On the lengths of divisible codes

Michael Kiermaier

Institut für Mathematik Universität Bayreuth

Oberwolfach Workshop 1912: Contemporary Coding Theory March 21, 2019

joint work with Thomas Honold, Sascha Kurz and Alfred Wassermann

KORKARYKERKE PORCH

Divisible Codes

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Divisible codes

- Introduced by Harold Ward in 1981.
- \blacktriangleright **F**_{*a*}-linear code *C* Δ -divisible : \Longleftrightarrow Δ | *w*(**c**) for all **c** ∈ *C*.

KORKARYKERKE PORCH

- \triangleright Only interesting case: Δ power of $p = \text{char}(\mathbb{F}_q)$.
- In this talk: $\Delta = q^r$ $(r \in \mathbb{N}_0)$.

Why divisible codes?

- \blacktriangleright Many good codes are divisible.
- \blacktriangleright Connection to duality:

Binary type II self-dual codes are 4-divisible. 4-divisible binary codes are self-orthogonal. Self-orthogonal binary codes are 2-divisible. Self-orthogonal ternary codes are 3-divisible.

▶ Conjecture (Ward 2001):

C Griesmer code over \mathbb{F}_q , $p^r \mid \text{minimum distance of } C$ \implies *C p^{r+1}/q*-divisible.

True for $q = p$ (Ward 1998), $q = 4$ (Ward 2001)

 \blacktriangleright Applications in finite geometry, subspace codes, etc.

 \triangleright Divisible code bound (Ward 1992): Bound on the dimension of a ∆-divisible code.

If the weights of *C* are among

$$
(b - m + 1)\Delta
$$
, $(b - m + 2)\Delta$, ..., $b\Delta$, then

$$
\dim(C) \leq \frac{m(\nu_p(\Delta)+\nu_p(q))+\nu_p(\binom{b}{m})}{\nu_p(q)}.
$$

 \triangleright Goal: Investigate effective lengths of q^r -divisible codes. (will be called realizable)

effective length: # non-zero coordinates of *C*.

- \triangleright Observation: Set of realizable lengths additively closed. (Direct sum of codes!)
- \blacktriangleright Find small starters.

Lemma *The following lengths are realizable:*

$$
s(r, i) := q^{i} \cdot \frac{q^{r-i+1} - 1}{q - 1} = q^{i} + q^{i+1} + \ldots + q^{r} \quad (i \in \{0, \ldots, r\})
$$

Proof.

I Simplex code of dimension *r* − *i* + 1: Length $\frac{q^{r-i+1}-1}{q-1}$ $\frac{a^{n+1}-1}{a-1}$ and constant weight q^{r-1} .

$$
\blacktriangleright
$$
 Take q^i -fold repetition.

By additivity:

Lemma

The following lengths are realizable:

 $n = a_0 s(r, 0) + a_1 s(r, 1) + \ldots + a_r s(r, r) \quad (a_0, a_1, \ldots, a_r \in \mathbb{N}_0$

KORK ERKER ADAM ADA

We will see: That's all!

$$
s(r, i) = q^{i} \cdot \frac{q^{r-i+1} - 1}{q - 1} = q^{i} + q^{i+1} + \ldots + q^{r} \quad (i \in \{0, \ldots, r\})
$$

have the property

 $q^{i} | s(r, i)$ but $q^{i+1} | s(r, i)$. \implies $S(r) = (s(r, 0), s(r, 1), \dots s(r, r))$

suitable base numbers of a positional number system.

► Each $n \in \mathbb{Z}$ has unique $S(r)$ -adic expansion

$$
n = a_0 s(r, 0) + a_1 s(r, 1) + \ldots + a_r s(r, r) \qquad (*)
$$

with $a_0, \ldots, a_{r-1} \in \{0, \ldots, q-1\}$ and leading coefficient $a_r \in \mathbb{Z}$. (Reason: Equation $(*)$ mod $q, q^2, q^3 \dots$ yields unique a_0, a_1, a_2, \ldots **KORK E KERKERKERKER** Example

► Let $q = 3$, $r = 3$. \implies $S(3) = (40, 39, 36, 27)$. \triangleright *S*(3)-adic expansion of $n = 137$ has the form $a_0 \cdot 40 + a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = 137.$ (*) with $a_0, a_1, a_2 \in \{0, 1, 2\}$ and $a_3 \in \mathbb{Z}$. \blacktriangleright Modulo 3:

$$
a_0 \cdot 1 + \underbrace{a_1 \cdot 0 + a_2 \cdot 0 + a_3 \cdot 0}_{=0} \equiv 2 \pmod{3} \quad \Longrightarrow \quad a_0 = 2
$$

▶
$$
a_0 = 2 \text{ in } (*):
$$

\n $a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = 137 - 2 \cdot 40 \qquad (**)$
\n $= 57$ (**)

 \blacktriangleright Modulo 9: $a_1 \cdot 3 + a_2 \cdot 0 + a_3 \cdot 0 \equiv 3 \pmod{9} \implies a_1 = 1$ **I** Modulo 27: ... $a_2 = 2$ and $a_3 = -2$.

Theorem 1 (MK, S. Kurz)

Let $n \in \mathbb{Z}$ and $r \in \mathbb{N}_0$. Then:

There exists a *q r* -divisible F*q*-linear code of effective length *n*

The leading coefficient of the $S(r)$ -adic expansion of *n* is ≥ 0 .

⇐⇒

Example (cont.)

► S(3)-adic expansion of
$$
n = 137
$$
 is $137 = 2 \cdot 40 + 1 \cdot 39 + 2 \cdot 36 + \underbrace{(-2)}_{leading\text{ceating}} \cdot 27.$

 \blacktriangleright Leading coefficient is -2 .

 \triangleright Theorem 1 \implies There is no 27-divisible ternary code of effective length 137.

Proof of Theorem 1 (Idea)

 \blacktriangleright Let *C* be *q^r*-divisible of effective length *n*. Have to show:

Leading coefficient of $S(r)$ -adic expansion of *n* is ≥ 0 .

$$
\blacktriangleright
$$
 Average weight is $\frac{q-1}{q} \cdot n$.

 \implies ∃ codeword **c** with $w(c) > \frac{q-1}{q}$ $\frac{-1}{q} \cdot n$.

► Lemma: Residual code wrt **c** is q^{r-1} -divisible. Use induction on *r*.

Byproduct of proof

For all codewords **c**:

 $w(c) \leq q^r$ · cross sum of $S(r)$ -adic expansion of *n*

KORKAR KERKER E VOOR

Application to Partial Spreads

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Linear codes and points

 \blacktriangleright \mathbb{F}_q -linear code *C* of effective length *n* and dim. *k* \longleftrightarrow multiset P of *n* points in PG($k - 1$, q). (read columns of generator matrix

as homogeneous coordinates)

KORK ERKER ADAM ADA

▶ nonzero codeword **c** of *C*

 \longleftrightarrow hyperplane $H = \mathbf{c}^\perp$ in PG(*V*)

$$
\blacktriangleright \ w(\mathbf{c}) = n - \#(\mathcal{P} \cap H).
$$

I *C* ∆-divisible

 \iff $\#(\mathcal{P} \cap H) \equiv \# \mathcal{P}$ (mod Δ) for all hyperplanes *H*. In this case: Call P ∆-divisible.

Advantages of geometric setting

- \blacktriangleright Basis-free approach to coding theory.
- ▶ Geometry provides *intuition*.

Definition

- \blacktriangleright Let *V* be \mathbb{F}_q vector space of dimension *v*.
- \blacktriangleright Let *S* be a set of *k*-subspaces of *V*.
- \triangleright *S* is partial $(k − 1)$ -spread

if each point in V is covered by at most 1 element of S .

KORKARA KERKER DAGA

Research Problem

Find maximum possible size $A_q(v, k)$ of partial spread.

History

Write $v = tk + r, r \in \{0, \ldots, k - 1\}, t > 2$.

 \blacktriangleright 1964 Segre: All points can be covered $\iff k \mid v$ (settles $r = 0$). In this case, S spread, $A_q(V, k) = \frac{q^V - 1}{q^k - 1}$ $\frac{q-1}{q^k-1}$.

▶ 1975 Beutelspacher:

$$
A_q(v,k) \geq \frac{q^v-q^{k+r}}{q^k-1}+1
$$
 (*)

Bound sharp for $r = 1$.

- \triangleright 1979 Drake, Freeman: Improved upper bound on $A_{\alpha}(v, k)$.
- ▶ 2010 El-Zanati, Jordon, Seelinger, Sissokho, Spence: Computer construction for $A₂(8, 3) = 34$. Settles all cases with $q = 2$, $r = 2$, $k = 3$ recursively. Here, bound ([∗](#page-13-0)) is not sharp!
- I 2016 Kurz: Bound ([∗](#page-13-0)) sharp for *q* = 2, *r* = 2, *k* ≥ 4.
- ▶ 2017 Năstase, Sissokho: (*) sharp whenever $k > \frac{r}{4}$ $\left[\begin{smallmatrix} r \ 1 \end{smallmatrix} \right]_q.$ $\left[\begin{smallmatrix} r \ 1 \end{smallmatrix} \right]_q.$ $\left[\begin{smallmatrix} r \ 1 \end{smallmatrix} \right]_q.$

Năstase and Sissokho as a corollary from Theorem 1

I et S be partial (*k* − 1)-spread

Example 3 Let S be partial
$$
(K - T)
$$
-spledu.
\n**Example 4** Assume $\#S = \frac{q^V - q^{k+r}}{q^k - 1} + 2$.
\n $\Rightarrow \#P = \begin{bmatrix} k + r \\ 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} \begin{bmatrix} k \\ q \end{bmatrix}$
\n $S(k - 1)$ -adic ex. $= \sum_{i=0}^{k-2} (q - 1)s(k - 1, i)$
\n $+ \left(q \cdot (\begin{bmatrix} r \\ 1 \end{bmatrix} - k + 1) - 1 \right) s(k - 1, k - 1)$

 \blacktriangleright Theorem 1: Leading coefficient $q \cdot \frac{r}{4}$ $\binom{r}{1}_q - k + 1 - 1 \geq 0.$ \iff *k* ≤ $\begin{bmatrix}$ ^{*r*} $\left[\begin{smallmatrix} r \ 1 \end{smallmatrix}\right]_q.$

Projective Divisible Codes

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Motivation

- ▶ ∃ partial 3-spread in \mathbb{F}_2^{11} of size 133?
- \blacktriangleright Hole set $\mathcal P$ is 8-divisible multiset of size 52.

S(3)-adic expansion: $52 = 0 \cdot 15 + 0 \cdot 14 + 1 \cdot 12 + 5 \cdot 8$ no contradiction.

KORKARA KERKER DAGA

 \blacktriangleright However, \varnothing is a proper set. Will see: Does not exist!

$$
\implies 129 \leq A_2(11,4) \leq 132.
$$

Projective divisible codes

- \triangleright Sets of points \longleftrightarrow projective linear codes.
- \triangleright Study effective lengths of projective linear codes.
- \triangleright As before: Set of realizable lengths additively closed.
- \blacktriangleright Find small starters.

Lemma

The following lengths are realizable:

$$
n_1 = \frac{q^{r+1}-1}{q-1} \quad \text{and} \quad n_2 = q^{r+1}
$$

KORK ERKER ADAM ADA

Proof.

Simplex code of dim. $r + 1$ and

1st order Reed-Muller code of dim. $r + 2$.

Question: Are all realizable lengths sum of n_1 's and n_2 's?

Theorem 2 (T. Honold, MK, S. Kurz)

Length $n \leq r q^{r+1}$ realizable $\iff n$ sum of n_1 's and n_2 's.

Restriction $n < rq^{r+1}$ necessary?

- \triangleright Yes!
- For $r = 1$, $q^2 + 1$ is realizable (ovoid in PG(3, *q*)).
- \triangleright Classification of lengths of projective divisible code apparently quite hard.

KORK ERKER ADAM ADA

Theorem 3 (T. Honold, MK, S. Kurz, A. Wassermann)

(a) The lengths of projective 2-divisible (even) binary codes are

 $3, 4, 5, 6, \ldots$

(b) The lengths of projective 4-divisible (doubly even) binary codes are

 $7, 8, 14, 15, 16, 17, \ldots$

(c) The lengths of projective 8-divisible (triply even) binary codes are

15, 16, 30, 31, 32, 45, 46, 47, 48, 49, 50, 51, 60, 61, 62, 63, . . .

KORK ERKER ADAM ADA

Hardest single case (by far) Non-existence of 8-divisible code of length 59.

No projective 8-divisible code of length 59

- \blacktriangleright Let *C* be such code of smallest possible dimension k , weight enumerator $w(C) = 1 + a_8 x^8 + a_{16} x^{16} + \ldots + a_{56} x^{56}$
- **I** Lemma: $a_{56} = a_{48} = 0$ Residuals would be projective 4-divisible of length 3 and 11
- **► Lemma:** $k > 10$: First 4 MacWilliams identities \sim

$$
a_{16} + a_{40} = -6 - 3a_8 + \frac{1}{128} \# C \qquad (*)
$$

 000

$$
\implies 0 \leq -6 + \frac{1}{128} \# C \implies \# C \geq 768.
$$

 \blacktriangleright Lemma: $k = 10$

 k min. \implies all codim 1 subcodes are non-projective. Geometr.: All 2^k – 60 points outside of C lie on a secant. #secants $\leq \binom{\# \mathcal{C}}{2} = 1711$. \Rightarrow 2^{*k*} − 60 ≤ 1711 \Rightarrow *k* ≤ 10.

I Lemma: $a_8 = 0$ and $a_{16} + a_{40} = 2$ $(k = 10 \text{ into } (*) \implies a_{16} + a_{40} = 2 - 3a_{8}$

 \blacktriangleright \blacktriangleright \blacktriangleright [.](#page-25-0).. \rightsquigarrow \rightsquigarrow \rightsquigarrow Lemma: $a_{16} = 0 \rightsquigarrow ... \rightsquigarrow$ finally [a](#page-19-0) [co](#page-21-0)n[tr](#page-20-0)a[di](#page-0-0)[cti](#page-25-0)[on](#page-0-0).

Further Applications

The Johnson bound for subspace codes

 \triangleright Most competitive bound for subspace codes: Johnson type bound II (Xia, Fu)

$$
A_q(\nu,d;k) \leq \left\lfloor \frac {q^\nu-1}{q^k-1} \cdot A_q(\nu-1,d;k-1) \right\rfloor
$$

 \triangleright Similar to partial spreads: Improvement via divisible codes.

Example

 \triangleright Johnson type bound II:

$$
A_2(9,6;4)\leq \lfloor \frac{2^9-1}{2^4-1}\cdot \underbrace{A_2(8,6;3)}_{=34} \rfloor = 1158
$$

Improvement:

 $A_2(9, 6; 4) < 1156$

KORKARA KERKER DAGA

The Barth sextic

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . 990

The Barth sextic

- \triangleright Record surface: Sextic surface with the maximum possible number of nodes (ordinary double points).
- \blacktriangleright Its even sets of nodes

form a binary 8-divisible code *C* of length 65.

▶ Via classification: Generator matrix of *C* is

 $\sqrt{ }$ 11110001110000011010110111101001100011010000001110011010100001110 11100111100001101000110111000111010000011110100000100011110101001 11000111001101101011010010100110001101000000111101001010000111110 10011110001110100011010100011101001101111010000010001111010100001 00011100111110101101000110011000111000000011110100101000011110110 1101000110101100111010011001110100000010 01110011110010110100011001100011101000001111010010000001111010110 11100011100100110101101011010011000110100000011100110101000011101 11001111000111010001101010001110100100111101000001000111101010010 10001110011111010110100001001100011110000001111010010100001111001 00111100011101000110101100111010011011110100000000111110101000010 00111001111001011010001100110001110100000111101001010000111101001 \setminus $\begin{array}{c} \hline \end{array}$

- $w(C) = 1 + 390x^{24} + 3055x^{32} + 650x^{40}$
- **I** # Aut(*C*) = 15600, Aut(*C*) ≅ PSL(2, 25) $\times \mathbb{Z}/2\mathbb{Z}$

Open problems

- \blacktriangleright Effective lengths of general p^s -divisible codes. Example 8-divisible over \mathbb{F}_4 .
- \triangleright Open cases for lengths of projective linear codes for:
	- \blacktriangleright Binary 16-divisible
	- \blacktriangleright Ternary 9-divisible
	- \blacktriangleright 5-divisible over \mathbb{F}_5
- \blacktriangleright Lengths of divisible codes with
	- \blacktriangleright restricted dimension and/or
	- \blacktriangleright restricted point multiplicity
- \blacktriangleright Classifications.
- \triangleright Divisible codes of high minimum distance.
- \blacktriangleright Indecomposable divisible codes.
- \triangleright *q*-analog question: divisible rank metric codes.

