New subspace designs from large set recursion

Michael Kiermaier

Institut für Mathematik Universität Bayreuth

Combinatorics 2014 June 5, 2014 Hotel Serapo, Gaeta

joint work with Michael Braun, Axel Kohnert and Reinhard Laue

KORKARA KERKER DAGA

Subsets

For *V* a set of cardinality *v*:

- \blacktriangleright $\binom{V}{k}$ $\binom{V}{k}$:= set of all *k*-element subsets of *V*.
- \blacktriangleright binomial coefficient:

$$
\# \binom{V}{k} = \binom{V}{k} = \frac{V \cdot (V-1) \cdot \ldots \cdot (V-k+1)}{1 \cdot 2 \cdot \ldots \cdot k}
$$

Subspaces

For *V* an \mathbb{F}_q -vector space of dimension *v*:

- **Figure Graßmannian** $\begin{bmatrix} V & W \\ W & W \end{bmatrix}$ *k q* : set of all *k*-dim. subspaces of *V*.
- \triangleright Gaussian Binomial coefficient

$$
\#\begin{bmatrix} V \\ k \end{bmatrix}_q = \begin{bmatrix} V \\ k \end{bmatrix}_q = \frac{(q^v - 1)(q^{v-1} - 1) \cdot \ldots \cdot (q^{v-k+1} - 1)}{(q-1)(q^2 - 1) \cdot \ldots \cdot (q^k - 1)}
$$

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

Observation

 \blacktriangleright Looks quite similar!

$$
\blacktriangleright \lim_{q \to 1} \left[\begin{smallmatrix} v \\ k \end{smallmatrix} \right]_q = {v \choose k}
$$

Connection

Replace notions from set theory by vector space counterparts.

set \longleftrightarrow \mathbb{F}_q -vector space cardinality ←→ dimension binomial coefficient ←→ Gaussian binomial coefficient 1 ←− *q*

KORKARA KERKER DAGA

q-analogs in combinatorics

More precisely:

- \triangleright subset lattice \longleftrightarrow subspace lattice
- \triangleright subspace lattice: q -analog of subset lattice.
- \blacktriangleright subset lattice: subspace lattice over " \mathbb{F}_1 ".

Definition (block design)

Let *V* be a *v*-element set. $D \subseteq \binom{V}{k}$ $\mathcal{E}^{\mathcal{V}}_k$) is called a *t*-(*v*, *k*, λ) (block) design if each $\mathcal{T} \in \binom{\mathcal{V}}{t}$ $\mathbf{v}_t^{\mathsf{V}}$) is contained in exactly λ elements of *D*.

Question *q*-analog of a block design?

Definition (subspace design)

Let *V* be a *v*-dimensional \mathbb{F}_q vector space. $D \subseteq \lceil \frac{V}{k} \rceil$ $\left[\begin{smallmatrix} V \ k \end{smallmatrix} \right]_q$ is called a t - $(\nu, k, \lambda)_q$ (subspace) design if each $\mathcal{T} \in \big[\begin{smallmatrix} \mathsf{V} \ \mathsf{r} \end{smallmatrix} \big]$ $\left\{ \begin{matrix} V \\ t \end{matrix} \right\}$ is contained in exactly λ elements of *D*.

KORKAR KERKER E VOOR

Definition (block design) Let *V* be a *v*-element set. *D* ⊆ $\binom{V}{k}$ \mathcal{L}_{k}^{V}) is called a *t*-(*v*, *k*, λ) (block) design if each $\mathcal{T} \in (\frac{V}{t})$ $\binom{V}{t}$ is contained in exactly λ elements of *D*.

Question *q*-analog of a block design?

Definition (subspace design)

Let *V* be a *v*-dimensional \mathbb{F}_q vector space. $D \subseteq \lceil \frac{V}{k} \rceil$ $\left[\begin{smallmatrix} V \ k \end{smallmatrix} \right]_q$ is called a t - $(\nu, k, \lambda)_q$ (subspace) design if each $\mathcal{T} \in \big[\begin{smallmatrix} \mathsf{V} \ \mathsf{r} \end{smallmatrix} \big]$ $\left\{ \begin{matrix} V \\ t \end{matrix} \right\}$ is contained in exactly λ elements of *D*.

KORKAR KERKER E VOOR

Definition (block design) Let *V* be a *v*-element set. *D* ⊆ $\binom{V}{k}$ \mathcal{L}_{k}^{V}) is called a *t*-(*v*, *k*, λ) (block) design if each $\mathcal{T} \in (\frac{V}{t})$ $\binom{V}{t}$ is contained in exactly λ elements of *D*.

Question *q*-analog of a block design?

Definition (subspace design) Let *V* be a *v*-dimensional \mathbb{F}_q vector space. $D \subseteq \lceil \frac{V}{k} \rceil$ $\left[\frac{\nu}{q}\right]_q$ is called a *t*-(*v*, *k*, $\lambda)_q$ (subspace) design if each $\mathcal{T} \in \lceil \frac{\mathsf{V}}{t} \rceil$ $\left\{ \frac{V}{l} \right\} _q$ is contained in exactly λ elements of *D*.

KORKAR KERKER E VOOR

Example

- \blacktriangleright 1-(4, 2, 1)₂ design
- \blacktriangleright Take row spaces of

$$
\begin{pmatrix}\n1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0\n\end{pmatrix}, \begin{pmatrix}\n1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1\n\end{pmatrix}, \begin{pmatrix}\n1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1\n\end{pmatrix}, \begin{pmatrix}\n1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1\n\end{pmatrix}, \begin{pmatrix}\n0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1\n\end{pmatrix}
$$

Geometrically: a spread 5 lines in PG(3, 2) covering each point exactly once.

Representation of subspaces

$$
\begin{bmatrix} V \\ k \end{bmatrix}_q \stackrel{1\text{-to-1}}{\longleftrightarrow} reduced row echelon forms (rref) in \mathbb{F}_q^{k \times v}
$$

KOD KOD KED KED E VAN

History of subspace designs

- ► First reference: P. Cameron 1974
- First nontrivial subspace designs with $t \geq 2$: S. Thomas 1987
- First Steiner system $(\lambda = 1)$ with $t > 2$: M. Braun, T. Etzion, P. Östergård, A. Vardy, A. Wassermann 2013
- \triangleright Only known infinite nontrivial families with $t > 2$:
	- ► 2- $(v, 3, q^2 + q + 1)_q$ for $v \ge 7$, gcd $(v, 6) = 1$ (S. Thomas 1987; Suzuki 1990, 1992)
	- \rightarrow 2-(m ℓ , 3, $q^3 \frac{q^{\ell-5}-1}{q-1}$)_q for $m > 3$, $\ell > 7$ and $\ell \equiv 5 \mod 6(q - 1)$ (T. Itoh 1998)

KORK ERKER ADAM ADA

Goal

Construction of new infinite families!

Definition Fix a parameter set t - $(v, k, \lambda)_{q}$. A large set LS*q*[*N*](*t*, *k*, *v*)

> is a partition of $\binom{V}{k}$ $\left[\begin{smallmatrix} V\ k \end{smallmatrix}\right]_q$ into N *t*-(*v*, *k*, $\lambda)_q$ designs.

Remarks

- $\lambda = \begin{bmatrix} v-t \\ k-t \end{bmatrix}$ *k*−*t q* /*N* is determined by *N*, *v*, *k*, *t*, *q*.
- \triangleright Only known nontrivial large sets with *t* ≥ 2:
	- ► LS₂[3](2, 3, 8) (M. Braun: A. Kohnert; P. Östergård: A. Wassermann 2014)
	- \blacktriangleright LS₃[2](2, 3, 6), LS₅[2](2, 3, 6) (new)
- ► For large sets of *ordinary* block designs: Powerful recursion methods! (Khosrovshahi, Ajoodani-Namini 1991)
- \triangleright Adjust those recursion methods to subspace designs!

Definition (Directed grid graph)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

Bijection

paths from $(0,0)$ to $(\nu - k, k) \stackrel{1\text{-} \mathrm{ \mathbf{t}+ \mathrm{c}+1}}{\longleftrightarrow} k\text{-subsets }K$ of V vertical step ←→ element in *K* horizontal step ←→ element not in *K*

Question

Is there a *q*-analog of this bijection?

- ► Wanted: paths in some graph $\stackrel{1-to-1}{\longleftrightarrow}$ $\stackrel{V}{\longrightarrow}$ *k q*
- ► As good: paths in some graph $\stackrel{1-t0-1}{\longleftrightarrow}$ rref in $\mathbb{F}_q^{k \times k}$

Definition (Directed *q*-grid multigraph)

イロト イ押 トイヨ トイヨト

 QQ

Bijection

k-subspaces *K* of $V \stackrel{1-to-1}{\longleftrightarrow}$ paths from (0, 0) to (*v* − *k*, *k*) vertical step ←→ pivot column horizontal step ←→ non-pivot column

KORK ERKER ADAM ADA

Partitions

Partition of the set of paths from $(0, 0)$ to $(\nu - k, k)$ yields

- **P** partition of $\begin{bmatrix} V & W \\ W & W \end{bmatrix}$ *k q*
- \blacktriangleright identity for Gaussian binomial coefficients

KORK ERKER ADAM ADA

- \blacktriangleright ... including bijective proof.
- \blacktriangleright New large sets from old ones!

Example

Partition of paths from (0, 0) to (7, 3) into 4 parts.

$$
\blacktriangleright \text{ Blue part} \longleftrightarrow \left(\begin{array}{cccc} 1 \times 4 \text{ rref} & * & * & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 2 \times 5 \text{ rref} \\ 0 & 0 & 0 & 0 & 0 & 2 \times 5 \text{ rref} \end{array}\right)
$$

Number of such rref: $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 1 \end{bmatrix}_q \cdot \begin{bmatrix} 5 \\ 2 \end{bmatrix}$ $\left[\frac{5}{2}\right]_q \cdot q \cdot q^3$

 $\blacktriangleright \leadsto$ identity

$$
\begin{bmatrix} 6 \\ 3 \end{bmatrix}_q + q^4 \begin{bmatrix} 5 \\ 2 \end{bmatrix}_q \begin{bmatrix} 4 \\ 1 \end{bmatrix}_q + q^8 \begin{bmatrix} 4 \\ 1 \end{bmatrix}_q \begin{bmatrix} 5 \\ 2 \end{bmatrix}_q + q^{12} \begin{bmatrix} 6 \\ 3 \end{bmatrix}_q = \begin{bmatrix} 10 \\ 3 \end{bmatrix}_q
$$

Example

$$
\begin{bmatrix} 6 \ 3 \end{bmatrix}_q + q^4 \begin{bmatrix} 5 \\ 2 \end{bmatrix}_q \begin{bmatrix} 4 \\ 1 \end{bmatrix}_q + q^8 \begin{bmatrix} 4 \\ 1 \end{bmatrix}_q \begin{bmatrix} 5 \\ 2 \end{bmatrix}_q + q^{12} \begin{bmatrix} 6 \\ 3 \end{bmatrix}_q
$$

Theorem (very informal version) *We may "plug in" suitable large sets into the identity!*

Example (cont.)

- \triangleright Computer search: \exists LS_{*q*}[2](2, 3, 6) for *q* ∈ {3, 5}.
- ^I *Derived large sets*: ∃ LS*q*[2](1, 2, 5), ∃ LS*q*[2](0, 1, 4)

 \Rightarrow LS_q[2](2, 3, 6) ∪ LS_q[2](1, 2, 5) $*$ LS_q[2](0, 1, 4) ∪ LS*q*[2](0, 1, 4) ∗ LS*q*[2](1, 2, 5) ∪ LS*q*[2](2, 3, 6) is a LS*q*[2](**??**, 3, 10)

Example (cont.)

- \triangleright \implies ∃ LS_q[2](2, 3, 10) for $q \in \{3, 5\}$
- \triangleright \implies ∃2-(10, 3, 1640)₃ and 2-(10, 3, 48828)₅ designs
- \triangleright number of blocks: 238247460880 and 208628946735352

Iterate these methods!

 \rightsquigarrow infinite families of large sets \rightsquigarrow infinite families of subspace designs

Theorem

- ^I ∃ LS*q*[2](2, 2 *^s* − 1, *v*) *for* $q \in \{3, 5\}$, $s \ge 1$, $v \equiv 2 \mod 4$, $v > 2^s$.
- \blacktriangleright ∃ LS₂[3](2, *k*, *v*) *for k* \in {5, 11, 17}*, v* \equiv 4 mod 12*, v > k.*
- ^I *If p* = 2 · 3 *^a* + 1 *is prime and* ∃ LS2[3](2, *k*, *p* + 1)*, then* \exists LS₂[3](2, *p* + 1 – *k*, *n*(*p* – 1) + 2) *for all n* > 2*.*

KORK ERKER ADAM ADA

 \blacktriangleright *etc.*

Open questions

- \blacktriangleright Find new starting points for the recursion. Candidates:
	- \blacktriangleright LS₂[3](2, 4, 8) (Smallest open case for $q = 2$, $N = 3$)
	- Anything with $t > 2$, $N > 4$.
	- ► LS_q[2](2, 3, 6), $q > 7$ odd (known for $q \in \{3, 5\}$, invariant under Singer²)
	- **•** harder: $LS_q[q^2+1](2,3,6)$, q unrestricted
- \triangleright When does $LS_q[N](1, k, v)$ exist? (includes parallelisms) Necessary conditions: $k \mid v$ and $N \mid \binom{v-1}{k-1}$ *k*−1 *q*

KORK ERKER ADAM ADA

Z. Baranyai 1975: Sufficient for $q = 1$.