The degree of functions in the Johnson and *q*-Johnson schemes

Michael Kiermaier

Mathematisches Institut Universität Bayreuth

Combinatorial Constructions Conference April 8, 2024 Center for Advanced Academic Studies Dubrovnik, Hrvatska

joint work with Jonathan Mannaert and Alfred Wassermann

KORK ERKER ADAM ADA

Introductory remarks

- \blacktriangleright Joint work with Jonathan Mannaert and Alfred Wassermann.
- \blacktriangleright Despite title

"The degree of functions in the Johnson and *q*-Johnson schemes" No association schemes in this talk!

KOD KARD KED KED BE YOUR

▶ Motivation (next slide) is geometric. Indeed: Topic close to design theory. Studied objects are "dual designs".

Cameron-Liebler line classes

- ▶ Cameron, Liebler 1982: "Special" set $\mathcal L$ of lines in PG(3, *q*).
- \triangleright Defined by the following equivalent properties:
	- ▶ Algebraic property:
		- $\chi_{\mathcal{L}} \in \mathbb{R}$ -row space of the point-line incidence matrix.
	- ▶ Geometric property: Constant intersection with any line spread of PG(3, *q*).

In literature: Various directions of generalization

- ▶ Ambient space PG(*n*, *q*).
- ▶ lines −→ *k*-spaces.
- \blacktriangleright Allow $q = 1$ (set case).
- ▶ points −→ spaces of degree *t*.

Goal

Coherent theory of all above generalizations.

Subset and subspace lattices

▶ Fix $q = 1$ (set case) or prime power $q \ge 2$ (q-analog case). ▶ Fix *n* non-negative integer. ▶ Let *V* be a \begin{cases} set of size *n* F*q*-vector space of dimension *n* ▶ Let $\mathcal{L}(V)$ be the lattice of all $\left\{\begin{array}{c} \text{subsets of } V \text{subsets of } V \end{array}\right\}$ F*q*-subspaces of *V* ▶ For $U \in \mathcal{L}(V)$ let $\mathsf{rk}(U) = \begin{cases} \# U \ \# U \end{cases}$ dim(*U*) \blacktriangleright Let $\begin{bmatrix} V \\ k \end{bmatrix}$ $\mathcal{L}^{\mathsf{V}}[k] = \{ U \in \mathcal{L}(\mathsf{V}) \mid \mathsf{rk}(U) = k \}.$ Set case: # - *V* $\binom{n}{k} = \binom{n}{k}$ $\binom{n}{k} = \binom{n}{k}$ *k* 1 Binomial coefficient. *q*-analog case: $\# {\mathcal V}_k$ $\binom{V}{k} = \binom{n}{k}$ $\binom{n}{k}_q$ Gaussian coefficient. ▶ Always: Use algebraic dimension!

KORKAR KERKER E VOOR

(Except in established symbols like PG(*n*, *q*).

Algebraic property

- ▶ Algebraic property of Cameron-Liebler line classes: $\chi_L \in \mathbb{R}$ -row space of the point-line incidence matrix.
- ▶ Straightforward generalization:
	- \blacktriangleright Let $W^{(tk)}$ incidence matrix of *t*-spaces vs. *k*-spaces.
	- \blacktriangleright Let V_t be the \mathbb{R} -row space of $W^{(tk)}$.
	- ▶ Function $f: \begin{bmatrix} V \\ k \end{bmatrix} \rightarrow \mathbb{R}$ has algebraic property A_t if $f \in V_t$.

Baby example

- ▶ Let $q = 1$, $V = \{1, 2, 3, 4, 5, 6\}$ (so $n = 6$), $k = 3$, $t = 2$.
- ► Let $\mathcal{F} = \{\{1, 2, 3\}, \{4, 5, 6\}\}\subseteq \lceil \frac{6}{3} \rceil$ $\binom{v}{3}$.
- ▶ Claim: Set $\mathcal F$ has algebraic property A₂,

i. e. its characteristic function $\chi_{\mathcal{F}}: \left[\frac{\mathsf{V}}{3} \right]$ $\binom{V}{3} \rightarrow \mathbb{R}$ has prop. A₂.

KORKAR KERKER E VOOR

Baby example (cont.)

Baby example (cont.)

$$
\blacktriangleright \mathcal{F} = \{\{1,2,3\},\{4,5,6\}\}.
$$

 \blacktriangleright We found: F has property A₂ and the vector of 2-weights of F is

$$
\mathsf{wt}^{(2)}_\mathcal{F} = (\tfrac{1}{3}, \tfrac{1}{3}, -\tfrac{1}{6}, -\tfrac{1}{6}, -\tfrac{1}{6}, \tfrac{1}{3}, -\tfrac{1}{6}, -\tfrac{1}{6}, -\tfrac{1}{6}, -\tfrac{1}{6}, -\tfrac{1}{6}, -\tfrac{1}{6}, \tfrac{1}{3}, \tfrac{1}{3}, \tfrac{1}{3}).
$$

▶ Visualization.

KOD KARD KED KED BE YOUR

▶ Exercise.

 F does not have A₁.

Geometric property

- ▶ Geometric property of Cameron-Liebler line classes: Constant intersection with any line spread of PG(3, *q*)
- \blacktriangleright Generalization? Not so clear.
- ▶ Observation:
	- line spread of PG(3, *q*)
	- $=$ set of lines in PG(3, *q*) covering every point exactly once

KORKAR KERKER E VOOR

- $=$ simple $1-(4, 2, 1)_a$ subspace design
- $\blacktriangleright \leadsto$ use designs!

Definition: Simple design

A set $\mathcal{D} \subseteq \lceil \frac{V}{k} \rceil$ $\left[\frac{\nu}{k}\right]$ is called a simple t - $(n, k, \lambda)_{q}$ design,

- if every $\mathcal{T} \in \big[\begin{smallmatrix} V\ y \end{smallmatrix}\big]$ $_t^V$] is contained in exactly λ elements of $\mathcal{D}.$
	- \triangleright set case $q = 1$: combinatorial design
	- ▶ *q*-analog case $q \ge 2$: subspace design

Example

▶ Let $q = 1$, $V = \{1, 2, 3, 4, 5, 6\}$ (so $n = 6$), $k = 3$, $t = 2$. ▶ Let $\mathcal{D} = \big\{ \{1,2,3\}, \{1,2,4\}, \{1,3,6\}, \{1,4,5\}, \{1,5,6\},$ $\{2,4,6\},\{2,5,6\},\{2,3,5\},\{3,4,5\},\{3,4,6\}\}\subseteq \begin{bmatrix} V \ V \ V \end{bmatrix}$ 3 .

 \blacktriangleright Check design condition for $t = 2$.

- \blacktriangleright $T = \{1, 2\}$ is contained in blocks $\{1, 2, 3\}$ and $\{1, 2, 4\}$.
- \blacktriangleright $T = \{1, 3\}$ is contained in blocks $\{1, 2, 3\}$ and $\{1, 3, 6\}$. ▶ . . .

 \blacktriangleright $T = \{5, 6\}$ is contained in blocks $\{1, 5, 6\}$ and $\{2, 5, 6\}$.

KORK ERKER ADAM ADA

 $\triangleright \implies \mathcal{D}$ is simple 2-(6, 3, 2)₁ design.

Example (Trivial simple designs)

 \blacktriangleright \emptyset is empty t $(v, k, 0)$ _{*q*} design.

►
$$
\begin{bmatrix} V \\ k \end{bmatrix}
$$
 is complete $t \cdot (v, k, \lambda_{\text{max}})q$ design
where $\lambda_{\text{max}} := \begin{bmatrix} n-t \\ k-t \end{bmatrix}$.

Definition: Simple design (repeated)

A set $\mathcal{D} \subseteq \lceil \frac{V}{k} \rceil$ $\left[\frac{V}{k}\right]$ is called a simple t - $(n, k, \lambda)_{q}$ design, if every $\mathcal{T} \in \big[\begin{smallmatrix} V\ y\end{smallmatrix}\big]$ $_t^{\mathsf{v}}$ is contained in exactly λ elements of $\mathcal{D}.$

- \triangleright set case $q = 1$: combinatorial design
- ▶ *q*-analog case *q* ≥ 2: subspace design

Reformulation in characteristic functions

 \blacktriangleright Let x_{τ} be characteristic function of pencil $\{K \in \lbrack \frac{V}{k} \rbrack$ $\binom{V}{k}$ | $T \subseteq K$ }.

\blacktriangleright For $f, g: \lbrack_k^V$ $\frac{V}{k}] \to \mathbb{R}$ fix standard inner product $\langle f, g \rangle = \sum_{K \in {V \brack k}} f(K) g(K).$

▶ Note that $\#(\mathcal{F} \cap \mathcal{G}) = \langle \chi_{\mathcal{F}}, \chi_{\mathcal{G}} \rangle$ for $\mathcal{F}, \mathcal{G} \subseteq \begin{bmatrix} V & 0 \\ V & V \end{bmatrix}$ *k* .

▶ *D* is simple
$$
t
$$
- $(n, k, \lambda)_q$ design

$$
\iff \langle \pmb{x}_\mathcal{T}, \chi_\mathcal{D} \rangle = \lambda \text{ for all } \mathcal{T} \in \big[\begin{smallmatrix} V \\ t \end{smallmatrix} \big].
$$

 $\blacktriangleright \leadsto$ generalization to real designs.

Generalized definition: Real design

A function $f: \lceil \frac{V}{k} \rceil$ $\frac{V}{k}$ \rightarrow $\mathbb R$ is called a real t - (n, k, λ) _q design, if $\langle \boldsymbol{x}_\mathcal{T}, f \rangle = \lambda$ for all $\mathcal{T} \in \big[\begin{smallmatrix} \mathsf{V}\ t\end{smallmatrix}\big]$ $\frac{V}{t}$.

- \blacktriangleright *f* null design or trade if $\lambda = 0$.
- ▶ *f* signed design if $\text{im}(f) \subseteq \mathbb{Z}$.
- ▶ *f* design or possibly non-simple design if im(*f*) ⊆ N. (Idea: simple design, but with possibly repeated blocks)
- ▶ *f* (characteristic function of) simple design \iff im(*f*) \subseteq {0, 1} \iff *f* Boolean.

Further reformulation

▶ Observation:

Functions x_T (interpreted as vectors) are the rows of incidence matrix *W*(*tk*) .

Therefore:

f real *t*- (n, k, λ) _q design \iff $W^{(tk)}f = \lambda$ **1**.

\blacktriangleright In particular: f real t - $(n, k, 0)$ $(n, k, 0)$ $(n, k, 0)$ $(n, k, 0)$ $(n, k, 0)$ _q null design $\iff W^{(t k)} f = 0$ $\iff W^{(t k)} f = 0$ $\iff W^{(t k)} f = 0$ ⇐⇒ *[f](#page-11-0)* [∈](#page-0-0) [ke](#page-41-0)[r](#page-0-0) *[W](#page-41-0)*[\(](#page-41-0)*[tk](#page-0-0)*[\)](#page-41-0) .

Geometric property, basic version

- ▶ For $\lambda \in \mathbb{R}$ let U_{λ} :=set of real t - (n, k, λ) _{*q*} design.
- \blacktriangleright Just seen: $U_0 = \ker W^{(\nexists k)}$.
- \blacktriangleright Set of functions with A_t was $V_t = \text{rowsp } W^{(t)}$.

$$
\implies V_t = U_0^{\perp}
$$

KORK ERKER ADAM ADA

What did we get?

- ▶ Established a connection to designs.
- ▶ Concept known as Delsarte's design orthogonality.
- ▶ Compared to prototype "constant intersection with all spreads":

Want similar property for $\lambda \neq 0!$

Geometric property, version II

- \blacktriangleright Fix $\lambda \in \mathbb{R}$.
- ▶ Scaled complete design $\frac{\lambda}{\lambda_{\text{max}}}$ · 1 is real t - $(n, k, \lambda)_q$ design.
- As solution of linear equation system $W^{(tk)}f = \lambda \mathbf{1}$:

$$
U_{\lambda} = \frac{\lambda}{\lambda_{\max}} \cdot \mathbf{1} + \underbrace{\ker W^{(tk)}}_{=U_0 = V_t^{\perp}}
$$
\n
$$
\implies
$$
\n
$$
U_{\lambda} = \left\{ \delta : \begin{bmatrix} V \\ k \end{bmatrix} \to \mathbb{R} \mid \langle f, \delta \rangle = \frac{\lambda}{\lambda_{\max}} \cdot \# f \text{ for all } f \in V_t \right\} \text{ and }
$$
\n
$$
V_t = \left\{ f : \begin{bmatrix} V \\ k \end{bmatrix} \to \mathbb{R} \mid \langle f, \delta \rangle = \frac{\lambda}{\lambda_{\max}} \cdot \# f \text{ for all } \delta \in U_{\lambda} \right\} \text{ Vers. II}
$$

(with $\#f = \sum_{K \in \binom{V}{k}} f(K) = \langle f, \textbf{1} \rangle$, motivated by $\# \mathcal{F} = \# \chi_{\mathcal{F}}$)

KORK ERKEY EL POLO

- ▶ Still room for improvement:
	- \triangleright Not happy about "For all real \dots designs". \rightsquigarrow enough to look at basis of U_λ .
	- \blacktriangleright Allow mixed values of λ .

Example

- ▶ $q = 1, n = 6, k = 3, t = 2$ \rightsquigarrow $\lambda_{\text{max}} = \begin{bmatrix} 6-2 \\ 3-2 \end{bmatrix}$ $\binom{6-2}{3-2} = 4.$
- ▶ Baby example: $\mathcal{F} = \{ \{1, 2, 3\}, \{4, 5, 6\} \}$, seen: $\chi_{\mathcal{F}} \in V_2$.
- ▶ Geometric property \implies For each 2-(6, 3, 2), design:

$$
\langle \chi_{\mathcal{F}}, \delta \rangle = \frac{\lambda}{\lambda_{\max}} \cdot \# \chi_{\mathcal{F}} = \frac{2}{4} \cdot 2 = 1.
$$

KORKARA KERKER DAGA

- \triangleright \implies Each simple 2-(6, 3, 2)₁ design D contains exactly one of the blocks $\{1, 2, 3\}$ and $\{4, 5, 6\}$.
- $\blacktriangleright \leadsto \mathcal{D}$ is anti-complementary.
- \triangleright Can also be shown using intersection numbers.

Geometric property, toolbox version

- ▶ U_* := set of all real t - $(v, k, \lambda)_q$ designs with arbitrary value $\lambda \in \mathbb{R}$.
- ▶ By scaled complete designs: $U_* = U_0 + \langle \mathbf{1} \rangle_{\mathbb{R}}$.
- ▶ Lemma (Toolbox version of geometric property). Let ∆ ⊆ *U*∗. Then

$$
V_t = \left\{ f : \begin{bmatrix} V \\ k \end{bmatrix} \to \mathbb{R} \mid \langle f, \delta \rangle = \frac{\lambda_{\delta}}{\lambda_{\text{max}}} \cdot \# f \text{ for all } \delta \in \Delta \right\}
$$

$$
\iff \langle \Delta \cup \{1\} \rangle_{\mathbb{R}} = U_*
$$

Proof. Dimension argument. Use that *W*(*tk*) has full rank. (Set case: Gottlieb 1966, *q*-analog case: Kantor 1972)

▶ Question: Suitable sets ∆?

Lemma

Let ∆ *be*

(a) *the set of all signed t-* $(n, k, 0)$ _{*q} null designs or*</sub>

(b) *the set of all possibly non-simple* t *-* (n, k, λ) *_{<i>q} designs*</sub> *Then* $U_* = \langle \Delta \cup \{1\} \rangle_{\mathbb{R}}$.

Proof.

Part [\(a\)](#page-15-0).

 \blacktriangleright entries of $W^{(tk)}$ are in \mathbb{O} .

 $\triangleright \implies U_0 = \text{ker } W^{(t k)}$ has rational basis.

 \blacktriangleright Multiply by common denominators \rightsquigarrow integral basis *B*.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

$$
\blacktriangleright \implies B \subseteq \Delta \text{ and } \langle B \cup \{1\} \rangle_{\mathbb{R}} = U_*
$$

Part [\(b\)](#page-15-1).

- ▶ Start with *B*.
- ▶ Add suitable integral multiples of **1** ⇝ non-negative integral set *B* ′ .

$$
\blacktriangleright \implies \mathit{B'} \subseteq \Delta \text{ and } \langle \mathit{B'} \cup \{\textbf{1}\} \rangle_{\mathbb{R}} = \mathit{U}_*.
$$

We arrive at:

Theorem Let $f: \lceil \frac{v}{k} \rceil$ $\left[\begin{smallmatrix} V\ k \end{smallmatrix}\right]\to\mathbb{R}.$ The following are equivalent.

(i) *Algebraic property:* $f \in V_t$.

Geometric properties:

(ii) *There is a constant* $c \in \mathbb{R}$ *such that* $\langle f, \delta \rangle = \lambda_{\delta} c$ *for all real t* \cdot (n, k, λ_{δ}) ^{*g*} *designs* δ *with* $\lambda_{\delta} \in \mathbb{R}$ *.*

(iii) $\langle f, \delta \rangle = 0$ *for all signed t* $-(n, k, 0)$ _q *null designs* $\delta : \begin{bmatrix} V_k \\ W_l \end{bmatrix}$ $\frac{V}{k}$ $\rightarrow \mathbb{Z}$.

(iv) *There is a constant c* $\in \mathbb{R}$ *such that* $\langle f, \delta \rangle = \lambda_{\delta} c$ *for all possibly non-simple t* - $(n, k, \lambda_{\delta})_q$ *designs* $\delta : \begin{bmatrix} V_k \\ k \end{bmatrix}$ $\binom{V}{k} \rightarrow \mathbb{N}$. *The constant in properties [\(ii\)](#page-16-0) and [\(iv\)](#page-16-1) necessarily equals* $c = \frac{1}{\lambda_{\sf max}} \cdot \# f$.

KORK ERKER ADAM ADA

Geometric property: Discussion

- ▶ Tempting: Is the following a suitable geometric property? "There is a constant $c \in \mathbb{R}$ such that $\langle f, \delta \rangle = \lambda c$ for all simple t - $(n, k, *)$ _{*q*} designs"
- \triangleright By toolbox version: If and only if $\langle \{\text{simple } t-(n, k, *)}\rangle_{\mathbb{R}}$ designs $\rangle_{\mathbb{R}} = U_*$ (richness cond)

▶ Unfortunately: Not always true.

Counterexample. $q = 1$, $n = 10$, $k = 5$, $t = 4$. By integraliy conditions: All simple $4-(10,5,*)_1$ are trivial. \implies dim \langle {simple 4-(10, 5, *)₁ designs})_R = 1, too small!

▶ Research problem. (probably hard!)

Classify the parameters (*q*, *n*, *k*, *t*) where the richness condition holds.

KORKAR KERKER E VOOR

The Degree

▶ Fix $k \in \{0, ..., n\}$ and $f : \binom{V}{k}$ $\binom{V}{k} \rightarrow \mathbb{R}.$

▶ Lemma

$$
\{1\}=V_0\subsetneq V_1\subsetneq \ldots \subsetneq V_k=V.
$$

Proof. W^(*ij*) *W*^(*jk*) \sim *W*^(*ik*) for 0 ≤ *i* ≤ *j* ≤ *k*.

▶ Definition. Degree deg (f) := smallest *t* such that $f \in V_t$.

Example

▶ Functions *f* of degree 0 are the scalar functions $f = \lambda \mathbf{1}$ with $\lambda \in \mathbb{R}$. \triangleright Baby example $\mathcal{F} = \{ \{1, 2, 3\}, \{4, 5, 6\} \}.$ In $V = \{1, 2, 3, 4, 5, 6\}$ we have $deg(\mathcal{F}) = deg(\chi_{\mathcal{F}}) = 2$. **►** Seen: χ _{*F*} \in *V*₂. ▶ Exercise: χ _{*F*} \notin V_1 . • In $V = \{1, 2, 3, 4, 5, 6, 7\}$ we have deg $(F) = 3$. \implies **Ambient space** *V* matters!

The Degree (cont.)

- \blacktriangleright Remember. Rows of $W^{(k)}$ are the *t*-pencils \boldsymbol{x}_T .
- $\blacktriangleright \rightsquigarrow$ Alternative characterization of degree.

deg(*f*) is smallest *t*

such that *f* is a linear combination of *t*-pencils x_T .

The (unique) coefficients are called *t*-weights $wt_f(T)$ of *f*:

$$
f = \sum_{\mathcal{T} \in \binom{V}{t}} \mathsf{wt}_f(\mathcal{T}) \mathbf{x}_{\mathcal{T}}
$$

Lemma

(a)
$$
deg(\lambda f) \leq deg(f)
$$
 with equality iff $\lambda \neq 0$.

(b)
$$
deg(f+g) \leq max(deg(f), deg(g)).
$$

```
(c) deg(fg) \leq deg(f) + deg(g).
```
Proof.

Parts [\(a\)](#page-19-0), [\(b\)](#page-19-1): easy. Part [\(c\)](#page-19-2): Use weights & deg $x_7 \leq$ rk *T*. \Box

KORK ERKER ADAM ADA

Dualization

▶ Fix anti-isomorphism ⊥ of the lattice L(*V*).

- ▶ Set case: Set complement.
- ▶ *q*-analog case: Perp wrt non-degenerate bilinear form.

Induces dual map of $f: \begin{bmatrix} V & V \\ V & V \end{bmatrix}$ $\frac{V}{k}]\rightarrow \mathbb{R}$:

$$
f^{\perp}:\begin{bmatrix} V \\ n-k \end{bmatrix} \to \mathbb{R}, \quad U \mapsto f(U^{\perp})
$$

KORKARA KERKER DAGA

▶ Effect of dualization on the degree?

Theorem

(a) deg
$$
f^{\perp}
$$
 = deg f .
\n(b) For $i \in \{0, ..., \deg f\}$, the *i*-weight distribution of f^{\perp} is
\n
$$
wt_{f^{\perp}}^{(i)}(J) = \sum_{I \in \begin{bmatrix} V \\ i \end{bmatrix}} \gamma(n - k, i, rk(I^{\perp} \cap J)) wt_f^{(i)}(I)
$$
\nwhere
\n
$$
\gamma(k, i, z) := \begin{cases} \delta_{z,k} & \text{if } i = k, \\ (-1)^{i-z} \frac{1}{q^{(k-i)(i-z)+(i\frac{z}{2})}} \frac{k^{-i}}{k-1} \frac{1}{k} & \text{otherwise.} \end{cases}
$$

Proof.

- \blacktriangleright Enough to look at pencils $f = x_J$.
- ▶ Set up linear equation system for the weights of f^{\perp} , assuming that wt(ℓ) only depends on rk($\ell \cap J$).
- \blacktriangleright Equation system matrix is triangular with non-zero diagonal \implies invertible \implies Part [\(a\)](#page-21-1).
- ▶ Apply negation formula & *q*-Vandermonde formula for Gaussia[n](#page-22-0) coefficien[t](#page-41-0)s \rightsquigarrow \rightsquigarrow \rightsquigarrow compute sol[utio](#page-20-0)n \rightsquigarrow [P](#page-22-0)art [\(](#page-41-0)[b](#page-21-2)[\)](#page-0-0)[.](#page-41-0)

Change of ambient space

Two elementary ways to shrink the ambient space *V*.

$$
\blacktriangleright \ \ V \to H \qquad (H \in \begin{bmatrix} V \\ n-1 \end{bmatrix} \text{ hyperplane})
$$

$$
\blacktriangleright \ \ V \to V/P \qquad (P \in \left[\begin{smallmatrix} V \\ 1 \end{smallmatrix}\right] \text{ point})
$$

Implication on the degree?

We start with $V \rightarrow V/P$.

Theorem

\n
$$
\text{Let } 1 \leq k \leq n \text{ and } P \in \binom{V}{1}. \text{ Then}
$$
\n
$$
\Phi: \mathbb{R}^{\binom{V/P}{k-1}} \to \mathbb{R}^{\binom{V}{k}}, \qquad \Phi(f): K \mapsto \begin{cases} f(K/P) & \text{if } P \subseteq K, \\ 0 & \text{if } P \nsubseteq K. \end{cases}
$$

is an injective R*-linear map with*

$$
\operatorname{im}(\Phi) = \{ g \in \mathbb{R}^{[\chi]} \mid \operatorname{supp} g \subseteq {\chi \brack k} \mid P \} \text{ and}
$$

$$
\operatorname{deg}_V \Phi(f) = \begin{cases} 0 & \text{if } f = 0, \\ \min(\operatorname{deg}_{V/P}(f) + 1, n - k) & \text{otherwise.} \end{cases}
$$

Proof.

- ▶ Straightforward, except "deg*^V* Φ(*f*) [≥] deg*V*/*P*(*f*) + 1".
- \blacktriangleright Lemma. In main case For all $g \in \text{im } \Phi$: $P \nleq T \implies \text{wt}_g(T) = 0$. Proof. Incidence matrices of certain attenuated geometries are of full rank. (Guo, Li, Wang, 2014.)

Kロト K個 K K B X モト (目) のQ C

Theorem *Let* 1 ≤ *n* − *k* ≤ *n* and $H \in \begin{bmatrix} V \\ n \end{bmatrix}$ *n*−1 *. Then* $\Psi: \mathbb{R}^{N \choose K} \rightarrow \mathbb{R}^{N \choose K}, \qquad \Psi(f): K \mapsto$ $\int f(K)$ *if* $K \subseteq H$, 0 *if K* ⊈ *H*

is an injective R*-linear map with*

$$
\text{im}(\Psi) = \{g \in \mathbb{R}^{N \choose k} \mid \text{supp } g \subseteq {H \choose k} \} \text{ and}
$$

$$
\text{deg}_V \Psi(f) = \begin{cases} 0 & \text{if } f = 0, \\ \min(\text{deg}_H(f) + 1, k) & \text{otherwise.} \end{cases}
$$

KORKARA KERKER DAGA

Proof.

Follows from the previous theorem by dualization.

Example (Basic sets)

Start with "complete set" $\begin{bmatrix} W \\ \ell \end{bmatrix}$ $\binom{n}{\ell}$ of degree 0.

▶ *i*-fold application of Φ and *j*-fold application of Ψ

$$
\rightsquigarrow \mathsf{basic} \; \mathsf{set} \; \mathcal{F}(I,J) = \Big\{ K \in \left[\begin{matrix} V \\ k \end{matrix} \right] \mid I \subseteq K \subseteq J \Big\}.
$$

▶ By theorems: $\deg \mathcal{F}(I, J) = i + j$ (in the main case).

Example (Basic sets)

Start with "complete set" $\begin{bmatrix} W \\ \ell \end{bmatrix}$ $\binom{n}{\ell}$ of degree 0.

▶ *i*-fold application of Φ and *j*-fold application of Ψ

$$
\rightsquigarrow \mathsf{basic} \; \mathsf{set} \; \mathcal{F}(I,J) = \Big\{ K \in \left[\begin{matrix} V \\ k \end{matrix} \right] \; | \; I \subseteq K \subseteq J \Big\}.
$$

▶ By theorems: $\deg \mathcal{F}(I, J) = i + j$ (in the main case).

Example (Basic sets (cont.))

- \blacktriangleright Basic sets $\mathcal{F}(I, J)$ include pencils $(i = 0)$ and dual pencils $(i = 0)$. In particular deg $x_I = k$ (in the main case).
- \triangleright Geometric property of $\mathcal{F}(I, J)$

\longleftrightarrow

design property of *i*-fold derived and *j*-fold residual design.

KORKARA KERKER DAGA

Sets and Boolean functions

- ▶ Of particular interest: Sets $\mathcal{F} \subseteq \begin{bmatrix} V_k \\ k \end{bmatrix}$ $\binom{V}{k}$ of low degree.
- \blacktriangleright Via characteristic functions: Sets correspond to Boolean functions $\begin{bmatrix} V_k \\ V_k \end{bmatrix}$ $\binom{V}{k} \rightarrow \{0, 1\}.$

Boolean degree 1 functions

▶ Set case:

Filmus, Ihringer 2019:

Only basic functions.

 \implies only pencils and dual pencils (since $t = 1$).

▶ *q*-analog case:

Boolean degree 1 function $=$ Cameron-Liebler set of

(*k* − 1)-spaces in PG(*n* − 1, *q*).

Non-basic examples do exist.

Classification: Hard research problem.

Computer classification

Goal.

For $q = 1$ and small n, k , classify all sets $\mathcal F$ of degree $t = 2$. Strategy.

▶ Use "basic" geometric property:

$$
\deg \chi_{\mathcal{F}} \leq t \iff \chi_{\mathcal{F}} \in \ker W^{(tk)}.
$$

KORK ERKEY EL POLO

 \rightsquigarrow Want to find all $\{0,1\}$ -vectors in ker $W^{(tk)}$.

- \blacktriangleright Find integral basis of ker $W^{(tk)}$.
	- \blacktriangleright either: computationally
	- ▶ or: Use literature like Khosrovshahi, Ajoodani-Namini (1990): *A new basis for trades*
- $\blacktriangleright \leadsto$ system of linear Diophantine equations.
- ▶ Solve using SOLVEDIOPHANT (A. Wassermann)
- ▶ Filter out isomorphic copies. (action of symmetric group \mathfrak{S}_n)

Results

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q @

Goal. Explain divisibility pattern of the sizes!

Theorem (Divisibility theorem)

Let $f: \lceil \frac{v}{k} \rceil$ $\mathcal{C}_{\mathcal{K}}^{V} \rightarrow \mathbb{Z}$ be a function of degree t. Then gcd (*[n−*0
cd (*[k−*0 *n*−0], [*n*−1
k−0], [*k*−1 *n*−1], . . . , [*n*−*t*
k−1], . . . , [*n*−*t* $\binom{n-t}{k-t}$ | #*f*. $\equiv a$ =:*a*

Proof.

- ▶ Algebraic property $\Rightarrow \exists x : \lceil \frac{y}{t} \rceil$ \mathcal{L}_t^V → ℝ with $\boldsymbol{x}^\top \mathcal{W}^{(t\mathcal{k})} = f^\top$ (1)
- ▶ Complete design: $W^{(tk)} \cdot \mathbf{1} = \lambda_{\text{max}} \cdot \mathbf{1}$ (2)
- ▶ Design theory: parameters t - (n, k, λ_{\min}) _q with $\lambda_{\min} = \frac{\lambda_{\max}}{a}$ are admissible.
- \blacktriangleright ⇒ ∃ signed *t*-(*n*, *k*, λ_{\min})_q design δ ⇒ $W^{(tk)}\delta = \lambda_{\min} \cdot \mathbf{1}$ (3)
	- ▶ Set case: Wilson, "The necessary conditions for *t*-designs are sufficient for something" (1973).

KO KORKEK EK E DAG

- ▶ *q*-analog case: Ray-Chaudhuri, Singhi (1989).
- ▶ Left multiplication of (2) and (3) by *x* [⊤], using (1) $\implies \#f = \lambda_{\max} \cdot \# \mathbf{x}$ and $\langle f, \delta \rangle = \lambda_{\min} \cdot \# \mathbf{x}$

$$
\blacktriangleright \implies \#f = a \cdot \underbrace{\langle f, \delta \rangle}_{\in \mathbb{Z}} \in \mathbb{Z}.
$$

Compare with the results

$$
q = 1, t = 2 \implies a = \gcd(\binom{n}{k}, \binom{n-1}{k-1}, \binom{n-2}{k-2}).
$$

Perfect fit!

Parameter of Cameron-Liebler sets of *k*-spaces

- ▶ Consider *q*-analog case *q* ≥ 2.
- \triangleright For sets F of degree $t = 1$ define $\mathsf{parameter}\ x := \#\mathcal{F}/\binom{n-1}{k-1}$ $_{k-1}^{n-1}$] $\in \mathbb{Q}$
- \triangleright Corollary of divisibility theorem:

$$
\frac{q^k-1}{q^{\gcd(n,k)}-1}\cdot x\in\mathbb{Z},
$$

restricting denominator of fraction *x* in canceled form.

Example

▶ $k \mid n \implies x \in \mathbb{Z}$. Already known: Blokhuis, De Boeck, D'haeseleer (2019).

$$
\triangleright \ \text{ and } k \text{ coprime} \implies (1 + q + \ldots + q^{k-1}) \cdot x \in \mathbb{Z}.
$$

$$
\blacktriangleright k = 4, n \equiv 2 \pmod{4} \implies (1 + q^2) \cdot x \in \mathbb{Z}.
$$

The paired construction

- \triangleright Construction for the set case $q = 1$ only.
- ▶ Idea. Disjoint union of two "opposite" basic sets.
- ▶ Let *I*, *J* ⊆ *V* be disjoint, not both empty. Define

$$
\mathcal{P}(I,J) := \mathcal{F}(I,J^\complement) \uplus \mathcal{F}(J,I^\complement)
$$

▶ Clear:

 $deg P(I, J) < min(\#I + \#J, k)$ (trivial bound)

KORKARA KERKER DAGA

 \triangleright Will see: There are cases with a strict " \lt "!

Example (1)

$$
V = \{1,\ldots,6\}, k = 3, l = \emptyset, J = \{4,5,6\},
$$

$\mathcal{P}(\emptyset, \{4, 5, 6\})$

=
$$
\mathcal{F}(\emptyset, \{1, 2, 3\}) \oplus \mathcal{F}(\{4, 5, 6\}, \{1, 2, 3, 4, 5, 6\})
$$

= $\{\{1, 2, 3\}, \{4, 5, 6\}\}\$

- ▶ This is the Baby example!
- ▶ Already seen: deg $P(\emptyset, \{1, 2, 3\}) = 2$

▶ . . . beating the trivial bound "≤ 3"!

Example (2)

$$
V = \{1,\ldots,7\}, k = 3, l = \{1\}, J = \{6,7\}.
$$

 $\mathcal{P}(\{1\}, \{6, 7\})$

- $=$ $\mathcal{F}(\{1\},\{1,2,3,4,5\}) \oplus \mathcal{F}(\{6,7\},\{2,3,4,5,6,7\})$
- $=\quad \{ \{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,3,4\}, \{1,3,5\}, \{1,4,5\},\$ $\{2,6,7\}, \{3,6,7\}, \{4,6,7\}, \{5,6,7\}$
- ▶ Vizualization of 2-weights:

KOD KARD KED KED BE YOUR

 \rightarrow deg($\mathcal{P}({1}, {6}, 7)$) = 2. \blacktriangleright ... again beating the trivial bound "< 3"! Theorem

Let q = 1, *I*, *J* \subseteq *V* disjoint, *i* = #*I*, *j* = #*J*, *k* $\leq \frac{n}{2}$ $\frac{n}{2}$, *i* ≤ *k* ≤ *n* − *i, j* ≤ *k* ≤ *n* − *j. In the cases*

```
(a) i + j \leq k and i + j odd;
```

```
(b) i + j ≥ k and k odd and n = 2k
```
we have

$$
\deg \mathcal{P}(I,J) \leq \min(i+j,k)-1.
$$

Proof (Idea).

Part [\(a\)](#page-37-0): Write $\chi_{P(I,J)}$ as an integer linear combination of basic functions of degree *i* + *j* − 1.

Part [\(b\)](#page-37-1):

- ▶ Use $\mathcal{P}(X, Y) = \mathcal{P}(X \cup \{x\}, Y) \cup \mathcal{P}(X, Y \cup \{x\})$ (where $X, Y, \{x\}$ are pairwise disjoint)
- ▶ Moving elements from *J* to *I* \rightsquigarrow deg $\mathcal{P}(I, J) \leq$ deg $\mathcal{P}(K, J')$
- ▶ $P(K, J') = P(K, \emptyset) \implies$ Back in Case [\(a\)](#page-37-0)[.](#page-38-0)

Theorem *Let q* = 1, *I*, *J* \subseteq *V* disjoint, *i* = #*I*, *j* = #*J*, *k* $\leq \frac{n}{2}$ *i* ≤ *k* ≤ *n* − *i, j* ≤ *k* ≤ *n* − *j. In the cases* (a) $i + j \leq k$ and $i + j$ odd;

(b) $i + j > k$ and k odd and $n = 2k$

we have

$$
\deg \mathcal{P}(I,J) \leq \min(i+j,k)-1.
$$

 $\frac{11}{2}$,

KOD KARD KED KED BE YOUR

Work in progress / Conjecture

Statement of Theorem is best possible.

 \blacktriangleright In fact always equality

$$
\deg \mathcal{P}(I,J) = \min(i+j,k)-1.
$$

 \blacktriangleright In all cases not covered by [\(a\)](#page-37-0) and [\(b\)](#page-37-1), the trivial bound is sharp:

$$
\deg \mathcal{P}(I,J) = \min(i+j,k).
$$

Small sets of degree *t*

- ▶ Natural question. Smallest size $m_q(n, k, t)$ of a non-empty set of degree $\leq t$?
- **From** deg $x_7 = t$ we get

$$
m_q(n,k,t) \leq \binom{n-t}{k-t}.\tag{*}
$$

KORK ERKER ADAM ADA

- **►** Bound $(*)$ is always sharp for $t = 1$.
	- ▶ Set case: Filmus, Ihringer (2019).
	- ▶ *q*-analog case: Blokhuis, De Boeck, D'haeseleer (2019).
- ▶ For $q = 1$, $n = 2k$, $t > 2$ even, $i = 0$ and $j = t + 1$, the paired construction beats bound ([∗](#page-39-0))!

Corollary

Let t ∈ {0, . . . , *k* − 1} *be even. Then*

$$
m_1(2k, k, t) \leq 2 \cdot {2k - t - 1 \choose k}.
$$

Open problems

- ▶ Many!
- ▶ For fixed (*q*, *n*, *k*, *t*), characterize the sizes of degree *t* sets.
	- \blacktriangleright Smallest,
	- \blacktriangleright second smallest.
	- \blacktriangleright gaps,
	- \blacktriangleright etc.
- \blacktriangleright Further investigate and exploit relationship

degree *t* functions ←→ *t*-designs.

KORK ERKER ADAM ADA

Which results can be translated?

▶ Maybe most important:

Better name for the studied objects.

- $▶$ "dual designs"? $→$ ambiguous.
- ▶ Something involving "Cameron-Liebler"?
- ▶ other ideas?

Thank you!

Slides will be uploaded at

<https://mathe2.uni-bayreuth.de/michaelk/>