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Introductory remarks
▶ Joint work with

Jonathan Mannaert and Alfred Wassermann.
▶ Despite title

“The degree of functions
in the Johnson and q-Johnson schemes”
No association schemes in this talk!

▶ Motivation (next slide) is geometric.
Indeed: Topic close to design theory.
Studied objects are “dual designs”.



Cameron-Liebler line classes
▶ Cameron, Liebler 1982:

“Special” set L of lines in PG(3,q).
▶ Defined by the following equivalent properties:

▶ Algebraic property:
χL ∈ R-row space of the point-line incidence matrix.

▶ Geometric property:
Constant intersection with any line spread of PG(3,q).

In literature: Various directions of generalization
▶ Ambient space PG(n,q).
▶ lines −→ k -spaces.
▶ Allow q = 1 (set case).
▶ points −→ spaces of degree t .

Goal
Coherent theory of all above generalizations.



Subset and subspace lattices
▶ Fix q = 1 (set case) or prime power q ≥ 2 (q-analog case).
▶ Fix n non-negative integer.

▶ Let V be a

{
set of size n
Fq-vector space of dimension n

▶ Let L(V ) be the lattice of all

{
subsets of V
Fq-subspaces of V

▶ For U ∈ L(V ) let rk(U) =

{
#U
dim(U)

▶ Let
[V

k

]
= {U ∈ L(V ) | rk(U) = k}.

Set case: #
[V

k

]
=

(n
k

)
=

[n
k

]
1 Binomial coefficient.

q-analog case: #
[V

k

]
=

[n
k

]
q Gaussian coefficient.

▶ Always: Use algebraic dimension!
(Except in established symbols like PG(n,q).



Algebraic property
▶ Algebraic property of Cameron-Liebler line classes:

χL ∈ R-row space of the point-line incidence matrix.
▶ Straightforward generalization:

▶ Let W (tk) incidence matrix of t-spaces vs. k -spaces.
▶ Let Vt be the R-row space of W (tk).
▶ Function f :

[V
k

]
→ R has algebraic property At if f ∈ Vt .

Baby example
▶ Let q = 1, V = {1,2,3,4,5,6} (so n = 6), k = 3, t = 2.
▶ Let F = {{1,2,3}, {4,5,6}} ⊆

[V
3

]
.

▶ Claim: Set F has algebraic property A2,
i. e. its characteristic function χF :

[V
3

]
→ R has prop. A2.



Baby example (cont.)



Baby example (cont.)
▶ F = {{1,2,3}, {4,5,6}}.
▶ We found: F has property A2

and the vector of 2-weights of F is

wt
(2)
F = (1

3 ,
1
3 ,−

1
6 ,−

1
6 ,−

1
6 ,

1
3 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,−

1
6 ,

1
3 ,

1
3 ,

1
3).

▶ Visualization.

▶ Exercise.
F does not have A1.



Geometric property
▶ Geometric property of Cameron-Liebler line classes:

Constant intersection with any line spread of PG(3,q)
▶ Generalization? – Not so clear.
▶ Observation:

line spread of PG(3,q)

= set of lines in PG(3,q) covering every point exactly once

= simple 1-(4,2,1)q subspace design
▶ ⇝ use designs!

Definition: Simple design
A set D ⊆

[V
k

]
is called a simple t-(n, k , λ)q design,

if every T ∈
[V

t

]
is contained in exactly λ elements of D.

▶ set case q = 1: combinatorial design
▶ q-analog case q ≥ 2: subspace design



Example
▶ Let q = 1, V = {1,2,3,4,5,6} (so n = 6), k = 3, t = 2.
▶ Let
D =

{
{1,2,3}, {1,2,4}, {1,3,6}, {1,4,5}, {1,5,6},

{2,4,6}, {2,5,6}, {2,3,5}, {3,4,5}, {3,4,6}
}
⊆

[
V
3

]
.

▶ Check design condition for t = 2.
▶ T = {1,2} is contained in blocks {1,2,3} and {1,2,4}.
▶ T = {1,3} is contained in blocks {1,2,3} and {1,3,6}.
▶ . . .
▶ T = {5,6} is contained in blocks {1,5,6} and {2,5,6}.

▶ =⇒ D is simple 2-(6,3,2)1 design.

Example (Trivial simple designs)
▶ ∅ is empty t-(v , k ,0)q design.
▶

[V
k

]
is complete t-(v , k , λmax)q design

where λmax :=
[n−t

k−t

]
.



Definition: Simple design (repeated)
A set D ⊆

[V
k

]
is called a simple t-(n, k , λ)q design,

if every T ∈
[V

t

]
is contained in exactly λ elements of D.

▶ set case q = 1: combinatorial design
▶ q-analog case q ≥ 2: subspace design

Reformulation in characteristic functions
▶ Let xT be characteristic function

of pencil {K ∈
[V

k

]
| T ⊆ K}.

▶ For f ,g :
[V

k

]
→ R

fix standard inner product ⟨f ,g⟩ =
∑

K∈[Vk ]
f (K )g(K ).

▶ Note that #(F ∩ G) = ⟨χF , χG⟩ for F ,G ⊆
[V

k

]
.

▶ D is simple t-(n, k , λ)q design
⇐⇒ ⟨xT , χD⟩ = λ for all T ∈

[V
t

]
.

▶ ⇝ generalization to real designs.



Generalized definition: Real design
A function f :

[V
k

]
→ R is called a real t-(n, k , λ)q design,

if ⟨xT , f ⟩ = λ for all T ∈
[V

t

]
.

▶ f null design or trade if λ = 0.
▶ f signed design if im(f ) ⊆ Z.
▶ f design or possibly non-simple design if im(f ) ⊆ N.

(Idea: simple design, but with possibly repeated blocks)
▶ f (characteristic function of) simple design
⇐⇒ im(f ) ⊆ {0,1} ⇐⇒ f Boolean.

Further reformulation
▶ Observation:

Functions xT (interpreted as vectors)
are the rows of incidence matrix W (tk).

▶ Therefore:
f real t-(n, k , λ)q design ⇐⇒ W (tk)f = λ1.

▶ In particular:
f real t-(n, k ,0)q null design ⇐⇒ W (tk)f = 0

⇐⇒ f ∈ kerW (tk).



Geometric property, basic version
▶ For λ ∈ R let Uλ :=set of real t-(n, k , λ)q design.
▶ Just seen: U0 = kerW (tk).
▶ Set of functions with At was Vt = rowspW (tk).

=⇒ Vt = U⊥
0

What did we get?
▶ Established a connection to designs.
▶ Concept known as Delsarte’s design orthogonality.
▶ Compared to prototype

“constant intersection with all spreads”:
Want similar property for λ ̸= 0!



Geometric property, version II
▶ Fix λ ∈ R.
▶ Scaled complete design λ

λmax
· 1 is real t-(n, k , λ)q design.

▶ As solution of linear equation system W (tk)f = λ1:

Uλ = λ
λmax
· 1 + kerW (tk)︸ ︷︷ ︸

=U0=V⊥
t

.

▶ =⇒

Uλ =
{
δ :

[
V
k

]
→ R | ⟨f , δ⟩ = λ

λmax
·#f for all f ∈ Vt

}
and

Vt =
{

f :
[
V
k

]
→ R | ⟨f , δ⟩ = λ

λmax
·#f for all δ ∈ Uλ

}
Vers. II

(with #f =
∑

K∈[Vk ]
f (K ) = ⟨f ,1⟩, motivated by #F = #χF )

▶ Still room for improvement:
▶ Not happy about “For all real . . . designs”.
⇝ enough to look at basis of Uλ.

▶ Allow mixed values of λ.



Example
▶ q = 1, n = 6, k = 3, t = 2⇝ λmax =

[6−2
3−2

]
= 4.

▶ Baby example: F = {{1,2,3}, {4,5,6}}, seen: χF ∈ V2.
▶ Geometric property =⇒ For each 2-(6,3,2)1 design:

⟨χF , δ⟩ =
λ

λmax
·#χF =

2
4
· 2 = 1.

▶ =⇒ Each simple 2-(6,3,2)1 design D
contains exactly one of the blocks {1,2,3} and {4,5,6}.

▶ ⇝ D is anti-complementary.
▶ Can also be shown using intersection numbers.



Geometric property, toolbox version
▶ U∗ := set of all real t-(v , k , λ)q designs

with arbitrary value λ ∈ R.
▶ By scaled complete designs: U∗ = U0 + ⟨1⟩R.
▶ Lemma (Toolbox version of geometric property).

Let ∆ ⊆ U∗. Then

Vt =
{

f :
[
V
k

]
→ R | ⟨f , δ⟩ = λδ

λmax
·#f for all δ ∈ ∆

}
⇐⇒ ⟨∆ ∪ {1}⟩R = U∗

Proof. Dimension argument. Use that W (tk) has full rank.
(Set case: Gottlieb 1966, q-analog case: Kantor 1972)

▶ Question: Suitable sets ∆?



Lemma
Let ∆ be
(a) the set of all signed t-(n, k ,0)q null designs or

(b) the set of all possibly non-simple t-(n, k , λ)q designs
Then U∗ = ⟨∆ ∪ {1}⟩R.

Proof.
Part (a).
▶ entries of W (tk) are in Q.
▶ =⇒ U0 = kerW (tk) has rational basis.
▶ Multiply by common denominators⇝ integral basis B.
▶ =⇒ B ⊆ ∆ and ⟨B ∪ {1}⟩R = U∗.

Part (b).
▶ Start with B.
▶ Add suitable integral multiples of 1

⇝ non-negative integral set B′.
▶ =⇒ B′ ⊆ ∆ and ⟨B′ ∪ {1}⟩R = U∗.



We arrive at:

Theorem
Let f :

[V
k

]
→ R. The following are equivalent.

(i) Algebraic property: f ∈ Vt .
Geometric properties:

(ii) There is a constant c ∈ R such that ⟨f , δ⟩ = λδc
for all real t-(n, k , λδ)q designs δ with λδ ∈ R.

(iii) ⟨f , δ⟩ = 0
for all signed t-(n, k ,0)q null designs δ :

[V
k

]
→ Z.

(iv) There is a constant c ∈ R such that ⟨f , δ⟩ = λδc
for all possibly non-simple t-(n, k , λδ)q designs δ :

[V
k

]
→ N.

The constant in properties (ii) and (iv) necessarily equals
c = 1

λmax
·#f .



Geometric property: Discussion
▶ Tempting: Is the following a suitable geometric property?

“There is a constant c ∈ R such that ⟨f , δ⟩ = λc for all
simple t-(n, k , ∗)q designs”

▶ By toolbox version: If and only if
⟨{simple t-(n, k , ∗)q designs}⟩R = U∗ (richness cond)

▶ Unfortunately: Not always true.

Counterexample. q = 1, n = 10, k = 5, t = 4.
By integraliy conditions: All simple 4-(10,5, ∗)1 are trivial.
=⇒ dim⟨{simple 4-(10,5, ∗)1 designs}⟩R = 1, too small!

▶ Research problem. (probably hard!)
Classify the parameters (q,n, k , t) where the richness
condition holds.



The Degree
▶ Fix k ∈ {0, . . . ,n} and f :

[V
k

]
→ R.

▶ Lemma.
{1} = V0 ⊊ V1 ⊊ . . . ⊊ Vk = V .

Proof. W (ij)W (jk) ∼W (ik) for 0 ≤ i ≤ j ≤ k .
▶ Definition.

Degree deg(f ) := smallest t such that f ∈ Vt .

Example
▶ Functions f of degree 0

are the scalar functions f = λ1 with λ ∈ R.
▶ Baby example F = {{1,2,3}, {4,5,6}}.

In V = {1,2,3,4,5,6} we have deg(F) := deg(χF ) = 2.
▶ Seen: χF ∈ V2.
▶ Exercise: χF /∈ V1.

▶ In V = {1,2,3,4,5,6,7} we have deg(F) = 3.
=⇒ Ambient space V matters!



The Degree (cont.)
▶ Remember. Rows of W (tk) are the t-pencils xT .
▶ ⇝ Alternative characterization of degree.

deg(f ) is smallest t
such that f is a linear combination of t-pencils xT .
The (unique) coefficients are called t-weights wtf (T ) of f :

f =
∑

T∈[Vt ]

wtf (T )xT

Lemma
(a) deg(λf ) ≤ deg(f ) with equality iff λ ̸= 0.

(b) deg(f + g) ≤ max(deg(f ), deg(g)).

(c) deg(fg) ≤ deg(f ) + deg(g).

Proof.
Parts (a), (b): easy. Part (c): Use weights & deg xT ≤ rkT .



Dualization
▶ Fix anti-isomorphism ⊥ of the lattice L(V ).

▶ Set case: Set complement.
▶ q-analog case: Perp wrt non-degenerate bilinear form.

▶ Induces dual map of f :
[V

k

]
→ R:

f⊥ :

[
V

n − k

]
→ R, U 7→ f (U⊥)

▶ Effect of dualization on the degree?



Theorem
(a) deg f⊥ = deg f .

(b) For i ∈ {0, . . . , deg f}, the i-weight distribution of f⊥ is

wt
(i)
f⊥(J) =

∑
I∈[Vi ]

γ(n − k , i , rk(I⊥ ∩ J)) wt(i)f (I)

where

γ(k , i , z) :=


δz,k if i = k,

(−1)i−z 1

q(k−i)(i−z)+(i−z
2 )

[k−i
1

][k−z
1

] 1[k
z

] otherw.

Proof.
▶ Enough to look at pencils f = xJ .
▶ Set up linear equation system for the weights of f⊥,

assuming that wt(I) only depends on rk(I ∩ J).
▶ Equation system matrix is triangular with non-zero diagonal

=⇒ invertible =⇒ Part (a).
▶ Apply negation formula & q-Vandermonde formula for

Gaussian coefficients⇝ compute solution⇝ Part (b).



Change of ambient space
Two elementary ways to shrink the ambient space V .
▶ V → H (H ∈

[ V
n−1

]
hyperplane)

▶ V → V/P (P ∈
[V

1

]
point)

Implication on the degree?

We start with V → V/P.



Theorem
Let 1 ≤ k ≤ n and P ∈

[V
1

]
. Then

Φ : R[
V/P
k−1] → R[

V
k ], Φ(f ) : K 7→

{
f (K/P) if P ⊆ K ,
0 if P ⊈ K

is an injective R-linear map with

im(Φ) = {g ∈ R[
V
k ] | suppg ⊆

[
V
k

]
|P} and

degV Φ(f ) =

0 if f = 0,

min(

main case︷ ︸︸ ︷
degV/P(f ) + 1,n − k) otherwise.

Proof.
▶ Straightforward, except “degV Φ(f ) ≥ degV/P(f ) + 1”.
▶ Lemma. In main case

For all g ∈ imΦ: P ≰ T =⇒ wtg(T ) = 0.
Proof. Incidence matrices of certain attenuated geometries
are of full rank. (Guo, Li, Wang, 2014.)



Theorem
Let 1 ≤ n − k ≤ n and H ∈

[ V
n−1

]
. Then

Ψ : R[
H
k ] → R[

V
k ], Ψ(f ) : K 7→

{
f (K ) if K ⊆ H,
0 if K ⊈ H

is an injective R-linear map with

im(Ψ) = {g ∈ R[
V
k ] | suppg ⊆

[H
k

]
} and

degV Ψ(f ) =

{
0 if f = 0,
min(degH(f ) + 1, k) otherwise.

Proof.
Follows from the previous theorem by dualization.



Example (Basic sets)
▶ Start with “complete set”

[W
ℓ

]
of degree 0.

▶ i-fold application of Φ and j-fold application of Ψ

⇝ basic set F(I, J) =
{

K ∈
[
V
k

]
| I ⊆ K ⊆ J

}
.

▶ By theorems: degF(I, J) = i + j (in the main case).



Example (Basic sets)
▶ Start with “complete set”

[W
ℓ

]
of degree 0.

▶ i-fold application of Φ and j-fold application of Ψ

⇝ basic set F(I, J) =
{

K ∈
[
V
k

]
| I ⊆ K ⊆ J

}
.

▶ By theorems: degF(I, J) = i + j (in the main case).



Example (Basic sets (cont.))
▶ Basic sets F(I, J) include

pencils (j = 0) and dual pencils (i = 0).
In particular deg x I = k (in the main case).

▶ Geometric property of F(I, J)

←→

design property of i-fold derived and j-fold residual design.



Sets and Boolean functions
▶ Of particular interest: Sets F ⊆

[V
k

]
of low degree.

▶ Via characteristic functions:
Sets correspond to Boolean functions

[V
k

]
→ {0,1}.

Boolean degree 1 functions
▶ Set case:

Filmus, Ihringer 2019:
Only basic functions.
=⇒ only pencils and dual pencils (since t = 1).

▶ q-analog case:
Boolean degree 1 function = Cameron-Liebler set of
(k − 1)-spaces in PG(n − 1,q).
Non-basic examples do exist.
Classification: Hard research problem.



Computer classification
Goal.
For q = 1 and small n, k , classify all sets F of degree t = 2.
Strategy.
▶ Use “basic” geometric property:

degχF ≤ t ⇐⇒ χF ∈ kerW (tk).

⇝Want to find all {0,1}-vectors in kerW (tk).
▶ Find integral basis of kerW (tk).

▶ either: computationally
▶ or: Use literature like

Khosrovshahi, Ajoodani-Namini (1990):
A new basis for trades

▶ ⇝ system of linear Diophantine equations.
▶ Solve using SOLVEDIOPHANT (A. Wassermann)
▶ Filter out isomorphic copies.

(action of symmetric group Sn)



Results
n k size distribution Σ

6 3 2 43658810812814516318 42

7 3 5210615112011256302 38

8 3 6 8 11 12 14 15216 17 18 20221 22 23 24325 26427 282 . . . 50

9 3 7 142215284355421149556463570277 45

10 3 8 16 20 242283322363402442482522565605645682722 . . . 57

8 4 10 15220330635240650355260 26

9 4 2123535647049131052 18

10 4 28 42 56270 84 9831123126 140 1542168 182 18

11 4 36 78 842120 126 16231683204 210 2462252 294 18

12 4 45 1202135 165 210 24032553285 330 360 3752450 18

blue = sizes of basic sets

Goal. Explain divisibility pattern of the sizes!



Theorem (Divisibility theorem)
Let f :

[V
k

]
→ Z be a function of degree t. Then

gcd
([n−0

k−0

]
,
[n−1

k−1

]
, . . . ,

[n−t
k−t

])︸ ︷︷ ︸
=:a

| #f .

Proof.
▶ Algebraic property⇒ ∃x :

[V
t

]
→ R with x⊤W (tk) = f⊤. (1)

▶ Complete design: W (tk) · 1 = λmax · 1 (2)
▶ Design theory:

parameters t-(n, k , λmin)q with λmin = λmax
a are admissible.

▶ ⇒ ∃ signed t-(n, k , λmin)q design δ ⇒W (tk)δ = λmin · 1 (3)
▶ Set case: Wilson, “The necessary conditions for t-designs

are sufficient for something” (1973).
▶ q-analog case: Ray-Chaudhuri, Singhi (1989).

▶ Left multiplication of (2) and (3) by x⊤, using (1)
=⇒ #f = λmax ·#x and ⟨f , δ⟩ = λmin ·#x

▶ =⇒ #f = a · ⟨f , δ⟩︸ ︷︷ ︸
∈Z

∈ Z.



Compare with the results
q = 1, t = 2 =⇒ a = gcd(

(n
k

)
,
(n−1

k−1

)
,
(n−2

k−2

)
).

n k size distribution a

6 3 2 43658810812814516318 2

7 3 5210615112011256302 5

8 3 6 8 11 12 14 15216 17 18 20221 22 23 24325 26427 282 . . . 1

9 3 7 142215284355421149556463570277 7

10 3 8 16 20 242283322363402442482522565605645682722 . . . 4

8 4 10 15220330635240650355260 5

9 4 2123535647049131052 7

10 4 28 42 56270 84 9831123126 140 1542168 182 14

11 4 36 78 842120 126 16231683204 210 2462252 294 6

12 4 45 1202135 165 210 24032553285 330 360 3752450 15

Perfect fit!



Parameter of Cameron-Liebler sets of k -spaces
▶ Consider q-analog case q ≥ 2.
▶ For sets F of degree t = 1 define

parameter x := #F/
[n−1

k−1

]
∈ Q

▶ Corollary of divisibility theorem:

qk − 1
qgcd(n,k) − 1

· x ∈ Z,

restricting denominator of fraction x in canceled form.

Example
▶ k | n =⇒ x ∈ Z.

Already known: Blokhuis, De Boeck, D’haeseleer (2019).
▶ n and k coprime =⇒ (1 + q + . . .+ qk−1) · x ∈ Z.
▶ k = 4, n ≡ 2 (mod 4) =⇒ (1 + q2) · x ∈ Z.



The paired construction
▶ Construction for the set case q = 1 only.
▶ Idea. Disjoint union of two “opposite” basic sets.
▶ Let I, J ⊆ V be disjoint, not both empty. Define

P(I, J) := F(I, J∁) ⊎ F(J, I∁)

▶ Clear:

degP(I, J) ≤ min(#I +#J, k) (trivial bound)

▶ Will see: There are cases with a strict “<”!



Example (1)
▶ V = {1, . . . ,6}, k = 3, I = ∅, J = {4,5,6},

P(∅, {4,5,6})
= F(∅, {1,2,3}) ⊎ F({4,5,6}, {1,2,3,4,5,6})
= {{1,2,3}, {4,5,6}}

▶ This is the Baby example!
▶ Already seen: degP(∅, {1,2,3}) = 2

▶ . . . beating the trivial bound “≤ 3”!



Example (2)
▶ V = {1, . . . ,7}, k = 3, I = {1}, J = {6,7}.

P({1}, {6,7})
= F({1}, {1,2,3,4,5}) ⊎ F({6,7}, {2,3,4,5,6,7})
=

{
{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5},
{2,6,7}, {3,6,7}, {4,6,7}, {5,6,7}

}
▶ Vizualization of 2-weights:

▶ =⇒ deg(P({1}, {6,7}) = 2.
▶ . . . again beating the trivial bound “≤ 3”!



Theorem
Let q = 1, I, J ⊆ V disjoint, i = #I, j = #J, k ≤ n

2 ,
i ≤ k ≤ n − i , j ≤ k ≤ n − j .
In the cases
(a) i + j ≤ k and i + j odd;

(b) i + j ≥ k and k odd and n = 2k
we have

degP(I, J) ≤ min(i + j , k)− 1.

Proof (Idea).
Part (a): Write χP(I,J) as an integer linear combination
of basic functions of degree i + j − 1.
Part (b):
▶ Use P(X ,Y ) = P(X ⊎ {x},Y ) ⊎ P(X ,Y ⊎ {x})

(where X ,Y , {x} are pairwise disjoint)
▶ Moving elements from J to I ⇝ degP(I, J) ≤ degP(K , J ′)

▶ P(K , J ′) = P(K , ∅) =⇒ Back in Case (a).



Theorem
Let q = 1, I, J ⊆ V disjoint, i = #I, j = #J, k ≤ n

2 ,
i ≤ k ≤ n − i , j ≤ k ≤ n − j .
In the cases
(a) i + j ≤ k and i + j odd;
(b) i + j ≥ k and k odd and n = 2k

we have
degP(I, J) ≤ min(i + j , k)− 1.

Work in progress / Conjecture
Statement of Theorem is best possible.
▶ In fact always equality

degP(I, J) = min(i + j , k)− 1.

▶ In all cases not covered by (a) and (b),
the trivial bound is sharp:

degP(I, J) = min(i + j , k).



Small sets of degree t
▶ Natural question.

Smallest size mq(n, k , t) of a non-empty set of degree ≤ t?
▶ From deg xT = t we get

mq(n, k , t) ≤
[
n − t
k − t

]
. (∗)

▶ Bound (∗) is always sharp for t = 1.
▶ Set case: Filmus, Ihringer (2019).
▶ q-analog case: Blokhuis, De Boeck, D’haeseleer (2019).

▶ For q = 1, n = 2k , t ≥ 2 even, i = 0 and j = t + 1,
the paired construction beats bound (∗)!

Corollary
Let t ∈ {0, . . . , k − 1} be even. Then

m1(2k , k , t) ≤ 2 ·
(

2k − t − 1
k

)
.



Open problems
▶ Many!
▶ For fixed (q,n, k , t), characterize the sizes of degree t sets.

▶ Smallest,
▶ second smallest,
▶ gaps,
▶ etc.

▶ Further investigate and exploit relationship
degree t functions←→ t-designs.

Which results can be translated?
▶ Maybe most important:

Better name for the studied objects.
▶ “dual designs”? −→ ambiguous.
▶ Something involving “Cameron-Liebler”?
▶ other ideas?



Thank you!

Slides will be uploaded at
https://mathe2.uni-bayreuth.de/michaelk/

https://mathe2.uni-bayreuth.de/michaelk/

