Intersection numbers for *q*-analogs of designs

Michael Kiermaier

Institut für Mathematik Universität Bayreuth

Conference on Random network codes and Designs over GF(*q*) September 18, 2013 Ghent University

joint work with Mario Pavčević

Notation

- \triangleright prime power *q*
- \blacktriangleright *v*-dim. \mathbb{F}_q -vector space *V*
- **Grassmannian** $\begin{bmatrix} V & W \\ W & W \end{bmatrix}$ *k q* : set of all *k*-dim. subspaces of *V*.
- \triangleright Gaussian Binomial coefficient

$$
{\begin{bmatrix} v \\ k \end{bmatrix}}_q := \# {\begin{bmatrix} V \\ k \end{bmatrix}}_q = \frac{(q^v - 1)(q^{v-1} - 1) \cdot \ldots \cdot (q^{v-k+1} - 1)}{(q-1)(q^2 - 1) \cdot \ldots \cdot (q^k - 1)}
$$

Example

How many 2-dimensional subspaces has \mathbb{F}_2^4 ? Answer ($v = 4$, $k = 2$, $q = 2$):

$$
{4 \brack 2}_2 = \frac{(2^4-1)(2^3-1)}{(2^1-1)(2^2-1)} = \frac{15 \cdot 7}{1 \cdot 3} = 35
$$

Definition $D \subseteq \lceil \frac{V}{k} \rceil$ $\left(\begin{matrix} V\ k\end{matrix}\right]_q$ is t - $(\nu,k,\lambda)_q$ design (*q*-analog of a design) if every $\mathcal{T} \in \big[\begin{smallmatrix} \mathcal{V} & \ \mathcal{V} & \mathcal{V}\end{smallmatrix}\big]$ $\mathcal{C}^V_{t} \big]_q$ is contained in exactly λ blocks (elements of *D*).

Connection to network coding

- \triangleright Of particular interest: Case $\lambda = 1$ (Steiner System)
- ▶ Steiner Systems and *perfect* constant dimension codes are the same:

t-(*v*, *k*, 1)*^q* Steiner System = perfect $(v, 2 \cdot (k - t + 1); k)_q$ constant dimension code

Existence of Steiner systems

- \blacktriangleright $t = 1$ (Spreads):
	- 1- $(v, k, 1)_q$ Steiner System exists $\iff k$ divides *v*
- Braun, Etzion, Östergård, Vardy, Wassermann 2013: $2-(13, 3, 1)_2$ exists!
- \triangleright No further Steiner system known.
- \blacktriangleright Smallest open case:

 $2-(7, 3, 1)_q$ (*q*-analog of the Fano plane) Existence open for any prime power *q*.

Lemma

Let *D* be a t - $(v, k, \lambda)_q$ design and $i \in \{0, \ldots, t\}.$ Then *D* is also an *i*-(v, k, λ _{*i*})_{*a*} design with

$$
\lambda_i = \frac{\binom{v-i}{t-i}_q}{\binom{k-i}{t-i}_q} \cdot \lambda.
$$

In particular, $\#D = \lambda_0$.

Example

For a 2- $(7, 3, 1)_2$ design (2-analog of the Fano plane):

$$
\lambda_2=1,\quad \lambda_1=21,\quad \lambda_0=381
$$

Corollary: Integrality conditions If a *t*-(*v*, k , λ)_{*a*} design exists, then λ_0 , λ_1 , ..., $\lambda_t \in \mathbb{Z}$.

Example

- \blacktriangleright Famous classical Steiner system: 5-(24, 8, 1) Witt design
- If Its there a q -analog of the Witt design, i.e. a $5-(24,8,1)_a$ design (*q* some prime power)?

$$
\lambda_2 = \frac{\binom{22}{3}_q}{\binom{6}{3}_q} = \frac{(q^{22}-1)(q^{21}-1)(q^{20}-1)}{(q^6-1)(q^5-1)(q^4-1)} = \frac{\Phi_{22}(q)\Phi_{21}(q)\Phi_{20}(q)\Phi_{11}(q)\Phi_{10}(q)\Phi_7(q)}{\Phi_6(q)}
$$

where Φ*ⁿ* the *n*-th cyclotomic polynomial.

- If Known: If a/b is not the power of a prime, then $gcd(\Phi_{a}(x), \Phi_{b}(x)) = 1$ for all $x \in \mathbb{Z}$. $\implies \lambda_2 \notin \mathbb{Z}$ for all prime powers q.
- \blacktriangleright Integrality conditions: There is no *q*-analog of the Witt design!

Intersection numbers

- \blacktriangleright Mendelsohn 1971, Alltop 1975: *Intersection numbers for t -designs*
- \triangleright Useful tool for construction, classification and non-existence proofs of classical designs.
- \triangleright Goal: Generalize intersection numbers to *q*-analogs of designs.

Definition

- In the following: *D* a t - (v, k, λ) ^d design, *S* a subspace of *V*, $s = \dim(S)$
- \triangleright The *i*-th intersection number of *S* in *D* is

$$
\alpha_i=\alpha_i(S)=\#\{B\in D\mid \dim(B\cap S)=i\}.
$$

 \triangleright The intersection vector of *S* in *D* is

$$
(\alpha_0(S),\alpha_1(S),\ldots,\alpha_k(S))
$$

Theorem (*q*-analog of Mendelsohn equations 1971) For $i \in \{0, ..., t\}$

$$
\sum_{j=i}^{s} \begin{bmatrix} j \end{bmatrix}_{q} \alpha_j = \begin{bmatrix} s \\ i \end{bmatrix}_{q} \lambda_i
$$

Proof.

Double count

$$
X = \left\{ (I, B) \in \begin{bmatrix} V \\ i \end{bmatrix}_{q} \times D \mid 1 \leq B \cap S \right\}
$$

►
$$
\begin{bmatrix} s \\ i \end{bmatrix}_q
$$
 possibilities for *I*.
For each *I*, λ_i blocks *B* with $I \leq B$.
 $\implies #X = \begin{bmatrix} s \\ i \end{bmatrix}_q \lambda_i$.

► For fixed block *B*, there are $\int_{i}^{\dim(B\cap S)}$ $\left[\begin{smallmatrix} B\cap S\end{smallmatrix}\right]_q$ suitable *I*. \implies $\#X = \sum_{j=i}^{s}$ *i q* α*j* .

Theorem (*q*-analog of Köhler equations 1988) For $i \in \{0, ..., t\}$

$$
\alpha_i = \begin{bmatrix} s \\ i \end{bmatrix}_q \sum_{j=i}^t (-1)^{j-i} q^{\binom{j-i}{2}} \begin{bmatrix} s-i \\ j-i \end{bmatrix}_q \lambda_j
$$

+ $(-1)^{t+1-i} q^{\binom{t+1-i}{2}} \sum_{j=t+1}^s \begin{bmatrix} i \\ i \end{bmatrix}_q \begin{bmatrix} j-i-1 \\ t-i \end{bmatrix}_q \alpha_j.$

(Parameterization of $\alpha_0, \alpha_1, \ldots, \alpha_t$ by $\alpha_{t+1}, \alpha_{t+2}, \ldots, \alpha_k$)

History

- \blacktriangleright For classical designs by Köhler in 1988, long and complicated induction proof.
- \triangleright Simpler proof by de Vroedt in 1991.
- \triangleright Can be simplified further! Idea: Apply Gauss reduction to the Mendelsohn equations.

Proof

 \triangleright Read Mendelsohn equations as linear equation system on the intersection vector:

 \blacktriangleright Has the form

 $(P_{\alpha} | A) \cdot \mathbf{x} = \mathbf{b}$

where $P_q=\Big(\begin{bmatrix}p\ p\end{bmatrix}$ *j q* \setminus *i*,*j* is upper *q*-Pascal matrix.

► Known: P_q invertible with $P_q^{-1} = \left((-1)^{j-i}q^{\binom{j-i}{2}}\right[p]$ *i q* \setminus *i*,*j* .

Proof (cont.)

 \blacktriangleright Left multiplication of

 $(P_{\alpha} | A) \cdot \mathbf{x} = \mathbf{b}$

with P_{q}^{-1} yields

$$
(I | P_q^{-1}A) \cdot \mathbf{x} = P_q^{-1} \mathbf{b}.
$$

 \blacktriangleright Rows evaluate to the Köhler equations. Use the *q*-binomial identity

$$
\sum_{j=0}^t (-1)^j q^{\binom{j}{2}} {n \brack j}_q = (-1)^t q^{\binom{t+1}{2}} {n-1 \brack t}_q.
$$

to compute $P_q^{-1}A$ **and** P_q^{-1} **b**. \Box

t

Corollary

Intersection vector is uniquely determined for dim(S) \leq *t* and dim(S) \geq $v - t$.

In the following

Determine the "intersection structure" of a $2-(7, 3, 1)_2$ design (2-analog of the Fano plane). Parameters:

$$
v = 7
$$
, $k = 3$, $t = 2$, $\lambda = 1$, $q = 2$
 $\lambda_0 = 381$, $\lambda_1 = 21$, $\lambda_2 = 1$.

Example

 \blacktriangleright Köhler equations for $s = 4$:

$$
\alpha_0 = 136 - 8\alpha_3
$$

\n
$$
\alpha_1 = 210 + 14\alpha_3
$$

\n
$$
\alpha_2 = 35 - 7\alpha_3
$$

 \triangleright $\alpha_3 \in \{0, 1\}$ Otherwise, *S* contains two blocks B_1, B_2 . By the dimension formula

$$
\dim(B_1 \cap B_2) = \dim(B_1) + \dim(B_2) - \dim(\underbrace{B_1 + B_2}_{\leq S})
$$

> 3 + 3 - 4 = 2. Contraction.

 $\triangleright \implies$ Two possible intersection vectors: (136, 210, 35, 0) and (128, 224, 28, 1).

Example (cont.)

- ► Distribution of the 4-dim subspaces S to the two intersection numbers? (total: $\begin{bmatrix} 7 \\ 4 \end{bmatrix}$ $\binom{1}{4}_2 = 11811$ subspaces *S*)
- \blacktriangleright Double counting:
	- (136, 210, 35, 0) occurs 6096 times, (128, 224, 28, 1) occurs 5715 times.

 \triangleright Similarly, compute the intersection vectors for all possible values of *s*.

► How do the different *S* relate to each other?

Theorem

The "intersection structure" of a 2*-analog of the Fano plane is*

Intersection vectors for arbitrary *q*

Comment

Applying this method to $2-(9, 3, 1)_q$ or $2-(13, 3, 1)_q$,

we don't end up with a unique intersection vector distribution.

Theorem

If there exists a 2*-*(7, 3, 1)*^q design, then there exist designs with the parameters*

 \blacktriangleright 2 - $(7, 3, q^4)_q$

$$
\blacktriangleright 2\cdot (7,3,q^3+q^2+q+1)_q
$$

▶ 2-(7, 3,
$$
q^4 + q^3 + q^2 + q
$$
)_q

Comment

A $2-(7, 3, 16)$ ₂ design does exist.

Open problems

- \triangleright Use the Köhler equations for a nonexistence proof.
- \blacktriangleright Use the intersection structure to show the nonexistence / construct a $2-(7, 3, 1)_2$.