On the lengths of divisible codes

Michael Kiermaier

Institut für Mathematik Universität Bayreuth

Oberwolfach Workshop 1912: Contemporary Coding Theory March 21, 2019

joint work with Thomas Honold, Sascha Kurz and Alfred Wassermann

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Divisible Codes

Divisible codes

- Introduced by Harold Ward in 1981.
- ▶ \mathbb{F}_q -linear code $C \triangle$ -divisible : $\iff \Delta \mid w(\mathbf{c})$ for all $\mathbf{c} \in C$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Only interesting case: Δ power of $p = char(\mathbb{F}_q)$.
- In this talk: $\Delta = q^r$ $(r \in \mathbb{N}_0)$.

Why divisible codes?

- Many good codes are divisible.
- Connection to duality:

Binary type II self-dual codes are 4-divisible. 4-divisible binary codes are self-orthogonal. Self-orthogonal binary codes are 2-divisible. Self-orthogonal ternary codes are 3-divisible.

Conjecture (Ward 2001):

C Griesmer code over \mathbb{F}_q , $p^r \mid$ minimum distance of *C* $\implies C p^{r+1}/q$ -divisible.

True for q = p (Ward 1998), q = 4 (Ward 2001)

Applications in finite geometry, subspace codes, etc.

 Divisible code bound (Ward 1992): Bound on the dimension of a Δ-divisible code.

If the weights of *C* are among
$$(b - m + 1)\Delta, (b - m + 2)\Delta, \dots, b\Delta$$
, then

$$\dim(\mathcal{C}) \leq \frac{m(v_{\rho}(\Delta) + v_{\rho}(q)) + v_{\rho}(\binom{b}{m})}{v_{\rho}(q)}.$$

 Goal: Investigate effective lengths of q^r-divisible codes. (will be called realizable)

effective length: # non-zero coordinates of *C*.

- Observation: Set of realizable lengths additively closed. (Direct sum of codes!)
- Find small starters.

Lemma The following lengths are realizable:

$$s(r,i) := q^i \cdot \frac{q^{r-i+1}-1}{q-1} = q^i + q^{i+1} + \ldots + q^r \quad (i \in \{0,\ldots,r\})$$

Proof.

Simplex code of dimension *r* − *i* + 1: Length ^{*q^{r−i+1}−1*}/_{*q−1*} and constant weight *q^{r−i}*.

By additivity:

Lemma

The following lengths are realizable:

 $n = a_0 s(r, 0) + a_1 s(r, 1) + \ldots + a_r s(r, r) \quad (a_0, a_1, \ldots, a_r \in \mathbb{N}_0)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

We will see: That's all!

$$s(r,i) = q^i \cdot \frac{q^{r-i+1}-1}{q-1} = q^i + q^{i+1} + \ldots + q^r \quad (i \in \{0,\ldots,r\})$$

have the property

$$q^i \mid s(r,i)$$
 but $q^{i+1} \nmid s(r,i)$.
 $\implies S(r) = (s(r,0), s(r,1), \dots s(r,r))$

suitable base numbers of a positional number system. Each $n \in \mathbb{Z}$ has unique S(r)-adic expansion

$$n = a_0 s(r, 0) + a_1 s(r, 1) + \ldots + a_r s(r, r)$$
 (*)

with $a_0, \ldots, a_{r-1} \in \{0, \ldots, q-1\}$ and leading coefficient $a_r \in \mathbb{Z}$. (Reason: Equation (*) mod $q, q^2, q^3 \ldots$ yields unique a_0, a_1, a_2, \ldots) Example

► Let q = 3, r = 3. \implies S(3) = (40, 39, 36, 27).

• S(3)-adic expansion of n = 137 has the form

$$a_0 \cdot 40 + a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = 137.$$
 (*)

with $a_0, a_1, a_2 \in \{0, 1, 2\}$ and $a_3 \in \mathbb{Z}$.

Modulo 3:

$$a_0 \cdot 1 + \underbrace{a_1 \cdot 0 + a_2 \cdot 0 + a_3 \cdot 0}_{=0} \equiv 2 \pmod{3} \implies a_0 = 2$$

•
$$a_0 = 2$$
 in (*):
 $a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = \underbrace{137 - 2 \cdot 40}_{=57}$ (**)

Modulo 9: $a_1 \cdot 3 + a_2 \cdot 0 + a_3 \cdot 0 \equiv 3 \pmod{9} \implies a_1 = 1$ Modulo 27: ... $a_2 = 2$ and $a_3 = -2$.

Theorem 1 (MK, S. Kurz)

Let $n \in \mathbb{Z}$ and $r \in \mathbb{N}_0$. Then:

There exists a q^r -divisible \mathbb{F}_q -linear code of effective length n

The leading coefficient of the S(r)-adic expansion of n is ≥ 0 .

Example (cont.)

S(3)-adic expansion of
$$n = 137$$
 is
 $137 = 2 \cdot 40 + 1 \cdot 39 + 2 \cdot 36 + \underbrace{(-2)}_{leading} \cdot 27.$

► Leading coefficient is -2.

Proof of Theorem 1 (Idea)

Let C be q^r-divisible of effective length n. Have to show:

Leading coefficient of S(r)-adic expansion of n is ≥ 0 .

Average weight is
$$\frac{q-1}{a} \cdot n$$
.

 $\implies \exists \text{ codeword } \mathbf{c} \text{ with } w(\mathbf{c}) > \frac{q-1}{q} \cdot n.$

Lemma: Residual code wrt c is q^{r-1}-divisible. Use induction on r.

Byproduct of proof

For all codewords c:

 $w(\mathbf{c}) \leq q^r \cdot \text{cross sum of } S(r) \text{-adic expansion of } n$

Application to Partial Spreads

Linear codes and points

► \mathbb{F}_q -linear code *C* of effective length *n* and dim. *k* ←→ multiset \mathcal{P} of *n* points in PG(*k* - 1, *q*). (read columns of generator matrix

as homogeneous coordinates)

nonzero codeword c of C

 \leftrightarrow hyperplane $H = \mathbf{c}^{\perp}$ in PG(V)

$$\blacktriangleright w(\mathbf{c}) = n - \#(\mathcal{P} \cap H).$$

C ∆-divisible

 $\iff \#(\mathcal{P} \cap H) \equiv \#\mathcal{P} \pmod{\Delta}$ for all hyperplanes *H*. In this case: Call $\mathcal{P} \bigtriangleup$ -divisible.

Advantages of geometric setting

- Basis-free approach to coding theory.
- Geometry provides intuition.

Definition

- Let V be \mathbb{F}_q vector space of dimension v.
- ► Let *S* be a set of *k*-subspaces of *V*.
- S is partial (k 1)-spread

if each point in V is covered by at most 1 element of S.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Research Problem

Find maximum possible size $A_q(v, k)$ of partial spread.

History

Write v = tk + r, $r \in \{0, ..., k - 1\}$, $t \ge 2$.

▶ 1964 Segre: All points can be covered $\iff k \mid v \text{ (settles } r = 0\text{).}$ In this case, *S* spread, $A_q(v, k) = \frac{q^v - 1}{q^k - 1}$.

1975 Beutelspacher:

$$A_q(v,k) \ge rac{q^v - q^{k+r}}{q^k - 1} + 1$$
 (*)

· ロ ト 4 母 ト 4 母 ト 4 母 ト 4 日 ト

Bound sharp for r = 1.

- ▶ 1979 Drake, Freeman: Improved upper bound on $A_q(v, k)$.
- 2010 El-Zanati, Jordon, Seelinger, Sissokho, Spence: Computer construction for A₂(8,3) = 34.
 Settles all cases with q = 2, r = 2, k = 3 recursively.
 Here, bound (*) is not sharp!

▶ 2016 Kurz: Bound (*) sharp for $q = 2, r = 2, k \ge 4$.

▶ 2017 Năstase, Sissokho: (*) sharp whenever $k > \begin{bmatrix} r \\ 1 \end{bmatrix}_{q}$.

Năstase and Sissokho as a corollary from Theorem 1

- Let S be partial (k 1)-spread.
- Set \mathcal{P} of holes (points not covered by \mathcal{S}) is q^{k-1} -divisible!

• Assume
$$\#S = \frac{q^v - q^{k+r}}{q^k - 1} + 2.$$

$$\implies \#\mathcal{P} = \begin{bmatrix} k+r\\1 \end{bmatrix}_q - 2\begin{bmatrix} k\\1 \end{bmatrix}_q$$

$$S(k-1) \text{-adic ex.} = \sum_{i=0}^{k-2} (q-1)s(k-1,i)$$
$$+ \left(q \cdot \left(\begin{bmatrix} r\\1 \end{bmatrix}_q - k + 1 \right) - 1 \right)s(k-1,k-1)$$

► Theorem 1: Leading coefficient $q \cdot ({r \brack 1}_q - k + 1) - 1 \ge 0$. $\iff k \le {r \brack 1}_q$.

Projective Divisible Codes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Motivation

- ▶ \exists partial 3-spread in \mathbb{F}_2^{11} of size 133?
- Hole set \mathcal{P} is 8-divisible multiset of size 52.

S(3)-adic expansion: $52 = 0 \cdot 15 + 0 \cdot 14 + 1 \cdot 12 + 5 \cdot 8$ no contradiction.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► However, *P* is a proper set. Will see: Does not exist!

$$\implies$$
 129 \leq $A_2(11,4) \leq$ 132.

Projective divisible codes

- ► Sets of points ↔ projective linear codes.
- Study effective lengths of projective linear codes.
- As before: Set of realizable lengths additively closed.
- Find small starters.

Lemma

The following lengths are realizable:

$$n_1 = rac{q^{r+1}-1}{q-1}$$
 and $n_2 = q^{r+1}$

Proof.

Simplex code of dim. r + 1 and 1st order Reed-Muller code of dim. r + 2.

Question: Are all realizable lengths sum of n_1 's and n_2 's?

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem 2 (T. Honold, MK, S. Kurz)

Length $n \leq rq^{r+1}$ realizable $\iff n$ sum of n_1 's and n_2 's.

Restriction $n \leq rq^{r+1}$ necessary?

- Yes!
- For r = 1, $q^2 + 1$ is realizable (ovoid in PG(3, q)).
- Classification of lengths of projective divisible code apparently quite hard.

Theorem 3 (T. Honold, MK, S. Kurz, A. Wassermann)

(a) The lengths of projective 2-divisible (even) binary codes are

 $3,4,5,6,\ldots$

(b) The lengths of projective 4-divisible (doubly even) binary codes are

 $7,8,\ 14,15,16,17,\ldots$

(c) The lengths of projective 8-divisible (triply even) binary codes are

 $15, 16, \ 30, 31, 32, \ 45, 46, 47, 48, 49, 50, 51, \ 60, 61, 62, 63, \ldots$

Hardest single case (by far) Non-existence of 8-divisible code of length 59.

No projective 8-divisible code of length 59

- ► Let *C* be such code of smallest possible dimension *k*, weight enumerator $w(C) = 1 + a_8 x^8 + a_{16} x^{16} + ... + a_{56} x^{56}$
- Lemma: a₅₆ = a₄₈ = 0 Residuals would be projective 4-divisible of length 3 and 11
- Lemma: $k \ge 10$: First 4 MacWilliams identities \rightsquigarrow

$$a_{16} + a_{40} = -6 - 3a_8 + \frac{1}{128} \# C$$
 (*)

$$\implies 0 \leq -6 + \frac{1}{128} \# C \implies \# C \geq 768.$$

Lemma: *k* = 10

 $k \text{ min.} \implies \text{all codim 1 subcodes are non-projective.}$ Geometr.: All $2^k - 60$ points outside of C lie on a secant. #secants $\leq \binom{\#C}{2} = 1711$. $\implies 2^k - 60 \leq 1711 \implies k \leq 10.$

 Lemma: a₈ = 0 and a₁₆ + a₄₀ = 2 (k = 10 into (*) ⇒ a₁₆ + a₄₀ = 2 - 3a₈)
 ... → Lemma: a₁₆ = 0 → ... → finally a contradiction.

Further Applications

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The Johnson bound for subspace codes

 Most competitive bound for subspace codes: Johnson type bound II (Xia, Fu)

$$egin{aligned} & \mathsf{A}_q(oldsymbol{v},oldsymbol{d};oldsymbol{k}) \leq \left\lfloor rac{q^{
u}-1}{q^k-1}\cdot oldsymbol{A}_q(oldsymbol{v}-1,oldsymbol{d};oldsymbol{k}-1)
ight
floor \end{aligned}$$

Similar to partial spreads: Improvement via divisible codes.

Example

Johnson type bound II:

$$A_{2}(9,6;4) \leq \lfloor \frac{2^{9}-1}{2^{4}-1} \cdot \underbrace{A_{2}(8,6;3)}_{=34} \rfloor = 1158$$

Improvement:

 $A_2(9,6;4) \leq 1156$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Barth sextic

The Barth sextic

- Record surface: Sextic surface with the maximum possible number of nodes (ordinary double points).
- Its even sets of nodes

form a binary 8-divisible code C of length 65.

Via classification: Generator matrix of C is

- $w(C) = 1 + 390x^{24} + 3055x^{32} + 650x^{40}$
- ▶ $\# \operatorname{Aut}(C) = 15600$, $\operatorname{Aut}(C) \cong \operatorname{PSL}(2,25) \rtimes \mathbb{Z}/2\mathbb{Z}$

Open problems

- Effective lengths of general p^s-divisible codes.
 Example 8-divisible over F₄.
- Open cases for lengths of projective linear codes for:
 - Binary 16-divisible
 - Ternary 9-divisible
 - 5-divisible over F₅
- Lengths of divisible codes with
 - restricted dimension and/or
 - restricted point multiplicity
- Classifications.

. . .

- Divisible codes of high minimum distance.
- Indecomposable divisible codes.
- q-analog question: divisible rank metric codes.

(ロ) (同) (三) (三) (三) (○) (○)