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Notation
I prime power q
I v -dim. Fq-vector space V
I Grassmannian

[V
k

]
q: set of all k -dim. subspaces of V .

I Gaussian Binomial coefficient[
v
k

]
q

:= #

[
V
k

]
q

=
(qv − 1)(qv−1 − 1) · . . . · (qv−k+1 − 1)

(q − 1)(q2 − 1) · . . . · (qk − 1)

Example
How many 2-dimensional subspaces has F4

2?
Answer (v = 4, k = 2, q = 2):[

4
2

]
2

=
(24 − 1)(23 − 1)

(21 − 1)(22 − 1)
=

15 · 7
1 · 3

= 35



Definition
D ⊆

[V
k

]
q is t-(v , k , λ)q design (q-analog of a design)

if
every T ∈

[V
t

]
q is contained in exactly λ blocks (elements of D).

Connection to network coding

I Of particular interest: Case λ = 1 (Steiner System)
I Steiner Systems and perfect constant dimension codes are

the same:

t-(v , k ,1)q Steiner System
=

perfect (v ,2 · (k − t + 1); k)q constant dimension code



Existence of Steiner systems

I t = 1 (Spreads):
1-(v , k ,1)q Steiner System exists ⇐⇒ k divides v

I Braun, Etzion, Östergård, Vardy, Wassermann 2013:
2-(13,3,1)2 exists!

I No further Steiner system known.
I Smallest open case:

2-(7,3,1)q (q-analog of the Fano plane)
Existence open for any prime power q.



Lemma
Let D be a t-(v , k , λ)q design and i ∈ {0, . . . , t}.
Then D is also an i-(v , k , λi)q design with

λi =

[v−i
t−i

]
q[k−i

t−i

]
q

· λ.

In particular, #D = λ0.

Example
For a 2-(7,3,1)2 design (2-analog of the Fano plane):

λ2 = 1, λ1 = 21, λ0 = 381

Corollary: Integrality conditions
If a t-(v , k , λ)q design exists, then λ0, λ1, . . . , λt ∈ Z.



Example

I Famous classical Steiner system: 5-(24,8,1) Witt design
I Is there a q-analog of the Witt design,

i.e. a 5-(24,8,1)q design (q some prime power)?

λ2 =

[22
3

]
q[6

3

]
q

=
(q22 − 1)(q21 − 1)(q20 − 1)

(q6 − 1)(q5 − 1)(q4 − 1)

=
Φ22(q)Φ21(q)Φ20(q)Φ11(q)Φ10(q)Φ7(q)

Φ6(q)

where Φn the n-th cyclotomic polynomial.
I Known: If a/b is not the power of a prime, then

gcd(Φa(x),Φb(x)) = 1 for all x ∈ Z.
=⇒ λ2 /∈ Z for all prime powers q.

I Integrality conditions:
There is no q-analog of the Witt design!



Intersection numbers
I Mendelsohn 1971, Alltop 1975:

Intersection numbers for t-designs
I Useful tool for construction, classification and

non-existence proofs of classical designs.
I Goal: Generalize intersection numbers to q-analogs of

designs.

Definition
I In the following: D a t-(v , k , λ)q design,

S a subspace of V , s = dim(S)

I The i-th intersection number of S in D is

αi = αi(S) = #{B ∈ D | dim(B ∩ S) = i}.

I The intersection vector of S in D is

(α0(S), α1(S), . . . , αk (S))



Theorem (q-analog of Mendelsohn equations 1971)
For i ∈ {0, . . . , t}

s∑
j=i

[
j
i

]
q
αj =

[
s
i

]
q
λi

Proof.
Double count

X =

{
(I,B) ∈

[
V
i

]
q
× D | I ≤ B ∩ S

}

I
[s

i

]
q possibilities for I.

For each I, λi blocks B with I ≤ B.
=⇒ #X =

[s
i

]
qλi .

I For fixed block B, there are
[dim(B∩S)

i

]
q suitable I.

=⇒ #X =
∑s

j=i
[j

i

]
qαj .



Theorem (q-analog of Köhler equations 1988)
For i ∈ {0, . . . , t}

αi =

[
s
i

]
q

t∑
j=i

(−1)j−iq(j−i
2 )
[
s − i
j − i

]
q
λj

+ (−1)t+1−iq(t+1−i
2 )

s∑
j=t+1

[
j
i

]
q

[
j − i − 1

t − i

]
q
αj .

(Parameterization of α0, α1 . . . , αt by αt+1, αt+2, . . . , αk )

History

I For classical designs by Köhler in 1988,
long and complicated induction proof.

I Simpler proof by de Vroedt in 1991.
I Can be simplified further!

Idea: Apply Gauss reduction to the Mendelsohn equations.



Proof
I Read Mendelsohn equations as linear equation system on

the intersection vector:

[0
0

] [1
0

] [2
0

]
. . .

[ t
0

] [t+1
0

]
. . .

[k
0

]
0

[1
1

] [2
1

]
. . .

[ t
1

] [t+1
1

]
. . .

[k
1

]
0 0

[2
2

]
. . .

[ t
2

] [t+1
2

]
. . .

[k
2

]
...

. . . . . .
...

...
...

0 0 . . . 0
[t

t

] [t+1
t

]
. . .

[k
t

]




α0
α1
α2
...
αk

 =



[s
0

]
λ0[s

1

]
λ1[s

2

]
λ2
...[s

t

]
λt


I Has the form

(Pq | A) · x = b

where Pq =
([i

j

]
q

)
i,j

is upper q-Pascal matrix.

I Known: Pq invertible with P−1
q =

(
(−1)j−iq(j−i

2 )[j
i

]
q

)
i,j

.



Proof (cont.)

I Left multiplication of

(Pq | A) · x = b

with P−1
q yields

(I | P−1
q A) · x = P−1

q b.

I Rows evaluate to the Köhler equations.
Use the q-binomial identity

t∑
j=0

(−1)jq( j
2)
[
n
j

]
q

= (−1)tq(t+1
2 )
[
n − 1

t

]
q
.

to compute P−1
q A and P−1

q b. �



Corollary
Intersection vector is uniquely determined
for dim(S) ≤ t and dim(S) ≥ v − t .



In the following
Determine the ”intersection structure” of a 2-(7,3,1)2 design
(2-analog of the Fano plane).
Parameters:

v = 7, k = 3, t = 2, λ = 1, q = 2

λ0 = 381, λ1 = 21, λ2 = 1.



Example

I Köhler equations for s = 4:

α0 = 136− 8α3

α1 = 210 + 14α3

α2 = 35− 7α3

I α3 ∈ {0,1}
Otherwise, S contains two blocks B1,B2.
By the dimension formula

dim(B1 ∩ B2) = dim(B1) + dim(B2)− dim(B1 + B2︸ ︷︷ ︸
≤S

)

≥ 3 + 3− 4 = 2. Contradiction.

I =⇒ Two possible intersection vectors:
(136,210,35,0) and (128,224,28,1).



Example (cont.)

I Distribution of the 4-dim subspaces S
to the two intersection numbers?
(total:

[7
4

]
2 = 11811 subspaces S)

I Double counting:
(136,210,35,0) occurs 6096 times,
(128,224,28,1) occurs 5715 times.



I Similarly, compute the intersection vectors for all possible
values of s.

s intersection vector frequency
7 (0,0,0,381) 1
6 (0,0,336,45) 127
5 (0,256,120,5) 2667
4 (128,224,28,1) 5715
4 (136,210,35,0) 6096
3 (240,140,0,1) 381
3 (248,126,7,0) 11430
2 (320,60,1,0) 2667
1 (360,21,0,0) 127
0 (381,0,0,0) 1

I How do the different S relate to each other?



Theorem
The ”intersection structure” of a 2-analog of the Fano plane is

(320,60,1,0)2667s = 2

(240,140,0,1)381 (248,126,7,0)11430s = 3

(128,224,28,1)5715 (136,210,35,0)6096s = 4

(0,256,120,5)2667s = 5

1

7

30

7

15

1

7

14

8

15

7

15

7

16



Intersection vectors for arbitrary q

s intersection vector frequency
7 (0, 0, 0, Φ6Φ7) 1
6 (0, 0, q4Φ3Φ6, Φ2Φ4Φ6) Φ7
5 (0, q8, q3Φ2Φ4, Φ4) Φ3Φ6Φ7
4 (q7Φ1, q5Φ3, q2Φ3, 1) Φ2Φ4Φ6Φ7
4 (q3(q5 − q4 + 1), qΦ1Φ2Φ3Φ4, Φ3Φ4, 0) q4Φ6Φ7
3 (q4Φ4Φ2Φ1, q2Φ3Φ4, 0, 1) Φ6Φ7
3 (q3(q5 − q + 1), q(q3 + q − 1)Φ3, Φ3, 0) qΦ2Φ4Φ6Φ7
2 (q6Φ4, q2Φ2Φ4, 1, 0) Φ3Φ6Φ7
1 (q3Φ2Φ4Φ6, Φ3Φ6, 0, 0) Φ7
0 (Φ6Φ7, 0, 0, 0) 1

Comment
Applying this method to 2-(9,3,1)q or 2-(13,3,1)q,
we don’t end up with a unique intersection vector distribution.



Theorem
If there exists a 2-(7,3,1)q design,
then there exist designs with the parameters
I 2-(7,3,q4)q

I 2-(7,3,q3 + q2 + q + 1)q

I 2-(7,3,q4 + q3 + q2 + q)q

Comment
A 2-(7,3,16)2 design does exist.



Open problems

I Use the Köhler equations for a nonexistence proof.
I Use the intersection structure

to show the nonexistence / construct a 2-(7,3,1)2.
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