All binary MRD codes up to size 4×4

Michael Kiermaier

Institut für Mathematik Universität Bayreuth Germany

Conference on Applied Algebraic Geometry Mini-symposium MS17 "Rank-Metric and Subspace Codes" August 16, 2021 SIAM conference (held online)

joint work with Sascha Kurz and Alfred Wassermann

KORKARA KERKER DAGA

Goal of this talk

- \triangleright Classification of all binary MRD-codes up to size 4 \times 4.
- \blacktriangleright The full picture:
	- \triangleright No restriction to quadratic sizes.
	- \triangleright No restriction to linear codes.
- \blacktriangleright Summary of already known cases. In part using interconnections to
	- \blacktriangleright translation planes
	- \blacktriangleright (partial) spreads
- \blacktriangleright Settle the remaining cases by theoretical insight combined with (heavy) computation.

KOD KARD KED KED BE YOUR

Outline

[Introduction and preliminaries](#page-2-0)

[The classification](#page-11-0)

Definitions

- ▶ Rank distance on $\mathbb{F}_q^{m \times n}$ is $d(A, B) = \text{rk}(A B)$.
- \blacktriangleright Without restriction: $m \leq n$.
- \blacktriangleright ($\mathbb{F}_q^{m \times n}$, *d*) is a metric space.
- ► $C \subseteq \mathbb{F}_q^{m \times n}$ is a rank-metric code.
- ▶ *C* \mathbb{F}_q -subspace of $\mathbb{F}_q^{m \times n}$ \implies *C* linear.
- \blacktriangleright minimum distance

 $d(C) = \min\{d(A, B) | A, B \in C, A \neq B\} \leq m$.

KORK ERKER ADAM ADA

- ▶ Singleton bound: $\#C \leq q^{n(m-d+1)}$.
- I Singleton bound sharp =⇒ *C* MRD-code. (MRD = maximum rank distance)

MRD-Codes

- I Singleton bound sharp =⇒ *C* MRD-code.
- For distance $d = 1$, full space $\mathbb{F}_q^{m \times n}$ is trivial MRD-code. \rightarrow will assume *d* ≥ 2 (so 2 ≤ *d* ≤ *m* ≤ *n*).
- \triangleright MRD-codes do always exist!
	- Gabidulin codes (Delsarte 1978, Gabidulin 1985, Roth 1991)
	- ▶ generalized Gabidulin codes (Kshevetskiy, Gabidulin 2005)

KORK ERKER ADAM ADA

- ▶ generalized twisted Gabidulin codes (Sheekey 2016)
- $\triangleright \rightsquigarrow$ Research problem: Classification of all MRD-codes.
- \blacktriangleright Needed: A notion of equivalence.

Equivalence

 \triangleright Definition (state what we want!)

 $C, C' \subseteq \mathbb{F}_q^{m \times n}$ are equivalent if \exists isometry ϕ of $(\mathbb{F}_q^{m \times n},d)$ with $\phi(\pmb{C})=\pmb{C}'.$

Automorphism group

 $Aut(C) = \{ \phi \text{ isometry of } (\mathbb{F}_q^{m \times n}, d) \mid \phi(C) = C \}$

KORK ERKER ADAM ADA

 \blacktriangleright Natural question:

What is the isometry group $\mathsf{Aut}(\mathbb{F}_q^{m\times n},\boldsymbol{d})$ of the metric space $(\mathbb{F}_q^{m \times n},d)$, i.e. set of all distance-preserving bijections? Isometry group of $(\mathbb{F}_q^{m \times n}, d)$

 \blacktriangleright Theorem (Hua 1951 (*q* even), Wan 1996 (*q* odd)) For $m \geq 2$ and $n \geq 2$, $\text{Aut}(\mathbb{F}_q^{m \times n},d)$ consists of

 $A \mapsto S_{\sigma}(A)T + R$

and for $m = n$ (square case) additionally

$$
A \mapsto S\sigma(A^{\top})T + R
$$

 $\mathsf{where} \; \mathcal{S} \in \mathsf{GL}(m,q), \; \mathcal{T} \in \mathsf{GL}(n,q), \, \mathcal{R} \in \mathbb{F}_q^{m \times n}, \, \sigma \in \mathsf{Aut}(\mathbb{F}_q).$

- \blacktriangleright Automorphisms of the first type will be called inner.
- Automorphisms with $\sigma = id$ will be called linear. Note: In our case $q = 2$ we have $Aut(\mathbb{F}_2) = \{id\},\$ so all automorphisms are linear.

Subspace lattice

- \blacktriangleright Let *V* be a *v*-dimensional \mathbb{F}_q vector space.
- **Figure 1** Grassmannian $\begin{bmatrix} V & W \\ W & W \end{bmatrix}$ $\left[\begin{smallmatrix} V \ k \end{smallmatrix}\right]_q :=$ set of all *k*-dim. subspaces of *V*.
- \blacktriangleright Gaussian binomial coefficient

$$
\#\begin{bmatrix} V \\ k \end{bmatrix}_q = \begin{bmatrix} V \\ k \end{bmatrix}_q = \frac{(q^v - 1)(q^{v-1} - 1) \cdot \ldots \cdot (q^{v-k+1} - 1)}{(q-1)(q^2 - 1) \cdot \ldots \cdot (q^k - 1)}
$$

I Subspaces of *V* form a modular lattice (wrt. ⊆).

Projective geometry

 \blacktriangleright projective geometry $PG(v-1, q) = PG(V) :=$ subspace lattice of V Elements of $\begin{bmatrix} V \\ 1 \end{bmatrix}_q$ are points. Elements of $\begin{bmatrix} V \\ 2 \end{bmatrix}_q$ are lines. Elements of $\begin{bmatrix} V \\ 3 \end{bmatrix}_q$ are planes. Elements of $\begin{bmatrix} V \\ 4 \end{bmatrix}_q$ are solids. ।
ଏଠାତ ∰ ଏ≣ ଏ≇ ଏକ ଏବଂ

Spreads

A set $\mathcal{S} \subseteq \big[\begin{smallmatrix} \mathsf{V} \ \mathsf{k} \end{smallmatrix}$ $\left[\begin{smallmatrix} V\end{smallmatrix}\right]_q$ is called

- \triangleright a $(k-1)$ -spread if each point is contained in exactly 1 element of S .
- \triangleright a partial $(k 1)$ -spread

if each point is contained in at most 1 element of S .

In this case, the points not contained in any element of S are called holes.

KORKARA KERKER DAGA

Geometrization: Lifted subspace codes

F Lifted subspace of $A \in \mathbb{F}_q^{m \times n}$ is

$$
\Lambda(A)=\langle (I_m A)\rangle\in \begin{bmatrix} \mathbb{F}_q^{m+n} \\ m \end{bmatrix}_q,
$$

where

- \blacktriangleright *I_m* is $m \times m$ unit matrix
- $\blacktriangleright \langle \cdots \rangle$ denotes the row space.

 \blacktriangleright All $\Lambda(A)$ have trivial intersection with the special subspace

$$
S = \langle e_{m+1}, \ldots, e_{m+n} \rangle \in \begin{bmatrix} \mathbb{F}_q^{m+n} \\ n \end{bmatrix}_q
$$

.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

where *eⁱ* is the *i*-th unit vector.

► Lifted subspace code of $C \subseteq \mathbb{F}_q^{m \times n}$ is

$$
\Lambda(C)=\{\Lambda(A)\mid A\in C\}.
$$

Lemma \mathcal{L} et $\mathcal{C} \subseteq \left[\mathbb{F}_m^{m+n}\right]_q$ and $t=m-d+1.$ Then (i) C is lifted $m \times n$ MRD-code of distance d \iff (ii) *U* ∩ *S* = {**0**} *for all U* ∈ C *and* $\mathsf{every}\; \mathcal{T} \in \left[\begin{smallmatrix} \mathbb{F}_q^{m+n} \end{smallmatrix}\right]_q$ with $\mathcal{T} \cap \mathcal{S} = \{\mathbf{0}\}$ *is contained in a unique element of* C*.*

Lemma

Let $m, n \geq 2$ and C, C' $m \times n$ MRD-codes of distance d.

\n- (a) *C* and *C'* are inner-isomorphic
\n- $$
\iff
$$
 $\Lambda(C) \cong \Lambda(C')$ by a collineation in $\text{P}\Gamma(\mathbb{F}_q^{m+n})$.
\n- (b) $\text{Aut}_{\text{Inn}}(C) \cong \text{Aut}_{\text{P}\Gamma}(\Lambda(C))$.
\n

Conclusion Instead of classifying MRD codes, we can classify lifted MRD codes **(and benefit from the projective geometric setting).**
All the setting and the setting

Outline

[Introduction and preliminaries](#page-2-0)

[The classification](#page-11-0)

Let $N(m, n, d)$ $(N_{\text{Inn}}(m, n, d))$ be the number of all (inner) isomorphism types of *m* × *n* MRD-codes of distance *d*. We want to fill the following tables:

$$
\begin{array}{c|c|c}\nN_{\text{Inn}}(m, n, 3) & n = 3 & n = 4 \\
\hline\nm = 3 & ?(?) & ? \\
m = 4 & ?(?)\n\end{array}
$$

$$
\frac{N_{\ln n}(m, n, 4) \mid n = 4}{m = 4 \quad \text{(?)}
$$

For $m \neq n$, $N(m, n, d) = N_{\text{Inn}}(m, n, d)$.

For $m = n$, $N(m, n, d) \leq N_{\text{Inn}}(m, n, d)$ is given in parentheses.

The case $d = m$

- \triangleright Here *t* = *m* − *d* + 1 = 1.
- $\triangleright \implies \Lambda(C)$ perfectly covers the points outside S.
- $\triangleright \implies \Lambda(C)$ is a partial $(m-1)$ -spread in PG $(m+n-1, q)$, and *S* is the set of holes.

The subcase $d = m = n$

- \triangleright Here, $\Lambda(C) \cup \{S\}$ is a $(m-1)$ -spread in PG(2*m* − 1, *q*).
- **Attention:**

MRD-code \longleftrightarrow spread + choice of special subspace

 \implies Single type of a spread S may correspond to more than 1 inner isomorphism type of MRD-codes, depending on the number of orbits of $Aut(S)$ on S (S-orbits).

- \triangleright Known: $(m-1)$ -spreads in PG(2*m* − 1, *q*) ←→ translation planes of order *q m*.
- \triangleright Known: Translation planes of order 4 and 8 unique, i.e. only the Desarguesian planes, which have a single S-orbit.

 $\implies N_{\text{Inn}}(2,2,2) = N_{\text{Inn}}(3,3,3) = 1$ (only Gabidulin codes)

The case $d = m = n = 4$

▶ Dempwolff, Reifart 1983: Classification of translation planes of order 16 into 8 types.

$$
\blacktriangleright \implies N_{\text{Inn}}(4,4,4) = 17
$$

► 11 self-transpose codes (meaning $C \cong_{\text{Inn}} C^{\top}$) and 3 transpose pairs of codes $\implies N(4, 4, 4) = 11 + 3 = 14$ KID K@ K R B K R R B K DA C

Table update 1

K ロ X x (日 X X B X X B X X B X O Q O

The case $m = 2$, $n = 3$, $d = 2$

In Lifted MRD-code is partial line spread of size 8 in $PG(4, 2)$.

KORKARA KERKER DAGA

- ▶ Classification by Gordon, Shaw and Soicher 2004: 9 isomorphism types of such partial line spreads.
- \triangleright To belong to a lifted MRD-code, the holes must form a plane (which is the special subspace).
- \triangleright Only 1 type of such partial spread.

$$
\blacktriangleright \implies N_{\text{Inn}}(2,3,2)=1.
$$

The case $m = 3$, $n = 4$, $d = 3$

▶ Done similarly in Honold, K., Kurz 2019.

$$
\blacktriangleright \rightsquigarrow N_{Inn}(3,4,3) = 37.
$$

The case $m = 2$, $n = 4$, $d = 2$

In Lifted MRD-code is partial line spread S of size 16 in PG(5, 2), such that the set of holes is a solid.

\triangleright A solid can be partitioned into 5 lines \Rightarrow S can be extended to a spread in PG(5,2).

- \triangleright Classification of Mateva and Topalova 2009: 131044 isomorphism types of such spreads.
- \blacktriangleright Now:
	- \blacktriangleright For each such spread, remove all quintuples of lines forming a solid.
	- ▶ Sieve out isomorphic copies by "NetCan" (Feulner 2014).

KORKARA KERKER DAGA

$$
\blacktriangleright \rightsquigarrow N_{Inn}(2,4,2)=44.
$$

Table update 2

The remaining cases

• Observation

For *n* and *d* fixed, all cases with minimum *m* are done.

.
◆ ロ ▶ ◆ @ ▶ ◆ 경 ▶ → 경 ▶ │ 경 │ ◇ 9,9,0°

 \triangleright Plan: Recursively use $(m-1, n, d)$ to do (m, n, d) .

Reduction to *m* − 1

- If Let *C* be a binary $m \times n$ MRD-Code of distance *d*.
- \blacktriangleright Let C' be the subcode consisting of all codewords with the same (fixed) last row.
- After removing the last row, C' is a binary $(m 1) \times n$ MRD-code of distance *d*.

Resulting classification strategy

We reverse the above process.

- ► Loop over representatives *C'* of $(m 1) \times n$ MRD-codes of distance *d*.
- \blacktriangleright Append a zero row to all codewords of C' .
- **Compute all extensions of** *C'* to an $m \times n$ MRD-code of distance *d*.
	- ▶ Can be stated as an "exact cover-problem".
	- \blacktriangleright Very efficient solver "dlx" by Donald Knuth based on the "dancing links" strategy.
- In the end: Sieve out isomorphic copi[es.](#page-19-0)

Resulting classification strategy, cont.

Strategy applied to the remaining cases:

- \triangleright 3 x 3, *d* = 2: success, within a few seconds CPU time. $\rightsquigarrow N_{\text{Inn}}(3, 3, 2) = 1$
- \blacktriangleright 4 \times 4, *d* = 3: success, withing a few hours CPU time. $\rightsquigarrow N_{\text{Inn}}(4, 4, 3) = 1.$

Surprising result

The only binary, not necessarily linear 4×4 MRD-code of distance 3 is the Gabidulin code!

KORK ERKER ADAM ADA

 \blacktriangleright 4 \times 4, *d* = 2: success, within few days CPU time. However, it is based on the still missing last case:

► No chance for
$$
3 \times 4
$$
, $d = 2$.

Table update 3

K ロ K K d K K 및 K K 및 K 및 M K Q Q Q

The hardest case 3×4 , $d = 2$

- $\blacktriangleright \#C = 2^8 = 256$. Each of the 16 possible last rows determines a 2×4 MRD-code of size 16 (44 types).
- \blacktriangleright (remote remark: It is the setting of the binary *q*-analog of the Fano plane.)
- \blacktriangleright Look for a suitable intermediate classification goal...
- \blacktriangleright ... small enough such that it can be computed and the number of resulting cases is not too high;
- \blacktriangleright ... large enough such that the completions to full MRD-codes can be computed.
- \triangleright Use the configuration of 32 matrices by fixing two last lines. (two combined 2×4 MRD-codes)
- $\triangleright \rightsquigarrow$ 5.748.056 cases where the extensions to size 256 need to be computed.
- \triangleright Took 254 CPU years on a computing cluster at the LRZ (Leibniz-Rechenzentrum) Munich.

$$
\blacktriangleright \rightsquigarrow N_{Inn}(3,4,2)=33
$$

The last case 4×4 , $d = 2$

$$
\blacktriangleright \#C = 2^{12} = 4096
$$

 \blacktriangleright As discussed: Can be computed from 3×4 , $d = 2$ within a few days.

$$
\blacktriangleright \rightsquigarrow N_{Inn}(4,4,2)=9
$$

$$
\blacktriangleright \rightsquigarrow N(4,4,2)=8
$$

Final table update

Slides can be found at <https://www.mathe2.uni-bayreuth.de/michaelk/>

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q