerns, we

introduced synthetic analytics as a privacy-friendly alternative. This approach uses mobility

models to create synthetic viewer mobility traces and combines these with real-world analytics

events.

In Chapter 4, we focussed on the creation of new analytics reports for open pervasive

display networks. We began by presenting a set of novel viewer-centric analytics reports that

illustrated the levels of insight that can be gained when utilising viewer-sightings (captured

through either viewer-based tracking or mobility models). Examples of such reports provide

insights regarding the effectiveness of displays (e.g. the number of unique viewers per display),

the visibility of content across the display network (e.g. the number of unique viewers per

content item across the network), and the visibility of content to viewers (e.g. number of

times the same content item was seen by viewers across the network). Drawing on our work

on capturing viewer mobility traces, we describe a set of new analytics reports specifically

relating to display personalisation systems. Finally, we illustrated how existing Web analytics

engines can be leveraged (using appropriate Pheme injection modules) to create a new set of

display-oriented analytics reports. We presented a mapping from display to Web analytics

terminology, and designed and developed an appropriate injection module for Pheme that

implements the mapping. We provided example reports through Web analytics regarding the

displays in the network and content shown.

Whilst many analytics systems focus on the creation of analytics reports as the end product,

we continued our exploration in Chapter 5 into the automated use of analytics data on digital

signs and designed and developed systems to support the use analytics data to, for example,

drive decisions for content scheduling. Our Lottery Scheduler provides a novel content

scheduling approach with the ability to support context- and event-based scheduling allowing

the display to instantly react to contextual changes in the environment.

In Chapter 6, we provided evidence of the feasibility of the approaches and systems

introduced in previous chapters spanning across data capture, reporting and automated use

of analytics data. We began the evaluation with Pheme, our analytics support platform,

by providing insights into its integration into the e-Campus displays network, the real-time

mapping and injection of events into third-party analytics engines, and the large quantity

of data collected and processed (over 73 GB in textual data). We continued the chapter by

providing evidence for the feasibility and accuracy of the Lottery Scheduler, and showed the
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Figure 7.1: End-to-end implementation and integration of the systems introduced in this thesis. Blue:
fully implemented components as part of this thesis; Green: partially implemented component; Grey:
components and systems not developed in the context of this thesis but part of the e-Campus display
network.

performance of the underlying system – crucial to support prompt content scheduling due to

contextual changes. We continued to describe the design and implementation of the Tacita

trial, an in-the-wild deployment of the display personalisation system as part of the e-Campus

display deployment. We provided detailed insights into the performance of individual system

components, the feasibility of using Bluetooth Low Energy sensing technology to detect and

capture viewer analytics data (e.g. dwell times), and the overall use of display personalisation

over an extended period of times (over 200 days and 150 users). We concluded the evaluation

by investigating the feasibility of using infrastructure-based tracking as alternative to the

Tacita approach by conducting a controlled in-the-wild deployment in the context of a large

convention space. As part of this trial, we conducted a series of walk-by experiments providing

insights into the overall accuracy and performance of the system, both relating to display

analytics and to support display personalisation.

7.2 Analysis

7.2.1 Findings

In this thesis, we have explored techniques for the next generation of digital signage analytics

systems. As part of this exploration, we designed, developed and deployed a range of systems

and components and evaluated these, primarily in the context of the e-Campus display test-bed.

We did not aim to create an integrated digital signage analytics solution. Nevertheless, as

shown in Figure 7.1, the majority of the systems and components that emerged from this thesis
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can be integrated into an end-to-end system. In particular, we have integrated Pheme, Tacita,

Mobility Models and the Lottery Scheduler to create an analytics solution for e-Campus.

Pheme serves as the main platform and repository for capturing, processing and storing

display analytics data. Individual display nodes report each displayed content item at the point

at which the content was made available (via the Lottery Scheduler), changes in the physical

state of the display and potential contextual changes in real time through the integration of

Pheme client libraries into the relevant components of the Lottery Scheduler (described in

detail in Section 6.2.1). Pheme processes and stores this data and, additionally, injects relevant

portions of the incoming data stream into Google Analytics enabling the real-time report

generation (in accordance to the mapping introduced in Section 4.3). These display-oriented

reports are accessed by display owners, content providers and administrators for monitor-

ing purposes. Additionally, the datasets stored in Pheme are combined with data captured

through Tacita (Section 3.4.1) and Mobility Models through the Synthetic Analytics approach

(Section 3.4.3) to create viewer-centric reports. Furthermore, Tacita pushes contextual events

(e.g. content schedule requests) back into the set of displays. We note, however, that the

components forming Contextual Insights (Figure 7.1, highlighted in green) have been only

partially implemented and are currently limited to reporting display sightings of viewers to

enable walk-by display personalisation (Section 6.3.1). Both content scheduling decisions and

reported contextual changes on the Lottery Scheduler are reported back into Pheme in real

time – ‘closing the loop’ of our digital signage analytics platform.

As part of our exploration into the collection and processing of relevant analytics, we

highlighted the opportunities for collecting a range of analytical insights in the context of

open pervasive display networks (Section 3.2). In particular, the large number of stakeholders

of a display network and their access to a unique set of analytics data enable the computation

of novel insights. We identified such opportunities both from our experiences in developing

novel analytics for the e-Campus display network and a comprehensive literature survey

(Section 3.2.2).

Finding. A wide range of analytics data can be captured by stakeholders in an open pervasive

display network. Synthesising such datasets across distinct stakeholders enables the creation

of novel and comprehensive analytics reports allowing us to describe the effectiveness of

displays, and providing insights into how viewers experience the display network as a whole.

These novel analytics reports and the synthesis across stakeholders will be crucial to the

success of future open pervasive display networks.

We showed that both Web and digital signage analytics domain share common characteris-

tics in the types of desired reports and levels of insights (Section 4.3.3 and Section 6.2). In this

context, we explored the benefits gained for creating relevant analytics reports by leveraging

existing Web analytics engines. To provide a proof of concept, we developed a mapping and
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corresponding Pheme injection module allowing us to use Google Analytics for the creation

of display-oriented reports (Section 4.3.3).

Finding. Digital signage analytics can benefit from the wealth of existing Web analytics

engines. The opportunities from mapping display to Web analytics terminology have been

highlighted through the creation of novel display-oriented reports within Google Analytics.

By integrating and deploying Pheme to capture analytics events across the e-Campus

display test-bed we were able to provide an overview of the current state of the entire display

network in real time (e.g. by accessing real-time reports via Google Analytics). Such reports

were particularly valued by stakeholders of the display network (both content providers as

well as administrators).

Finding. Pheme plays an important part in the daily maintenance of the e-Campus display

network and is used to monitor displays in real time using Pheme’s APIs and appropriate

analytics reports.

We further explored the creation and use of analytics reports that go beyond display-

oriented analytics. In particular, we explored the capture and creation of viewer-centric

analytics which consist of further insights about individuals such as their mobility patterns

(Section 3.2, p. 49). We identified two categories of analytics datasets: display-oriented

analytics data (originating from the signs themselves including the Lottery Scheduler), and

viewer-oriented mobility patterns – forming the foundation for our novel viewer-centric

analytics reports. In order to create a novel set of viewer-centric analytics reports, we

highlighted the opportunities that emerge when traditional display-oriented analytics data

from Pheme is combined with mobility patterns of viewers.

Finding. The collection of traditional display-oriented analytics is an important prerequisite

for the creation of novel, viewer-centric analytics reports that combine both display- and

viewer-oriented data.

Such mobility patterns can originate from various data sources (Section 3.4, p. 65). In

particular, we utilised three distinct mechanisms to capture viewer mobility data: viewer-based

tracking (e.g. through the viewers’ mobile phones), infrastructure-based tracking (e.g. using

Wi-Fi fingerprinting) and synthetic mobility traces (e.g. through appropriate mobility models).

The combination of both display- and viewer-oriented datasets enable us to gain insights

into how viewers experience a digital signage network as a whole.
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Finding. By capturing and processing both display- and viewer-oriented analytics data, we

can create novel reports regarding the effectiveness of displays, the visibility of content across

the display network, and the visibility of content to viewers.

We particularly emphasise the importance of the shift of perspective from display- to

viewer-oriented analytics. In contrast to focussing on individual displays (e.g. capturing

audience numbers and demographics for individual displays) and providing aggregates over

all displays, we instead shift the focus to the viewer. How do viewers experience a display

network and content as the navigate through and across spaces?

Finding. Novel viewer-centric analytics for open pervasive display networks help us under-

stand how viewers experience the digital signage network. For example, the order in which

they see content displayed across the network, and the amount of times viewers see content

repeatedly.

In the context of e-Campus, we explored two distinct approaches: viewer-based tracking

of display sightings through Tacita (Section 3.4.1) and Mobility Models used to support our

synthetic analytics approach (Section 3.4.3). The utilisation of both approaches allowed us

to create a set of viewer-centric analytics reports by additionally accessing datasets captured

through Pheme (Section 4.2).

Finding. The combination of capturing data on the viewer-side (e.g. mobility traces) and

server-side (e.g. content logs) are sufficient to create novel and insightful analytics reports

regarding the effectiveness and success of a digital signage network.

Capturing viewer mobility traces, however, is highly technology-dependant and we ex-

plored a range of techniques as mentioned previously. By comparing these approaches, we

highlight that the accuracy of analytics reports created based on synthetic viewer traces is

highly dependant on the quality and accuracy of the underlying mobility models. Regarding

the accuracy, provide a higher accuracy due to the underlying detection technique through

BLE beacons – however, impose privacy concerns to the viewer.

Finding. Capturing accurate viewer mobility traces can be best achieved through client-side

tracking. However, the synthetic analytics approach provides a privacy-preserving alternative

to capturing mobility traces and is suitable for environments in which fine-grained location

tracking is infeasible.



7.2 Analysis 177

As part of our trails regarding the use of both viewer- and infrastructure-based tracking, we

were able to capture performance measures for both approaches (Sections 6.3, p. 130; and 6.4,

p. 149). Whilst the subsequent evaluations were not designed to explicitly compare both

approaches (due to the differing evaluation locations for each of the tracking technologies),

the results give us an insight into the different characteristics of both approaches.

Finding. The collection of viewer mobility data through viewer-based tracking technologies

(i.e. Bluetooth Low Energy beacons) provides the best accuracy (regarding the tracking of

viewers) and performance (regarding the delay of detecting viewers in proximity to displays)

compared to infrastructure-based tracking via Wi-Fi fingerprinting.

A portion of our work focussed on exploring alternative uses of analytics insights beyond

the creation of reports. The large amount of stakeholders contributing to open pervasive

display networks, and, as a consequence, the amount of contextual events, requirements and

constraints that need to be considered when creating content scheduling decisions lead to

the need for novel content scheduling approaches that are capable of accommodating these

constraints and requirements. In this thesis, we presented a scheduling approach for digital

signage that uses Lottery Scheduling to address these requirements. The Lottery Scheduler

was integrated as part of the e-Campus display test-bed and provides interfaces for both the

e-Channel system (to request its regular content schedules) and Tacita to capture contextual

events (Section 6.2); particularly display sightings of viewers who requested personalised

content.

Finding. The Lottery Scheduler provides a suitable mechanism to facilitate a range of

(potentially competing) content scheduling requirements and constraints that can originate

from a number of stakeholders whilst still dynamically responding to contextual changes and

real-time analytics that influence content scheduling decisions.

7.2.2 Benefits to Other Research Communities

A number of findings and insights that emerged from this work have potential benefits for

areas of research besides distributed systems and pervasive computing.

Human-Computer Interaction In the context of this thesis we created a number of

novel analytics technologies that could be utilised by the Human-Computer Interaction

community to help understand user behaviour and engagement patterns of interactive

systems beyond pervasive displays. For example, our approaches could be used to

understand how users interact with future smart IoT environments without requiring

extensive additional instrumentation or observation of these spaces.
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Modelling User Behaviour As part of our large-scale in-the-wild trials, particularly

Tacita, we were able to capture large amounts of viewer location traces from our

deployment. These location traces can serve as a foundation for the creation of more

realistic models of human mobility – e.g. to better understand and simulate human

movements in the context of our university campus and informing future work. In this

context, the data can be used to both train novel models and provide test data to evaluate

the accuracy of the models developed and to provide feedback for potential machine

learning approaches.

Mobile Computing Mobile computing researchers could benefit from the insights gained

as part of this work to better understand how mobile devices can be used to support

interactions with smart environments in general. Additionally, detailed insights into

the temporal and spatial accuracy of Bluetooth Low Energy beacons for capturing user

locations can inform future developments of location tracking technology and associated

applications.

7.3 Contributions

In the context of this dissertation, we have made contributions in four key areas: 1. the

collection of analytics-related datasets for digital signage systems, 2. the utilisation of collected

datasets for the creation of analytics reports and the exploration of novel, viewer-centric

analytics reports, 3. the development of a new scheduling systems supporting dynamic content

scheduling based on contextual and analytics events, and, 4. a set of large scale and long-term

trials in the wild investigating the technical feasibility and applicability of our systems.

In the subsequent sections, we summarise the key contributions in greater detail in the

order in which the contributions appeared in the dissertation.

7.3.1 C1: Analytics Data Collection

The first set of contributions of this thesis relates to the collection and processing of analytics

data that is fundamental for the creation of novel insights in the digital signage domain

(Chapter 3, p. 48). This included, in particular, the following set of contributions.

1. We introduced a framework for the categorisation of relevant analytics data for the

digital signage domain (Sections 3.2 and 3.2.3, p. 49 and p. 53 respectively). This

included a detailed literature analysis to capture the categories of data that individual

stakeholders of future pervasive display networks are able to capture (Section 3.2.2,

p. 51). Based on the literature review and subsequent analysis, we further contribute the

identification of opportunities that arise from synthesising analytics data from distinct

stakeholder groups for the generation of novel and viewer-centric analytics insights

(Section 3.2.4, p. 56).
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2. We highlighted the importance of traditional display analytics as a foundation for

creating novel analytics insights, and developed a set of client libraries that can be

integrated into existing digital signage deployments to enable the collection of relevant

datasets in real time (Section 3.3.2, p. 60). We designed a back-end systems architecture

for the collection, processing, reporting and export of relevant datasets – including a

proposed extension for future data synthesis (Section 3.3.3, p. 62).

3. A crucial step towards the creation of novel viewer-centric analytics is the collection

of viewer mobility and behaviour data (Section 3.4, p. 65). Our initial exploration

of the collection of viewer mobility data was conducted in the context of a display

personalisation system that relies on viewer-side tracking through a dedicated mobile

phone application detecting and reporting near-by displays through Bluetooth Low

Energy beacons (Section 3.4.1, p. 66). We developed and deployed the system in the

context of the e-Campus display network at Lancaster University.

4. We additionally designed and developed a system that supports the collection of viewer

mobility data through infrastructure-based tracking mechanisms (Section 3.4.2, p. 73).

The proposed middleware system was designed to integrate with existing tracking and

display infrastructures, and was developed in the context of a large convention centre in

Singapore.

5. Due to the potential technical limitations in tracking viewer mobility through both client-

and infrastructure-based sensing technology, and the existing privacy concerns when

tracking individuals within and across spaces, we introduced synthetic analytics as an

alternative approach to the collection of viewer mobility data (Section 3.4.3, p. 76). We

developed a system that transformed a spatial map into a graph-based data structure,

and used a set of example mobility models to show the applicability of the synthetic

analytics approach.

7.3.2 C2: Reporting

For our second set of contributions we introduced a set of novel viewer-centric analytics

reports that build on top of the datasets from C1 (Chapter 4, p. 82). In particular:

1. We identified and created a set of novel viewer-centric analytics reports that provide new

perspectives on the effectiveness of displays, the visibility of content across a display

network, and the visibility of content towards individual viewers (Section 4.2, p. 83).

These reports are primarily founded on the data captured through the synthetic analytics

approach combined with display-related analytics from Pheme.

2. We describe a new set of analytics reports for novel signage networks that support the

delivery of personalised content to viewers (Section 4.2.5, p. 98). Such reports include

insights into usage and interactions, and the meaning of ‘usage retention’ in the context

of digital signage deployments.
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3. We highlighted that the type of analytics for digital signage closely mirrors the type

of analytics reports that can be created in common Web analytics systems. In this

context, we introduced novel types of digital signage analytics reports created by

leveraging existing Web analytics engines. In particular, we provided a mapping from

digital signage to Web analytics terminology and presented the implementation of an

appropriate injection module for Pheme serving as a proof-of-concept that can feed

signage analytics events into Google Analytics (Section 4.3, p. 102).

7.3.3 C3: Automated Use of Analytics Data

Our third set of contributions consists of the design and development of a novel content

scheduling system for digital signage that lays the foundation for the automated use of

analytics data such as the datasets introduced in C1 (Chapter 5, p. 111). In particular:

1. We highlighted the need for novel digital signage scheduling systems that support the

automated use of analytics data in the context of open display networks. In particular,

we emphasised the need for such systems to respond to a large number of potentially

conflicting scheduling constraints and requirements that, for example, originate from

the large set of stakeholders and contextual events taking place in the vicinity of the

display (Section 5.2, p. 111).

2. We provided a description of the design and development of the first lottery scheduling

system for digital signs (Sections 5.3, p. 114; and 5.4, p. 117). The Lottery Scheduler

was specifically designed as a technique that allows the resolution of potentially con-

flicting scheduling constraints and requirements, and responds to dynamic contextual

changes such as display sightings from Tacita (Section 5.5, p. 121).

7.3.4 C4: Systems Evaluation and Large-scale Trials

Our final set of contributions specifically focus on large-scale and long-term system evaluations

conducted in the context of the e-Campus display test-bed (Chapter 6, p. 124). In particular:

1. We integrated the analytics data collection systems part of C1.2 into the entire e-Campus

display deployment consisting of over 65 displays and captured over 159,264,530

display-related events yielding a volume of 73.67 GB (excluding database indices) in

the course of the trial (Section 6.2, p. 125). The deployment has been ongoing since

August 2014 and serves as the main analytics platform for e-Campus demonstrating the

viability of analytics for technologies presented in this thesis.

2. We conducted a large-scale and in-the-wild trial of a display personalisation system

utilising client-side tracking technology described in C1.3 and C3.2 (Section 6.3, p. 130).

Our contributions include in particular a detailed investigation into the feasibility of

Bluetooth Low Energy beacon technology for capturing relevant and accurate viewer-

related analytics insights and walk-by personalisation (Section 6.3.2, p. 134) as well as
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general long-term evaluation of the overall system including middleware components

and extensions to the existing display infrastructure (Section 6.3.4, p. 144). The system

has been deployed for over 206 consecutive days, attracted over 147 users and yielded

a total of 226,620 events of which 24,565 consisted of content request and an equal

number of display sightings providing us with initial insights into viewer mobility and

behaviour across the University campus.

3. As a comparison to client-side tracking, we additionally evaluated the system perfor-

mance and feasibility of using infrastructure-based tracking technology that utilises

Wi-Fi fingerprinting described as C1.4 and C3.2 in the context of a large convention

centre in Singapore (Section 6.4, p. 149). We focussed the evaluation particularly on

investigating the system performance and accuracy of the tracking mechanism – con-

ducting over 150 controlled walk-by experiments across five different display locations

and three different sizes of spatial fences for detecting the viewer’s proximity to a

display.

4. We integrated the new lottery scheduling approach part of C3.1 as the new main content

scheduling mechanism in e-Campus displays and trialled the system both in laboratory

experiments as well as as part of a complete roll-out (Section 6.6, p. 164). In particular,

the roll-out consisted of over 65 displays, different lottery ticket allocation approaches

and an overview of the system performance and accuracy regarding the scheduling

process. We showed that the Lottery Scheduler is technically feasible to serve as a

content scheduling system in the context of e-Campus.

7.4 Future Work

Our work has focussed on three major strands of digital signage analytics: the identification

and capture of relevant datasets, the use of such data for the creation of novel analytics reports,

and supporting the utilisation of analytics for actuation purposes on the screens themselves –

ultimately feeding information back into the display network. In this section, we provide an

overview of future directions and research from each of the three strands.

7.4.1 The Physical Cookie

The ultimate vision for future digital signage analytics is to support the physical equivalent of

a click-through event – being able to tell whether individuals from an audience have followed

up on content that has been seen on a display by, for example, purchasing an advertised

product or changing their behaviour in other ways. In order to create such detailed analytics,

however, accurate and comprehensive tracking of individuals may become necessary, leading

to a set of technologies that potentially violate the privacy of individuals. In the Web, the

tracking of viewers is often achieved through the use of browser cookies that hold small pieces

of information stored by a Website on the user’s device and included in a subsequent request
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to the same Web site. For the Website provider, the advantages of using cookies are the ability

to recognise returning visitors of a website and track the visitors’ activities and behaviour

across subsequent visits across multiple days or even months [MDN18]. For visitors and users

of Websites, cookies have the advantage that they can be easily deleted with the consequence

that a subsequent visit to the same server makes the user look like a new user. In the physical

world, particularly with the use of infrastructure-based and biometric tracking technologies

(e.g. facial recognition), an equivalent to ‘deleting the cookie’ does not currently exist and

it becomes impossible for viewers to understand the level of sensing and tracking tacking

place in a space. We believe that an opportunity for future work in this space is to consider the

design and development of a ‘physical cookie’ – an equivalent of the browser cookie applied

in the ‘physical’ world providing the viewer more control about the sensing and tracking that

takes place regarding the individual. With the use of a cookie model, the tracking and sensing

in an environment may become more transparent to the individual and, more crucially, provide

a level of control to the extent to which environments track the individual, e.g. when returning

to the same space. Whether such a ‘physical cookie’ is conceptionally modelled as a tangible

device, a virtual data container located on the user’s device, or stored and maintained ‘in the

edge’ (e.g. in the form of “Privacy Mediators” and Cloudlets [Dav+16]) may be part of the

future research in this space.

7.4.2 Synthetic Analytics

We originally introduced the concept of ‘synthetic analytics’ as means of capturing compre-

hensive viewer mobility data (Section 3.4.3, p. 76) and creating novel viewer-centric analytics

reports. In particular, we presented the approach as a substitute for viewer- and infrastructure-

based tracking that preserves viewer privacy and does not reveal sensible insights about

individuals, primarily focussing on using the approach as a mechanism to enable us to explore

the creation of novel viewer-centric analytics reports without the need to collect sensitive

datasets about individuals. We believe that the next step in the exploitation of the synthetic

analytics approach may consist of the design and development of mobility models of higher

accuracy to strengthen the overall approach. Such mobility models with higher accuracy

are particularly crucial for the creation of precise analytics reports – making the synthetic

analytics approach feasible to be used as a substitute for the collection of sensible viewer-

related data. The creation of mobility models could, for example, be based on observations or

existing mobility traces such as the display sighting logs captured as part of the Tacita display

personalisation system.

Whilst we have applied our synthetic analytics approach in the context of digital signs

where it was crucial to trace individuals within a spatial space and understand the individuals’

interactions with displays deployed in the space, we believe that future work may consist of

further developing and generalising the overall approach beyond the domain of digital signs.

In particular, synthetic analytics may become relevant and beneficial for a range of application

domains that rely on capturing and using mobility traces. This may become particularly
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interesting for spaces in which it is technically (or ethically) infeasible to trace individuals and

create comprehensive mobility patterns. For example, synthetic traces can provide insights

into user interactions with ‘smart spaces’ and such environments that are highly equipped with

sensing technology – without collecting sensitive analytics about the individual.

7.4.3 Scheduling for the Individual

In state-of-the-art digital signage deployments, content creators and display owners typically

create individual content schedules for specific displays or group of displays separately. Whilst

this is suitable for maintaining full control over the content that displays are showing at any

given point of time, it may become challenging to actually reach the desired target group for

certain content. Future work may consist of the design and development of a system that

supports the broadcasting of content for specific target groups through a heterogeneous set of

devices and modalities. For example, content may be broadcast using a mix of public displays

and personal devices such as mobile phones and tablets, depending on the type of information

that is distributed. A subset of the analytics techniques and systems presented in this thesis

can serve as a foundation allowing stakeholders to reach the desired target group (e.g. using

tracking and analytics techniques). Additionally, future work may consist of gaining an

understanding as to when and how to deliver and distribute information to individuals. We

see the development of a ‘scheduling for the individual’ approach as a natural continuation of

our research that builds on top of existing sensing and analytics technology and ultimately

introduces novel means to actuate both private and public displays. The consideration of

additional means for distributing content that go beyond public digital signs (i.e. the use of

personal devices) provide an opportunity to further explore cross-device analytics and tracking

as drivers to gain a better understanding regarding user interactions across the digital and

physical world.

7.5 Closing Remarks

We have seen a rapid increase in the number of digital signs and public displays [Mar17] and

market reports predict a significant growth of public displays to a total of around 87 million

digital signs by 2021 [Dig17; Mar17]. The wide range of application areas of digital signs

including way-finding, advertisement billboards, and arrivals and departures boards at airports

and railway stations further indicate the importance of digital signs in the urban environment

and beyond. Digital signs and public displays are used by a large number of viewers and

form, in some cases, a part of the critical infrastructure. With the growing reliance on digital

signs, it becomes important to understand how viewers interact with and benefit from both the

displays themselves and the content and information that is shown. In particular, capturing

and understanding viewer interactions across a network of displays (e.g. while viewers move

across an airport or university campus and subsequently engage with a number of displays)
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will enable display and content providers to identify areas of improvement and gain a better

understanding of the overall user experience with a display network.

In this thesis, we introduced a set of tools and techniques that help capture and understand

the use of displays. We believe that the work outlined in the context of this thesis lays the

foundation for more general people-centric analytics that go beyond the domain of digital

signs and will enable unique analytical insights and understanding into how users interact

across the physical and digital world.
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