Subspace codes and *q*-analogs of designs

Michael Kiermaier

Institut für Mathematik Universität Bayreuth Germany

January 19, 2022 Universität Bayreuth

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Subspace codes

Motivation and definition Partial spreads The case $A_q(6, 4; 3)$

q-analogs of designs

Block designs and their *q*-analogs α -points Automorphisms of a binary *q*-analog of the Fano plane

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Subspace codes Motivation and definition

Partial spreads The case $A_q(6, 4; 3)$

q-analogs of designs

Block designs and their *q*-analogs

Automorphisms of a binary q-analog of the Fano plane

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Example

ヘロト 人間 とくき とくきとう

э

٠

3 time units needed.

Q

٠

 $\Lambda_{n-1}\left(((a)\right)\right)$

Q

・ロト ・聞ト ・ヨト ・ヨト

3 time units needed

a

h

٠

 Λ . (((a)))

Q.

((6))

ヘロト 人間 とくき とくきとう

э

3 time units needed

 $((\mathcal{Q}))$ • а • Ь ٠ Q , ((6))) $\Lambda_{n} = \left(\left(\left(a \right) \right) \right)$ (a)2.

・ロト ・聞 ト ・ヨト ・ヨト

э

3 time units needed.

2.

α,

, а • Ь

((6))

ヘロト 人間 とくほとくほとう

э

 Λ (((a)))

((a))

3 time units needed.

2.

2

 $((\mathcal{Q}))$

• a • b

a ((6)))

ヘロト 人間 とくほ とくほとう

э

 Λ . (((a)))

a

 $((\alpha))$ ((6))

3 time units needed.

a b •

a ((6)))

・ロト ・聞ト ・ヨト ・ヨト

2.

3

Λ.

((a))(((6)))

3 time units needed.

a b

((a))

• a • b •

a ((6)))

ヘロト ヘポト ヘヨト ヘヨト

2.

3

Λ.

((a))(((6)))

3 time units needed.

a b

(((a)))

Example (improved) ((())) ((()))

Improvement to 2 time units!

Example (improved) (\mathcal{Q}) $\Lambda_{n} = \left(\left(\left(a \right) \right) \right)$

イロト イポト イヨト イヨト

Example (improved) $\begin{pmatrix} (&) \end{pmatrix} & (& (&) \end{pmatrix} & (& (&) \end{pmatrix}$ $\cdot a & \cdot a & \cdot b & \cdot b$

 Λ (((a)))

(6))

・ロト ・聞ト ・ヨト ・ヨト

Example (improved) (V) a h ٠ ((6))) Λ . (((a))) ((a+b) 2'

・ロト ・聞ト ・ヨト ・ヨト

Example (improved) (\mathcal{Q}) a a a+b ath h ٠ ((6))) ((a))Λ. (((a+b)) 2'

ヘロト 人間 とくほとくほとう

э

Example (improved)

• a • a+b • b=(a+b)-a

((a))

Λ.

2'

a h

· a+6 · a= (a+b) - b ((1))

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

(((a+b))

Example (improved)

. a . a+b . b=(a+b)-a

((a))

Λ.

2'

· a h

·a+h · a= (a+b) - b ((6))

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

((a+b)

Subspace codes

- Given: Communication network with several senders and receivers. (internet broadcasting, cloud storage, ...)
- From example: For optimal transmission times, consider sending linear combinations of messages.
- Error correction in such networks?
- Electrical engineers Kötter and Kschischang in 2008: Definition of suitable error correcting codes for network coding.
- Interesting mathematical objects on its own.
- Interconnections to several established fields of research.
- Interpretation: q-analog (or geometrization) of classical binary block codes.

Fixed notation

- q prime power
- V an \mathbb{F}_q -vector space of dimension v.
- $\mathcal{L}(V)$ lattice of all subspaces of V.
- ► Grassmannian $\begin{bmatrix} V \\ k \end{bmatrix}_q :=$ Set of all *k*-dim. subspaces of *V*. Reminder: $\# \begin{bmatrix} V \\ k \end{bmatrix}_q = \begin{bmatrix} V \\ k \end{bmatrix}_q$ Gaussian binomial coefficient.

Projective geometry

Subspace lattice L(V)
 = finite projective geometry PG(V) ≅ PG(v − 1, q)

 Elements of [^V₁]_q are points.
 Elements of [^V₂]_q are lines.
 Elements of [^V₂]_q are planes.
 Elements of [^V₄]_q are solids.
 Elements of [^V₄]_q are hyperplanes.

Definition (Kötter, Kschischang 2008)

- ▶ subspace distance on $\mathcal{L}(V)$: $d(A, B) = \dim(A + B) - \dim(A \cap B) = \dim(A) + \dim(B) - 2\dim(A \cap B)$
- C ⊆ L(V) subspace code. Its elements are the codewords or blocks of C.
- ▶ $d(C) = \min\{d(A, B) \mid A \neq B \in C\}$ (minimum) subspace distance of *C*.
- ▶ Abbreviation: *C* is $(v, \#C, d(C))_q$ -subspace code.
- Important special case C ⊆ [^V_k]_q
 ⇒ C constant dimension (subspace-)code, abbreviated C (v, #C, d(C); k)_q CDC.
- We want: #C large, d(C) large
- Let $A_q(v, d; k)$ maximum size M of $(v, M, d; k)_q$ CDC.

Research goals

- Find lower bounds for A_q(v, d; k) by constructing good codes.
- Find upper bounds for $A_q(v, d; k)$.
- Determine exact values of $A_q(v, d; k)$.
- Classify all optimal CDCs.
- (Find efficient decoding algorithms.)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Outline

Subspace codes Motivation and definition Partial spreads The case $A_{q}(6, 4; 3)$

q-analogs of designs

Block designs and their *q*-analogs α -points Automorphisms of a binary *q*-analog of the Fano plane

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Subspace codes and partial spreads

In finite geometry, these objects are known as partial (k - 1)-spreads.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Spreads

- Partial (k 1)-spread covering all points of PG(V) is called (k 1)-spread.
- Known: (k 1)-spread exists $\iff k \mid v$.

$$\blacktriangleright \implies \text{For } k \mid v \text{ we have } A_q(v, 2k; k) = \begin{bmatrix} v \\ 1 \end{bmatrix}_q / \begin{bmatrix} k \\ 1 \end{bmatrix}_q = \frac{q^v - 1}{q^{k-1}}.$$

- Maximum size A_q(v, 2k; k) of partial spreads studied since the 1970s, not known in general.
- ► Recent strong result (Năstase, Sissokho 2017): Write v = tk + r with remainder $r \in \{0, ..., k - 1\}$. Then

$$A_q(v, 2k; k) = rac{q^v - q^{k+r}}{q^k - 1} + 1$$

whenever $k > \begin{bmatrix} r \\ 1 \end{bmatrix}_q$.

Holes

- Let S be a partial (k 1)-spread.
- Let P be its set of holes (points not covered by S).

Observation:

P defines an \mathbb{F}_q -linear code *C* of effective length #P, *C* is q^{k-1} -divisible (all Hamming weights divisible by q^{k-1}).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- K., Kurz 2018: Classification of the effective lengths of Δ-divisible F_q-linear codes where Δ power of q.
- Result of Năstase and Sissokho follows as a corollary!

Improvement of the Johnson bound

 Xia, Fu 2009: Important recursive bound for CDCs (Johnson bound)

$$egin{aligned} \mathsf{A}_q(\mathbf{v},\mathbf{d};k) \leq \left\lfloor rac{(q^{\mathbf{v}}-1)\mathsf{A}_q(\mathbf{v}-1,\mathbf{d};k-1)}{q^k-1}
ight
floor \end{aligned}$$

- ldea: Fix a point P and consider the image in V/P.
- K., Kurz 2018: Improvement of the Johnson bound.
- Idea:
 - Suitable notion of "holes" (with multiplicities!) of a CDC.
 - Holes yield a divisible code, apply characterization of effective lengths.
- Example: best known bound A₂(9,6;4) ≤ 1158 improved to A₂(9,6;4) ≤ 1156.

Outline

Subspace codes

Motivation and definition Partial spreads The case $A_q(6, 4; 3)$

q-analogs of designs

Block designs and their *q*-analogs

 α -points

Automorphisms of a binary q-analog of the Fano plane

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The case $A_q(6, 4; 3)$

- Smallest case not covered by results on partial spreads: v = 6, k = 3, d = 4.
- Geometrically: Set of planes in PG(𝔽⁶_q) intersecting pairwise at most in a point.
- ▶ Best known upper bound: $A_q(6,4;3) \le (q^3+1)^2$. (Johnson bound + result on partial spreads)

Computer classification for q = 2

- In binary case q = 2: $A_2(6, 4; 3) \le 81$.
- Best known construction $\rightsquigarrow A_2(6,4;3) \ge 77$.
- Goal: Classify all CDCs of maximum size for q = 2.
- ► Huge search space: There are $\begin{bmatrix} 6\\3 \end{bmatrix}_2 = 1395$ planes, $\begin{pmatrix} 1395\\77 \end{pmatrix} = 129$ -digit number.
- Intermediate classification steps needed.

9-configurations

- 9-configuration = set of 9 planes of subspace distance ≥ 4, passing through a common point.
- Lemma: If $\#C \ge 73$ then C contains a 9-configuration.
- ▶ 9-configurations $\hat{=}$ partial line spreads in PG(\mathbb{F}_2^5).
- Soicher 2000: 4 isomorphism types.

17-configurations

- 17-configuration = set of 17 planes of subspace distance ≥ 4 containing two 9-configurations.
- Lemma: If $\#C \ge 74$ then C contains a 17-configuration.
- Computer classification of 17-configurations:
 - Compute all extensions of the 4 types of 9-configurations.
 - Filter out isomorphic copies.
 - Result: 12770 isomorphism types of 17-configurations.
- ► For each of the 12770 17-configurations, compute all extensions to (6, M, 4; 3)₂ CDCs with M ≥ 77.

Result of the classification:

Theorem (Honold, K., Kurz 2015)

•
$$A_2(6,4;3) = 77$$

▶ 5 PGL-isomorphism types of (6, 77, 4; 3)₂ CDCs.

Analysis of the computer result

- The most symmetric (6, 77, 4; 3)₂-code shows a clear construction principle.
- ► This construction generalizes to all values of *q*.

Theorem (Honold, K., Kurz 2015) For all *q*,

$$q^6+2q^2+2q+1\leq A_q(6,4;3)\leq q^6+2q^3+1.$$

Next open case for q = 2 is $333 \le A_2(7, 4; 3) \le 381$. $\rightsquigarrow q$ -analog of the Fano plane.

Outline

Subspace codes

Motivation and definition Partial spreads The case $A_q(6, 4; 3)$

q-analogs of designs

Block designs and their q-analogs α -points Automorphisms of a binary q-analog of the Fano plane

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Subspace codes Motivation and definition Partial spreads The case $A_q(6, 4; 3)$

q-analogs of designs

Block designs and their q-analogs

 α -points

Automorphisms of a binary q-analog of the Fano plane

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Subset lattice

Let V be a v-element set.

•
$$\binom{V}{k} :=$$
 Set of all *k*-subsets of *V*.

$$\blacktriangleright \# \binom{V}{k} = \binom{V}{k}.$$

Subsets of V form a distributive lattice (wrt. \subseteq).

Definition $D \subseteq {V \choose k}$ is a *t*-(*v*, *k*, λ) (block) design if each $T \in {V \choose t}$ is contained in exactly λ blocks (elements of *D*).

- If $\lambda = 1$: *D* Steiner system
- lf $\lambda = 1$, t = 2 and k = 3: D Steiner triple system STS(ν)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Subset lattice

Let V be a v-element set.

•
$$\binom{V}{k} :=$$
 Set of all *k*-subsets of *V*.

$$\blacktriangleright \# \binom{V}{k} = \binom{V}{k}.$$

Subsets of V form a distributive lattice (wrt. \subseteq).

Definition $D \subseteq \binom{V}{k}$ is a *t*-(*v*, *k*, λ) (block) design if each $T \in \binom{V}{t}$ is contained in exactly λ blocks (elements of *D*).

- If $\lambda = 1$: *D* Steiner system
- lf $\lambda = 1$, t = 2 and k = 3: D Steiner triple system STS(ν)

(日) (日) (日) (日) (日) (日) (日)

Subset lattice

Let V be a v-element set.

•
$$\binom{V}{k} :=$$
 Set of all *k*-subsets of *V*.

$$\blacktriangleright \# \binom{V}{k} = \binom{V}{k}.$$

Subsets of V form a distributive lattice (wrt. \subseteq).

Definition $D \subseteq \binom{V}{k}$ is a *t*-(*v*, *k*, λ) (block) design if each $T \in \binom{V}{t}$ is contained in exactly λ blocks (elements of *D*).

- If $\lambda = 1$: *D* Steiner system
- If $\lambda = 1$, t = 2 and k = 3: D Steiner triple system STS(v)

Fano plane D is a 2-(7,3,1) design, i.e an STS(7).

Idea of *q*-analogs in combinatorics Replace subset lattice by subspace lattice!

Dictionary

original	<i>q</i> -analog
subset lattice	subspace lattice
v-element setV	<i>v</i> -dim. \mathbb{F}_q vector space <i>V</i>
$\binom{V}{k}$	$\begin{bmatrix} V\\ k \end{bmatrix}_q$
$\binom{v}{k}$	$\begin{bmatrix} v \\ k \end{bmatrix}_q$
cardinality	dimension
\cap	\cap
\cup	+
<i>q</i> = 1	q proper prime power
"F1"	$\mathbb{F}_{oldsymbol{q}}$

Definition (block design, stated again) Let V be a v-element set. $D \subseteq \binom{V}{k}$ is a t-(v, k, λ) (block) design if each $T \in \binom{V}{t}$ is contained in exactly λ elements of D.

q-analog of a design?

Definition (subspace design) Let *V* be a *v*-dimensional \mathbb{F}_q vector space. $D \subseteq {V \brack k}_q$ is a *t*-(*v*, *k*, $\lambda)_q$ (subspace) design if each $T \in {V \brack t}_q$ is contained in exactly λ elements of *D*.

• If $\lambda = 1$: *D q*-Steiner system

▶ If $\lambda = 1$, t = 2, k = 3: D q-Steiner triple system $STS_q(v)$

Geometrically: STS_q(v) is a set of planes in PG(v – 1, q) covering each line exactly once.

Remarks

- First definition of subspace designs by P. Cameron, 1972.
 "Several people have observed that the concept of a *t*-design can be generalised as follows. [...]"
- ▶ 1- $(v, k, 1)_q$ designs $\hat{=}$ (k 1)-spreads in PG(v 1, q)
- ► First construction of non-trivial subspace designs with t ≥ 2 by S. Thomas in 1987.
- subspace codes = q-analog of binary block codes, CDCs = q-analog of binary constant weight codes.

Existence of subspace designs

- Fazeli, Lovett, Vardy 2014 (non-constructive proof): Non-trivial subspace designs exist for all t.
- Still not too many concrete constructions are known.

Known infinite series of subspace designs with $t \ge 2$

- Thomas 1987; Suzuki 1990 and 1992: 2- $(v, 3, q^2 + q + 1; q)$ for all q and $v \equiv \pm 1 \pmod{6}$, $v \ge 7$.
- A series by Itoh 1998.
- ▶ Braun, K., Kohnert, Laue 2017: 2- $(v, k, [{v-2}]_q/2)_q$ for $q \in \{3,5\}$, $v \equiv 2 \pmod{4}$, $v \ge 6$, $k \equiv 3 \pmod{4}$, $3 \le k \le v - 3$.
- ► K., Laue, Wassermann 2018: $2 (v, k, {v-2 \choose k-2}_q/3)_2$ for $v \ge 8, 2 \le (v \mod 6) < (k \mod 6) \le 5$.
- ▶ Braun, K., Laue 2019: 2- $(8, 4, \frac{(q^6-1)(q^3-1)}{(q^2-1)(q-1)})_q$ for all q.

Subspace designs with $t \ge 3$

- t = 3: Only two subspace designs known.
- ► t ≥ 4: no subspace design known.

Subspace designs and subspace codes

- Let $C \subseteq \begin{bmatrix} V \\ k \end{bmatrix}_q$ and $t = k \delta + 1$.
- ► Remember: *C* is $(v, \#C, 2\delta)_q$ CDC \Leftrightarrow each $T \in \begin{bmatrix} v \\ t \end{bmatrix}_q$ is contained in at most 1 element of *C*.
- By definition: C is t-(v, k, λ)_q subspace design
 ⇔ each T ∈ [^V_t]_q is contained in exactly λ elements of C.

Therefore:

C is both $(v, \#C, 2\delta)_q$ CDC and t- $(v, k, \lambda)_q$ design

 \iff *C* is a Steiner system

 $(\iff C \text{ is a diameter perfect CDC})$

Lemma

Let *D* be a t- $(v, k, \lambda)_q$ design and $i, j \in \{0, ..., t\}$ with $i + j \le t$. Then for all $I \in \begin{bmatrix} V \\ i \end{bmatrix}_q$ and $J \in \begin{bmatrix} V \\ v-j \end{bmatrix}_q$ with $I \subseteq J$

$$\lambda_{i,j} := \# \{ \boldsymbol{B} \in \boldsymbol{D} \mid \boldsymbol{I} \subseteq \boldsymbol{B} \subseteq \boldsymbol{J} \} = \lambda \frac{\begin{bmatrix} \boldsymbol{V} - i - j \\ \boldsymbol{k} - i \end{bmatrix}_{\boldsymbol{q}}}{\begin{bmatrix} \boldsymbol{V} - t \\ \boldsymbol{k} - t \end{bmatrix}_{\boldsymbol{q}}}$$

In particular, $\#D = \lambda_{0,0}$.

Corollary: Integrality conditions

If a *t*-(v, k, λ)_{*q*} design exists, then all $\lambda_{i,j} \in \mathbb{Z}$.

Sufficient to check: $\lambda_i := \lambda_{i,0} \in \mathbb{Z}$ (Parameters admissible)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Corollary

 $STS_q(v)$ admissible $\iff v \equiv 1,3 \pmod{6}$.

 $STS_q(v)$ for small admissible v

►
$$v = 3$$

STS_q(3) = {V} exists trivially.

► *v* = 7

q-analog of the Fano plane $STS_q(7)$. Existence undecided for every field order q.

Most important open problem in q-analogs of designs.

existence open for every q.

► *v* = 13

STS₂(13) exists (Braun, Etzion, Östergård, Vardy, Wassermann 2013)

Only known non-trivial *q*-Steiner system with $t \ge 2!$

Status of $STS_q(7)$

- ► A STS_q(7) is a set of planes in PG(𝔽⁷₂) covering each line exactly once.
- A STS_q(7) has size $\lambda_{0,0} = q^8 + q^6 + q^5 + q^4 + q^3 + q^2 + 1$.
 - binary: 381
 - ternary: 7651
- ► STS_q(7) exists if and only if $A_q(7,4;3) = q^8 + q^6 + q^5 + q^4 + q^3 + q^2 + 1.$
- Question for its existence first stated in 1972.
- Still open for every q.
- Largest known subspace codes:
 - binary: 333 (Heinlein, K., Kurz, Wassermann 2019)
 - ternary: 6978 (Honold, K. 2016 + extension by D. Heinlein)

q-Pascal triangle for $STS_q(7)$ D

$$\begin{split} \lambda_{0,0} &= q^8 + q^6 + q^5 + q^4 + q^3 + q^2 + 1\\ \lambda_{1,0} &= q^4 + q^2 + 1 \qquad \lambda_{0,1} = q^5 + q^3 + q^2 + 1\\ \lambda_{2,0} &= 1 \qquad \lambda_{1,1} = q^2 + 1 \qquad \lambda_{0,2} = q^2 + 1 \end{split}$$

► Each point *P* is contained in λ_{1,0} = q⁴ + q² + 1 blocks.
 ► → derived design wrt *P* ("local point of view from *P*")

 $\mathsf{Der}_{P}(D) = \{B/P \mid B \in D \text{ with } P \subseteq B\} \subseteq V/P$

- ▶ In general: $Der_P(D)$ is $(t-1) \cdot (v-1, k-1, \lambda)_q$ design.
- ► ⇒ $Der_P(STS_q(7))$ is 1-(6,2,1)_q design. = set of lines in PG(5, q) covering each point exactly once.
- ▶ In other words: $Der(STS_q(7))$ is a line spread of PG(5, q).

Outline

Subspace codes Motivation and definition

Partial spreads The case $A_q(6, 4; 3)$

q-analogs of designs

Block designs and their q-analogs α -points Automorphisms of a binary q-analog of the Fano plane

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

α -points

- ▶ spread *S* called geometric if for all distinct $L_1, L_2 \in S$: { $L \in S \mid L \subseteq L_1 + L_2$ } is spread of the solid $L_1 + L_2$.
- ► *P* is called α -point of STS_q(7) if the derived design in *P* is a geometric spread.
- **S**. Thomas 1996: There exists a non- α -point.
- ► O. Heden, P. Sissokho 2016: For q = 2: Each hyperplane contains non- α -point.
- ► Goal: Investigate Heden-Sissokho result for general *q*!

(ロ) (同) (三) (三) (三) (○) (○)

- Assume that *H* is hyperplane containing only α -points.
- Fix a poor solid S in H (not containing any block).

► Let
$$\mathcal{F} = \{F \in \begin{bmatrix}H\\5\end{bmatrix}_q \mid S \subseteq F\}$$
.
We have $\#\mathcal{F} = q + 1$.

For $F \in \mathcal{F}$, let

$$\mathcal{L}_{F} := \{B \cap S \mid B \in D \text{ and } B + S = F\}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lemma

- \blacktriangleright \mathcal{L}_F is a line spread of S.
- The sets \mathcal{L}_F with $F \in \mathcal{F}$ are pairwise disjoint.

Conclusion

 $\mathcal{L} := \biguplus_{F \in \mathcal{F}} \mathcal{L}_F$ is a set of $(q+1)(q^2+1)$ lines in PG(3, q) admitting a partition into q+1 line spreads.

Lemma

For each point *P* in *S*, the q + 1 lines in \mathcal{L} passing through *P* span only a plane E_P .

(In other words, the lines form a pencil in E_P through P.)

Lemma

 $\binom{S}{1}_{q}, \mathcal{L}$ is a projective generalized quadrangle of order (q, q).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Classification

Classification of projective generalized quadrangles:

(F. Buekenhout, C. Lefèvre 1974)

 $\implies (\begin{bmatrix} S\\1 \end{bmatrix}_{q}, \mathcal{L})$ is symplectic generalized quadrangle W(q).

Implication

- ► By property of L: The lines of W(q) admit a partition into q + 1 line spreads.
- Equivalently: The points of the parabolic quadric Q(4, q) admit a partition into ovoids.
- Not possible for even q.
 - Payne, Thas: Finite generalized quadrangles, 3.4.1(i)
- Not possible for prime *q*.
 - Ball, Govaerts, Storme 2006:
 Each ovoid in Q(4, q) is an elliptic quadric.
 - Any two of them have non-trivial intersection.

Theorem (K., submitted)

Let *q* be prime or even and *D* a $STS_q(7)$. Then each hyperplane contains a non- α -point of *D*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

Subspace codes Motivation and definition Partial spreads The case *A*_q(6, 4; 3)

q-analogs of designs

Block designs and their q-analogs α -points Automorphisms of a binary q-analog of the Fano plane

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Automorphisms

Fundamental theorem of projective geometry: For $v \ge 3$, $Aut(\mathcal{L}(V)) = P\Gamma L(V)$.

• Let $D \subseteq \mathcal{L}(V)$, define linear automorphism group as

$$\mathsf{Aut}(D) = \{\varphi \in \mathsf{PGL}(V) \mid \varphi(D) = D\}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

(Aut(D) = stabilizer of D in PGL(V).)

Automorphisms of STS₂(7)

- Goal Investigate possible automorphisms of STS₂(7).
- Here: PGL(V) = GL(V).

Automorphisms of order 3

- Case study: Automorphisms of an STS₂(7) of order 3.
- Elements of order 3 in GL(v, 2) are represented by

$$A_{\nu,f} := \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} & & & \\ & \ddots & & \\ & & \ddots & & \\ & & & \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} & \\ & & & & I_f \end{pmatrix}$$

with $f \in \{0, ..., v - 1\}$, v - f even.

Elements of order 3 in GL(7, 2) up to conjugates:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- ► 1 fixed point
- 2 orbits of size 3 falling into:
 - 1 orbit line
 - 1 orbit triangle

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- ▶ 1 orbit line
- 1 orbit triangle

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- 1 fixed point
- 2 orbits of size 3 falling into:
 - 1 orbit line
 - 1 orbit triangle

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- ► 1 fixed point
- 2 orbits of size 3 falling into:
 - 1 orbit line
 - 1 orbit triangle

Action of $A_{v,f}$ on the point set $\begin{bmatrix} V \\ 1 \end{bmatrix}_q$

Example

V	f	fixed points	orbit triangles	orbit lines
3	1	1	1	1
7	1	1	21	21
7	3	7	35	5
7	5	31	31	1

Fixed planes

- Let $G = \langle A_{v,f} \rangle$
- Let $E \in {V \brack 3}_q$ be a fixed plane (i.e. $E^G = E$)
- ▶ Then *G*|*_E* is well-defined
- ▶ $#G|_E \in \{1,3\}$
- $#G|_E = 1 \implies E$ has 7 fixed points (type 7)
- ► $#G|_E = 3 \implies$ *E* has 1 fixed point, 1 orbit line and 1 orbit triangle (type 1)

A D F A 同 F A E F A E F A Q A

Counting fixed planes

How many fixed planes of type 1 and 7?

Example

V	f	#f.p.	#o.t. = #T1	#o.l.	# T7
3	1	1	1	1	0
7	1	1	21	21	0
7	3	7	35	5	1
7	5	31	31	1	155

Fixed blocks

- Let *D* be a *G*-invariant $STS_2(v)$.
- \$\mathcal{F}_1\$:= set of fixed blocks of \$D\$ of type 1
 \$\mathcal{F}_7\$:= set of fixed blocks of \$D\$ of type 7

Double count $X = \{(L, B) \mid L \text{ orbit line}, B \in \mathcal{F}_1, L < B\}.$

$$1. \ \#X = \#\mathcal{F}_1 \cdot \mathbf{1}$$

$$\implies \#\mathcal{F}_1 = \#\text{orbit lines} = \frac{2^{\nu-f} - 1}{3}$$

Similarly:
$$\#\mathcal{F}_7 = \frac{(2^f - 1)(2^{f-1} - 1)}{21}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

v	f	#f.p.	$\#$ o.l. = $\#\mathcal{F}_1$	#o.t. = #T1	#T7	$\#\mathcal{F}_7$
7	1	1	21	21	0	0
7	3	7	5	35	1	1
7	5	31	1	31	155	155/7

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

- $\#\mathcal{F}_7$ must be integral
 - \implies The group $\langle A_{7,5} \rangle$ is not possible!
- For f = 3, the T7-plane is contained in *D*.
- For f = 1, all 21 T1-planes are contained in D.

V	f	#f.p.	$\#$ o.l. = $\#\mathcal{F}_1$	#o.t. = #T1	#T7	$\#\mathcal{F}_7$
7	1	1	21	21	0	0
7	3	7	5	35	1	1
7	5	31	1	31	155	155/7

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

• $\#\mathcal{F}_7$ must be integral

 \implies The group $\langle A_{7,5} \rangle$ is not possible!

For f = 3, the T7-plane is contained in *D*.

For f = 1, all 21 T1-planes are contained in *D*.

V	f	∉f.p.	$\#$ o.l. = $\#\mathcal{F}_1$	#o.t. = #T1	#T7	$\#\mathcal{F}_7$
7	1	1	21	21	0	0
7	3	7	5	35	1	1
7	5	31	1	31	155	155/7

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

• $\#\mathcal{F}_7$ must be integral

 \implies The group $\langle A_{7,5} \rangle$ is not possible!

For f = 3, the T7-plane is contained in *D*.

For f = 1, all 21 T1-planes are contained in *D*.

V	f	#f.p.	$\#$ o.l. = $\#\mathcal{F}_1$	#o.t. = #T1	#T7	$\#\mathcal{F}_7$
7	1	1	21	21	0	0
7	3	7	5	35	1	1
7	5	31	1	31	155	155/7

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusion

 \blacktriangleright # \mathcal{F}_7 must be integral

 \implies The group $\langle A_{7,5} \rangle$ is not possible!

- For f = 3, the T7-plane is contained in *D*.
- For f = 1, all 21 T1-planes are contained in D.

The case v = 7, f = 3

▶ $\#\mathcal{F}_7 = 1$. Let *B* be this block and $P \in \begin{bmatrix} B \\ 1 \end{bmatrix}_q$. \implies *P* fixed.

- ▶ Through *P*: The block *B* and $\lambda_1 1 = 20$ others.
- Orbit lengths 1 or 3 $\implies \ge 2$ fixed blocks among them!
- In total: At least 14 fixed blocks different from B.

▶ But $\#\mathcal{F}_1 = 5$. Contradiction!

・ロト・4回ト・モート・モー・ショーのへの

The case v = 7, f = 3

- ▶ $\#\mathcal{F}_7 = 1$. Let *B* be this block and $P \in \begin{bmatrix} B \\ 1 \end{bmatrix}_q$. \implies *P* fixed.
- Through *P*: The block *B* and $\lambda_1 1 = 20$ others.
- ► Orbit lengths 1 or 3 ⇒ ≥ 2 fixed blocks among them!
- In total: At least 14 fixed blocks different from B.
- ▶ But $\#\mathcal{F}_1 = 5$. Contradiction!

- ▶ $\#\mathcal{F}_7 = 1$. Let *B* be this block and $P \in \begin{bmatrix} B \\ 1 \end{bmatrix}_q$. \implies *P* fixed.
- Through *P*: The block *B* and $\lambda_1 1 = 20$ others.
- Orbit lengths 1 or 3 $\implies \ge 2$ fixed blocks among them!

- ▶ In total: At least 14 fixed blocks different from *B*.
- ▶ But $\#\mathcal{F}_1 = 5$. Contradiction!

- ▶ $\#\mathcal{F}_7 = 1$. Let *B* be this block and $P \in \begin{bmatrix} B \\ 1 \end{bmatrix}_q$. \implies *P* fixed.
- Through *P*: The block *B* and $\lambda_1 1 = 20$ others.
- Orbit lengths 1 or 3 $\implies \ge 2$ fixed blocks among them!

▶ In total: At least 14 fixed blocks different from *B*.

▶ But $\#\mathcal{F}_1 = 5$. Contradiction!

- ▶ $\#\mathcal{F}_7 = 1$. Let *B* be this block and $P \in \begin{bmatrix} B \\ 1 \end{bmatrix}_q$. \implies *P* fixed.
- Through *P*: The block *B* and $\lambda_1 1 = 20$ others.
- Orbit lengths 1 or 3 $\implies \ge 2$ fixed blocks among them!
- ▶ In total: At least 14 fixed blocks different from *B*.

▶ But $\#\mathcal{F}_1 = 5$. Contradiction!

- ▶ $\#\mathcal{F}_7 = 1$. Let *B* be this block and $P \in \begin{bmatrix} B \\ 1 \end{bmatrix}_q$. \implies *P* fixed.
- Through *P*: The block *B* and $\lambda_1 1 = 20$ others.
- Orbit lengths 1 or 3 $\implies \ge 2$ fixed blocks among them!
- ▶ In total: At least 14 fixed blocks different from *B*.
- ▶ But $\#\mathcal{F}_1 = 5$. Contradiction!

The case v = 7, f = 1

- We didn't find a theoretic argument to exclude $G = \langle A_{7,1} \rangle$.
- We know: D contains the set S of 21 T1-blocks. They all pass through P = ⟨(0,0,0,0,0,0,1⟩). In V/P ≅ PG(5,2), they form a Desarguesian line spread.
- Problem: Out of 3720 orbits of length 3, select 120 such that together with S, they form an STS₂(7). Huge search space!
- ► Normalizer N(G) of order 362880 acts on the search space.
- Orderly generation (wrt N(G)) to reduce the number of cases.
- Parallel computation on the Bayreuth Linux cluster.
- Finally: There is no G-invariant STS₂(7).

Theorem (Braun, K., Nakič 2016 and K., Kurz, Wassermann 2018)

The automorphism group of a binary q-analog of the Fano plane is

- trivial or
- of order 2 and conjugate to

・ コット (雪) (小田) (コット 日)

Implications of our results on the existence of a $STS_2(7)$

- Won't be very symmetric.
- Many "natural" approaches for the construction won't work.
- Still: Vast part of the search space remains untouched.
- Further theoretical insight is needed to reduce the complexity to a computationally feasible level.

(ロ) (同) (三) (三) (三) (○) (○)

Problem is still wide open!

Things I didn't talk about

- rank metric codes, MRD codes, lifted MRD codes
 + connections to finite semifields, translation planes ...
- mixed dimension subspace codes
- vector space partitions
- and others

Thank you!

Slides can be found at
https://mathe2.uni-bayreuth.de/michaelk/