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Subspace codes

I Given: Communication network
with several senders and receivers.
(internet broadcasting, cloud storage, . . .)

I From example:
For optimal transmission times, consider sending linear
combinations of messages.

I Error correction in such networks?
I Electrical engineers Kötter and Kschischang in 2008:

Definition of suitable error correcting codes
for network coding.

I Interesting mathematical objects on its own.
I Interconnections to several established fields of research.
I Interpretation: q-analog (or geometrization) of classical

binary block codes.



Fixed notation
I q prime power
I V an Fq-vector space of dimension v .
I L(V ) lattice of all subspaces of V .
I Grassmannian

[V
k

]
q := Set of all k -dim. subspaces of V .

Reminder: #
[V

k

]
q =

[v
k

]
q Gaussian binomial coefficient.

Projective geometry
I Subspace lattice L(V )

= finite projective geometry PG(V ) ∼= PG(v − 1,q)
I Elements of

[V
1

]
q are points.

I Elements of
[V

2

]
q are lines.

I Elements of
[V

3

]
q are planes.

I Elements of
[V

4

]
q are solids.

I Elements of
[ V

v−1

]
q

are hyperplanes.



Definition (Kötter, Kschischang 2008)
I subspace distance on L(V ):

d(A,B) = dim(A + B)− dim(A ∩ B) =
dim(A) + dim(B)− 2 dim(A ∩ B)

I C ⊆ L(V ) subspace code.
Its elements are the codewords or blocks of C.

I d(C) = min{d(A,B) | A 6= B ∈ C}
(minimum) subspace distance of C.

I Abbreviation: C is (v ,#C,d(C))q-subspace code.
I Important special case C ⊆

[V
k

]
q

=⇒ C constant dimension (subspace-)code,
abbreviated C (v ,#C,d(C); k)q CDC.

I We want: #C large, d(C) large
I Let Aq(v ,d ; k) maximum size M of (v ,M,d ; k)q CDC.



Research goals
I Find lower bounds for Aq(v ,d ; k)

by constructing good codes.
I Find upper bounds for Aq(v ,d ; k).
I Determine exact values of Aq(v ,d ; k).
I Classify all optimal CDCs.
I (Find efficient decoding algorithms.)
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Subspace codes and partial spreads
I For dim(A) = dim(B) = k we have

d(A,B) = 2(k − dim(A ∩ B)).
=⇒ minimum distance d(C) = 2δ of CDC C is even.

I With t := k − δ + 1:
C ⊆

[V
k

]
q CDC with d(C) ≥ 2δ

⇐⇒ every t-subspace of V
is contained in at most one codeword.

I Therefore: C ⊆
[V

k

]
q is (v ,M,2k ; k)q CDC

⇐⇒ Each point of PG(V )
is contained in at most one codeword.

I In finite geometry, these objects are known as
partial (k − 1)-spreads.



Spreads
I Partial (k − 1)-spread covering all points of PG(V )

is called (k − 1)-spread.
I Known: (k − 1)-spread exists ⇐⇒ k | v .
I =⇒ For k | v we have Aq(v ,2k ; k) =

[v
1

]
q/
[k

1

]
q = qv−1

qk−1 .

I Maximum size Aq(v ,2k ; k) of partial spreads studied since
the 1970s, not known in general.

I Recent strong result (Năstase, Sissokho 2017):
Write v = tk + r with remainder r ∈ {0, . . . , k − 1}. Then

Aq(v ,2k ; k) =
qv − qk+r

qk − 1
+ 1

whenever k >
[r

1

]
q.



Holes
I Let S be a partial (k − 1)-spread.
I Let P be its set of holes (points not covered by S).
I Observation:

P defines an Fq-linear code C of effective length #P,
C is qk−1-divisible (all Hamming weights divisible by qk−1).

I K., Kurz 2018: Classification of the effective lengths of
∆-divisible Fq-linear codes where ∆ power of q.

I Result of Năstase and Sissokho follows as a corollary!



Improvement of the Johnson bound
I Xia, Fu 2009: Important recursive bound for CDCs

(Johnson bound)

Aq(v ,d ; k) ≤
⌊

(qv − 1)Aq(v − 1,d ; k − 1)

qk − 1

⌋
I Idea: Fix a point P and consider the image in V/P.
I K., Kurz 2018: Improvement of the Johnson bound.
I Idea:

I Suitable notion of “holes” (with multiplicities!) of a CDC.
I Holes yield a divisible code, apply characterization of

effective lengths.
I Example: best known bound A2(9,6; 4) ≤ 1158 improved

to A2(9,6; 4) ≤ 1156.
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The case Aq(6,4;3)
I Smallest case not covered by results on partial spreads:

v = 6, k = 3, d = 4.
I Geometrically: Set of planes in PG(F6

q) intersecting
pairwise at most in a point.

I Best known upper bound: Aq(6,4; 3) ≤ (q3 + 1)2.
(Johnson bound + result on partial spreads)

Computer classification for q = 2
I In binary case q = 2: A2(6,4; 3) ≤ 81.
I Best known construction A2(6,4; 3) ≥ 77.
I Goal: Classify all CDCs of maximum size for q = 2.
I Huge search space: There are

[6
3

]
2 = 1395 planes,(

1395
77

)
= 129-digit number.

I Intermediate classification steps needed.



9-configurations
I 9-configuration = set of 9 planes of subspace distance ≥ 4,

passing through a common point.
I Lemma: If #C ≥ 73 then C contains a 9-configuration.
I 9-configurations =̂ partial line spreads in PG(F5

2).
I Soicher 2000: 4 isomorphism types.

17-configurations
I 17-configuration = set of 17 planes of subspace

distance ≥ 4 containing two 9-configurations.
I Lemma: If #C ≥ 74 then C contains a 17-configuration.
I Computer classification of 17-configurations:

I Compute all extensions of the 4 types of 9-configurations.
I Filter out isomorphic copies.
I Result: 12770 isomorphism types of 17-configurations.

I For each of the 12770 17-configurations,
compute all extensions to (6,M,4; 3)2 CDCs with M ≥ 77.



Result of the classification:

Theorem (Honold, K., Kurz 2015)
I A2(6,4; 3) = 77
I 5 PGL-isomorphism types of (6,77,4; 3)2 CDCs.

Analysis of the computer result
I The most symmetric (6,77,4; 3)2-code shows a clear

construction principle.
I This construction generalizes to all values of q.

Theorem (Honold, K., Kurz 2015)
For all q,

q6 + 2q2 + 2q + 1 ≤ Aq(6,4; 3) ≤ q6 + 2q3 + 1.

Next open case for q = 2 is 333 ≤ A2(7,4; 3) ≤ 381.
 q-analog of the Fano plane.
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Subset lattice
I Let V be a v -element set.
I
(V

k

)
:= Set of all k -subsets of V .

I #
(V

k

)
=
(v

k

)
.

I Subsets of V form a distributive lattice (wrt. ⊆).

Definition
D ⊆

(V
k

)
is a t-(v , k , λ) (block) design

if
each T ∈

(V
t

)
is contained in exactly λ blocks (elements of D).

I If λ = 1: D Steiner system
I If λ = 1, t = 2 and k = 3: D Steiner triple system STS(v)
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Example (Fano plane PG(2,2))

V = {1,2,3,4,5,6,7}
D = {{1,2,5}, {1,4,6}, {1,3,7}, {2,3,6},

{2,4,7}, {3,4,5}, {5,6,7}}

Fano plane D is a 2-(7,3,1) design, i.e an STS(7).



Idea of q-analogs in combinatorics
Replace subset lattice by subspace lattice!

Dictionary
original q-analog

subset lattice subspace lattice

v -element setV v -dim. Fq vector spaceV(V
k

) [V
k

]
q(v

k

) [v
k

]
q

cardinality dimension
∩ ∩
∪ +

q = 1 q proper prime power
“F1” Fq



Definition (block design, stated again)
Let V be a v -element set.
D ⊆

(V
k

)
is a t-(v , k , λ) (block) design
if each T ∈

(V
t

)
is contained in exactly λ elements of D.

q-analog of a design?

Definition (subspace design)
Let V be a v -dimensional Fq vector space.
D ⊆

[V
k

]
q is a t-(v , k , λ)q (subspace) design

if each T ∈
[V

t

]
q is contained in exactly λ elements of D.

I If λ = 1: D q-Steiner system
I If λ = 1, t = 2, k = 3: D q-Steiner triple system STSq(v)

I Geometrically:
STSq(v) is a set of planes in PG(v − 1,q)
covering each line exactly once.



Remarks
I First definition of subspace designs by P. Cameron, 1972.

“Several people have observed that the concept of a
t-design can be generalised as follows. [...]”

I 1-(v , k ,1)q designs =̂ (k − 1)-spreads in PG(v − 1,q)

I First construction of non-trivial subspace designs with
t ≥ 2 by S. Thomas in 1987.

I subspace codes = q-analog of binary block codes,
CDCs = q-analog of binary constant weight codes.

Existence of subspace designs
I Fazeli, Lovett, Vardy 2014 (non-constructive proof):

Non-trivial subspace designs exist for all t .
I Still not too many concrete constructions are known.



Known infinite series of subspace designs with t ≥ 2
I Thomas 1987; Suzuki 1990 and 1992:

2-(v ,3,q2 + q + 1; q) for all q and v ≡ ±1 (mod 6), v ≥ 7.
I A series by Itoh 1998.
I Braun, K., Kohnert, Laue 2017: 2-(v , k ,

[v−2
k−2

]
q
/2)q

for q ∈ {3,5}, v ≡ 2 (mod 4), v ≥ 6, k ≡ 3 (mod 4),
3 ≤ k ≤ v − 3.

I K., Laue, Wassermann 2018: 2-(v , k ,
[v−2

k−2

]
q
/3)2

for v ≥ 8, 2 ≤ (v mod 6) < (k mod 6) ≤ 5.

I Braun, K., Laue 2019: 2-(8,4, (q
6−1)(q3−1)

(q2−1)(q−1) )q for all q.

Subspace designs with t ≥ 3
I t = 3: Only two subspace designs known.
I t ≥ 4: no subspace design known.



Subspace designs and subspace codes
I Let C ⊆

[V
k

]
q and t = k − δ + 1.

I Remember: C is (v ,#C,2δ)q CDC
⇔ each T ∈

[V
t

]
q is contained in at most 1 element of C.

I By definition: C is t-(v , k , λ)q subspace design
⇔ each T ∈

[V
t

]
q is contained in exactly λ elements of C.

I Therefore:
C is both (v ,#C,2δ)q CDC and t-(v , k , λ)q design
⇐⇒ C is a Steiner system
(⇐⇒ C is a diameter perfect CDC)



Lemma
Let D be a t-(v , k , λ)q design and i , j ∈ {0, . . . , t} with i + j ≤ t .
Then for all I ∈

[V
i

]
q and J ∈

[ V
v−j

]
q

with I ⊆ J

λi,j := #{B ∈ D | I ⊆ B ⊆ J} = λ

[v−i−j
k−i

]
q[v−t

k−t

]
q

.

In particular, #D = λ0,0.

Corollary: Integrality conditions
If a t-(v , k , λ)q design exists, then all λi,j ∈ Z.

Sufficient to check: λi := λi,0 ∈ Z (Parameters admissible)

Corollary
STSq(v) admissible ⇐⇒ v ≡ 1,3 (mod 6).



STSq(v) for small admissible v
I v = 3

STSq(3) = {V} exists trivially.
I v = 7

q-analog of the Fano plane STSq(7).
Existence undecided for every field order q.

Most important open problem in q-analogs of designs.

I v = 9
existence open for every q.

I v = 13
STS2(13) exists (Braun, Etzion, Östergård, Vardy,
Wassermann 2013)
Only known non-trivial q-Steiner system with t ≥ 2!



Status of STSq(7)
I A STSq(7) is a set of planes in PG(F7

2) covering each line
exactly once.

I A STSq(7) has size λ0,0 = q8 + q6 + q5 + q4 + q3 + q2 + 1.
I binary: 381
I ternary: 7651

I STSq(7) exists if and only if
Aq(7,4; 3) = q8 + q6 + q5 + q4 + q3 + q2 + 1.

I Question for its existence first stated in 1972.
I Still open for every q.
I Largest known subspace codes:

I binary: 333 (Heinlein, K., Kurz, Wassermann 2019)
I ternary: 6978 (Honold, K. 2016 + extension by D. Heinlein)



q-Pascal triangle for STSq(7) D

λ0,0 = q8 + q6 + q5 + q4 + q3 + q2 + 1

λ1,0 = q4 + q2 + 1 λ0,1 = q5 + q3 + q2 + 1

λ2,0 = 1 λ1,1 = q2 + 1 λ0,2 = q2 + 1

I Each point P is contained in λ1,0 = q4 + q2 + 1 blocks.
I  derived design wrt P (“local point of view from P”)

DerP(D) = {B/P | B ∈ D with P ⊆ B} ⊆ V/P

I In general: DerP(D) is (t − 1)-(v − 1, k − 1, λ)q design.
I =⇒ DerP(STSq(7)) is 1-(6,2,1)q design.

= set of lines in PG(5,q) covering each point exactly once.
I In other words: Der(STSq(7)) is a line spread of PG(5,q).
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α-points
I spread S called geometric if for all distinct L1,L2 ∈ S:
{L ∈ S | L ⊆ L1 + L2} is spread of the solid L1 + L2.

I P is called α-point of STSq(7)
if the derived design in P is a geometric spread.

I S. Thomas 1996: There exists a non-α-point.
I O. Heden, P. Sissokho 2016: For q = 2:

Each hyperplane contains non-α-point.
I Goal: Investigate Heden-Sissokho result for general q!



I Assume that H is hyperplane containing only α-points.
I Fix a poor solid S in H (not containing any block).
I Let F = {F ∈

[H
5

]
q | S ⊆ F}.

We have #F = q + 1.
I For F ∈ F , let

LF := {B ∩ S | B ∈ D and B + S = F}.

I Lemma
I LF is a line spread of S.
I The sets LF with F ∈ F are pairwise disjoint.



Conclusion
L :=

⊎
F∈F LF is a set of (q + 1)(q2 + 1) lines in PG(3,q)

admitting a partition into q + 1 line spreads.

Lemma
For each point P in S, the q + 1 lines in L passing through P
span only a plane EP .
(In other words, the lines form a pencil in EP through P.)

Lemma
(
[S

1

]
q,L) is a projective generalized quadrangle of order (q,q).



Classification
Classification of projective generalized quadrangles:
(F. Buekenhout, C. Lefèvre 1974)
=⇒ (

[S
1

]
q,L) is symplectic generalized quadrangle W (q).

Implication
I By property of L:

The lines of W (q) admit a partition into q + 1 line spreads.
I Equivalently: The points of the parabolic quadric Q(4,q)

admit a partition into ovoids.
I Not possible for even q.

I Payne, Thas: Finite generalized quadrangles, 3.4.1(i)
I Not possible for prime q.

I Ball, Govaerts, Storme 2006:
Each ovoid in Q(4,q) is an elliptic quadric.

I Any two of them have non-trivial intersection.



Theorem (K., submitted)
Let q be prime or even and D a STSq(7).
Then each hyperplane contains a non-α-point of D.
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Automorphisms
I Fundamental theorem of projective geometry:

For v ≥ 3, Aut(L(V )) = PΓL(V ).
I Let D ⊆ L(V ), define linear automorphism group as

Aut(D) = {ϕ ∈ PGL(V ) | ϕ(D) = D}

(Aut(D) = stabilizer of D in PGL(V ).)

Automorphisms of STS2(7)
I Goal Investigate possible automorphisms of STS2(7).
I Here: PGL(V ) = GL(V ).



Automorphisms of order 3
I Case study: Automorphisms of an STS2(7) of order 3.
I Elements of order 3 in GL(v ,2) are represented by

Av ,f :=



(
1 1
1 0

)
. . . (

1 1
1 0

)
If


with f ∈ {0, . . . , v − 1}, v − f even.



Example
Elements of order 3 in GL(7,2) up to conjugates:

A7,1 =


1 1
1 0

1 1
1 0

1 1
1 0

1

 A7,3 =


1 1
1 0

1 1
1 0

1
1

1



A7,5 =


1 1
1 0

1
1

1
1

1





Example (GL(3,2))
Single element type of order 3: A3,1 =

( 1 1
1 0

1

)

I 1 fixed point
I 2 orbits of size 3 falling into:

I 1 orbit line
I 1 orbit triangle
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Action of Av ,f on the point set
[V

1

]
q

I 2f − 1 fixed points
(points of the form 〈(0, . . . ,0, ∗, . . . , ∗)〉)

I
2v−f − 1

3
orbit lines

(points of the form 〈(∗, . . . , ∗,0, . . . ,0)〉)

I
(2v−f − 1)(2f − 1)

3
orbit triangles

Example
v f fixed points orbit triangles orbit lines
3 1 1 1 1
7 1 1 21 21
7 3 7 35 5
7 5 31 31 1



Fixed planes
I Let G = 〈Av ,f 〉
I Let E ∈

[V
3

]
q be a fixed plane (i.e. EG = E)

I Then G|E is well-defined
I #G|E ∈ {1,3}
I #G|E = 1 =⇒ E has 7 fixed points (type 7)
I #G|E = 3 =⇒

E has 1 fixed point, 1 orbit line and 1 orbit triangle (type 1)



Counting fixed planes
How many fixed planes of type 1 and 7?
I Type 7:

3-subspaces of the f -dim space of fixed points.

 

[
f
3

]
2

I Type 1:
Uniquely spanned by an orbit triangle.

 #orbit triangles =
(2f − 1)(2v−f − 1)

3

Example
v f #f.p. #o.t. = #T1 #o.l. #T7
3 1 1 1 1 0
7 1 1 21 21 0
7 3 7 35 5 1
7 5 31 31 1 155



Fixed blocks
I Let D be a G-invariant STS2(v).
I F1 := set of fixed blocks of D of type 1
F7 := set of fixed blocks of D of type 7

Double count X = {(L,B) | L orbit line,B ∈ F1,L < B}.
1. #X = #F1 · 1
2. I Let L be an orbit line.

I D Steiner system =⇒ ∃ unique B ∈ D with L < B.
I For all g ∈ G: Bg > Lg = L.
I Uniqueness of B =⇒ B is fixed block.
I B contains orbit line L =⇒ B of type 1.

So: #X = #(orbit lines) · 1.

=⇒ #F1 = #orbit lines =
2v−f − 1

3

Similarly: #F7 =
(2f − 1)(2f−1 − 1)

21



Example
v f #f.p. #o.l. = #F1 #o.t. = #T1 #T7 #F7
7 1 1 21 21 0 0
7 3 7 5 35 1 1
7 5 31 1 31 155 155/7

Conclusion
I #F7 must be integral

=⇒ The group 〈A7,5〉 is not possible!
I For f = 3, the T7-plane is contained in D.
I For f = 1, all 21 T1-planes are contained in D.
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The case v = 7, f = 3

I #F7 = 1. Let B be this block and P ∈
[B

1

]
q. =⇒ P fixed.

I Through P: The block B and λ1 − 1 = 20 others.
I Orbit lengths 1 or 3 =⇒ ≥ 2 fixed blocks among them!
I In total: At least 14 fixed blocks different from B.
I But #F1 = 5. Contradiction!
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The case v = 7, f = 1
I We didn’t find a theoretic argument to exclude G = 〈A7,1〉.
I We know: D contains the set S of 21 T1-blocks.

They all pass through P = 〈(0,0,0,0,0,0,1〉).
In V/P ∼= PG(5,2), they form a Desarguesian line spread.

I Problem: Out of 3720 orbits of length 3, select 120
such that together with S, they form an STS2(7).
Huge search space!

I Normalizer N(G) of order 362880 acts on the search
space.

I Orderly generation (wrt N(G)) to reduce the number of
cases.

I Parallel computation on the Bayreuth Linux cluster.
I Finally: There is no G-invariant STS2(7).



Theorem (Braun, K., Nakič 2016 and K., Kurz,
Wassermann 2018)
The automorphism group of a binary q-analog of the Fano
plane is
I trivial or
I of order 2 and conjugate to

〈


0 1
1 0

0 1
1 0

0 1
1 0

1


〉

.



Implications of our results on the existence of a STS2(7)
I Won’t be very symmetric.
I Many “natural” approaches for the construction won’t work.
I Still: Vast part of the search space remains untouched.
I Further theoretical insight is needed

to reduce the complexity to a computationally feasible level.
I Problem is still wide open!



Things I didn’t talk about
I rank metric codes, MRD codes, lifted MRD codes

+ connections to finite semifields, translation planes . . .
I mixed dimension subspace codes
I vector space partitions
I and others

Thank you!

Slides can be found at
https://mathe2.uni-bayreuth.de/michaelk/

https://mathe2.uni-bayreuth.de/michaelk/
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