Intersection numbers for *q*-analogs of designs

Michael Kiermaier

Institut für Mathematik Universität Bayreuth

Conference on Random network codes and Designs over GF(*q*) September 18, 2013 Ghent University

joint work with Mario Pavčević

Notation

- prime power q
- v-dim. \mathbb{F}_q -vector space V
- Grassmannian $\begin{bmatrix} V \\ k \end{bmatrix}_a$: set of all k-dim. subspaces of V.
- Gaussian Binomial coefficient

$$\begin{bmatrix} \mathbf{v} \\ \mathbf{k} \end{bmatrix}_{\mathbf{q}} := \# \begin{bmatrix} \mathbf{V} \\ \mathbf{k} \end{bmatrix}_{\mathbf{q}} = \frac{(q^{\nu} - 1)(q^{\nu - 1} - 1) \cdot \ldots \cdot (q^{\nu - k + 1} - 1)}{(q - 1)(q^2 - 1) \cdot \ldots \cdot (q^k - 1)}$$

Example

How many 2-dimensional subspaces has \mathbb{F}_2^4 ? Answer (v = 4, k = 2, q = 2):

$$\begin{bmatrix} 4 \\ 2 \end{bmatrix}_2 = \frac{(2^4 - 1)(2^3 - 1)}{(2^1 - 1)(2^2 - 1)} = \frac{15 \cdot 7}{1 \cdot 3} = 35$$

Definition $D \subseteq {V \brack k}_q$ is $t \cdot (v, k, \lambda)_q$ design (*q*-analog of a design) if every $T \in {V \brack t}_q$ is contained in exactly λ blocks (elements of *D*).

Connection to network coding

- Of particular interest: Case $\lambda = 1$ (Steiner System)
- Steiner Systems and *perfect* constant dimension codes are the same:

t- $(v, k, 1)_q$ Steiner System = perfect $(v, 2 \cdot (k - t + 1); k)_q$ constant dimension code

Existence of Steiner systems

- ▶ *t* = 1 (Spreads):
 - $1-(v, k, 1)_q$ Steiner System exists $\iff k$ divides v
- Braun, Etzion, Östergård, Vardy, Wassermann 2013: 2-(13,3,1)₂ exists!
- No further Steiner system known.
- Smallest open case:

 $2-(7,3,1)_q$ (*q*-analog of the Fano plane) Existence open for any prime power *q*.

Lemma

Let *D* be a t- $(v, k, \lambda)_q$ design and $i \in \{0, ..., t\}$. Then *D* is also an i- $(v, k, \lambda_i)_q$ design with

$$\lambda_{i} = \frac{\begin{bmatrix} v-i\\t-i\end{bmatrix}_{q}}{\begin{bmatrix} k-i\\t-i\end{bmatrix}_{q}} \cdot \lambda.$$

In particular, $\#D = \lambda_0$.

Example

For a $2-(7,3,1)_2$ design (2-analog of the Fano plane):

$$\lambda_2 = 1, \quad \lambda_1 = 21, \quad \lambda_0 = 381$$

Corollary: Integrality conditions If a *t*-(v, k, λ)_{*q*} design exists, then λ_0 , λ_1 , ..., $\lambda_t \in \mathbb{Z}$.

Example

- ► Famous classical Steiner system: 5-(24, 8, 1) Witt design
- Is there a q-analog of the Witt design, i.e. a 5-(24, 8, 1)_q design (q some prime power)?

$$\lambda_{2} = \frac{\begin{bmatrix} 2^{2} \\ 3 \end{bmatrix}_{q}}{\begin{bmatrix} 6 \\ 3 \end{bmatrix}_{q}} = \frac{(q^{22} - 1)(q^{21} - 1)(q^{20} - 1)}{(q^{6} - 1)(q^{5} - 1)(q^{4} - 1)}$$
$$= \frac{\Phi_{22}(q)\Phi_{21}(q)\Phi_{20}(q)\Phi_{11}(q)\Phi_{10}(q)\Phi_{7}(q)}{\Phi_{6}(q)}$$

where Φ_n the *n*-th cyclotomic polynomial.

- Known: If *a/b* is not the power of a prime, then gcd(Φ_a(x), Φ_b(x)) = 1 for all x ∈ Z.
 ⇒ λ₂ ∉ Z for all prime powers *q*.
- Integrality conditions: There is no q-analog of the Witt design!

Intersection numbers

- Mendelsohn 1971, Alltop 1975: Intersection numbers for t-designs
- Useful tool for construction, classification and non-existence proofs of classical designs.
- Goal: Generalize intersection numbers to *q*-analogs of designs.

Definition

- In the following: D a t-(v, k, λ)_q design,
 S a subspace of V, s = dim(S)
- ► The *i*-th intersection number of *S* in *D* is

$$\alpha_i = \alpha_i(S) = \#\{B \in D \mid \dim(B \cap S) = i\}.$$

The intersection vector of S in D is

$$(\alpha_0(S), \alpha_1(S), \ldots, \alpha_k(S))$$

Theorem (*q*-analog of Mendelsohn equations 1971) For $i \in \{0, ..., t\}$

$$\sum_{j=i}^{\mathbf{S}} \begin{bmatrix} j \\ i \end{bmatrix}_{q} \alpha_{j} = \begin{bmatrix} \mathbf{s} \\ i \end{bmatrix}_{q} \lambda_{j}$$

Proof.

Double count

$$X = \left\{ (I, B) \in \begin{bmatrix} V \\ i \end{bmatrix}_q \times D \mid I \leq B \cap S \right\}$$

►
$$\begin{bmatrix} s \\ i \end{bmatrix}_q$$
 possibilities for *I*.
For each *I*, λ_i blocks *B* with $I \le B$.
 $\implies \#X = \begin{bmatrix} s \\ i \end{bmatrix}_q \lambda_i$.

► For fixed block *B*, there are $\begin{bmatrix} \dim(B \cap S) \\ i \end{bmatrix}_q$ suitable *I*. $\implies \#X = \sum_{j=i}^s \begin{bmatrix} j \\ j \end{bmatrix}_q \alpha_j$. Theorem (*q*-analog of Köhler equations 1988) For $i \in \{0, ..., t\}$

$$\alpha_{i} = \begin{bmatrix} s \\ i \end{bmatrix}_{q} \sum_{j=i}^{t} (-1)^{j-i} q^{\binom{j-i}{2}} \begin{bmatrix} s-i \\ j-i \end{bmatrix}_{q} \lambda_{j} + (-1)^{t+1-i} q^{\binom{t+1-i}{2}} \sum_{j=t+1}^{s} \begin{bmatrix} j \\ i \end{bmatrix}_{q} \begin{bmatrix} j-i-1 \\ t-i \end{bmatrix}_{q} \alpha_{j}.$$

(Parameterization of $\alpha_0, \alpha_1, \ldots, \alpha_t$ by $\alpha_{t+1}, \alpha_{t+2}, \ldots, \alpha_k$)

History

- For classical designs by Köhler in 1988, long and complicated induction proof.
- Simpler proof by de Vroedt in 1991.
- Can be simplified further! Idea: Apply Gauss reduction to the Mendelsohn equations.

Proof

Read Mendelsohn equations as linear equation system on the intersection vector:

Has the form

$$(P_q \mid A) \cdot \mathbf{x} = \mathbf{b}$$

where $P_q = \left(\begin{bmatrix} i \\ j \end{bmatrix}_q \right)_{i,j}$ is upper *q*-Pascal matrix. • Known: P_q invertible with $P_q^{-1} = \left((-1)^{j-i} q^{\binom{j-i}{2}} \begin{bmatrix} i \\ j \end{bmatrix}_q \right)_{i,j}$.

Proof (cont.)

Left multiplication of

 $(P_q \mid A) \cdot \mathbf{x} = \mathbf{b}$

with P_q^{-1} yields

$$(I \mid P_q^{-1}A) \cdot \mathbf{x} = P_q^{-1}\mathbf{b}.$$

Rows evaluate to the Köhler equations.
 Use the *q*-binomial identity

$$\sum_{j=0}^{t} (-1)^{j} q^{\binom{j}{2}} {\binom{n}{j}}_{q} = (-1)^{t} q^{\binom{t+1}{2}} {\binom{n-1}{t}}_{q}.$$

to compute $P_q^{-1}A$ and $P_q^{-1}\mathbf{b}$.

Corollary

Intersection vector is uniquely determined for dim(S) $\leq t$ and dim(S) $\geq v - t$.

In the following

Determine the "intersection structure" of a $2-(7,3,1)_2$ design (2-analog of the Fano plane). Parameters:

$$v = 7, \quad k = 3, \quad t = 2, \quad \lambda = 1, \quad q = 2$$

 $\lambda_0 = 381, \quad \lambda_1 = 21, \quad \lambda_2 = 1.$

Example

Köhler equations for s = 4:

$$lpha_{0} = 136 - 8lpha_{3}$$

 $lpha_{1} = 210 + 14lpha_{3}$
 $lpha_{2} = 35 - 7lpha_{3}$

*α*₃ ∈ {0, 1}
 Otherwise, *S* contains two blocks *B*₁, *B*₂.
 By the dimension formula

$$\dim(B_1 \cap B_2) = \dim(B_1) + \dim(B_2) - \dim(\underbrace{B_1 + B_2}_{\leq S})$$
$$\geq 3 + 3 - 4 - 2 \quad \text{Contradiction}$$

► \implies Two possible intersection vectors: (136, 210, 35, 0) and (128, 224, 28, 1).

Example (cont.)

- Distribution of the 4-dim subspaces S to the two intersection numbers? (total: [⁷₄]₂ = 11811 subspaces S)
- Double counting:

(136, 210, 35, 0) occurs 6096 times, (128, 224, 28, 1) occurs 5715 times.

 Similarly, compute the intersection vectors for all possible values of s.

S	intersection vector	frequency	
7	(0,0,0,381)	1	
6	(0, 0, 336, 45)	127	
5	(0, 256, 120, 5)	2667	
4	(128, 224, 28, 1)	5715	
4	(136, 210, 35, 0)	6096	
3	(240, 140, 0, 1)	381	
3	(248, 126, 7, 0)	11430	
2	(320,60,1,0)	2667	
1	(360, 21, 0, 0)	127	
0	(381,0,0,0)	1	

How do the different S relate to each other?

Theorem

The "intersection structure" of a 2-analog of the Fano plane is

Intersection vectors for arbitrary q

s	intersection vector	frequency			
7	(0,	0,	0,	$\Phi_6 \Phi_7)$	1
6	(0,	0,	$q^4\Phi_3\Phi_6,$	$\Phi_2 \Phi_4 \Phi_6)$	Φ ₇
5	(0,	q ⁸ ,	$q^3\Phi_2\Phi_4,$	Φ ₄)	$\Phi_3\Phi_6\Phi_7$
4	$(q^{7}\Phi_{1},$	$q^{5}\Phi_{3},$	$q^2\Phi_3$,	1)	$\Phi_2 \Phi_4 \Phi_6 \Phi_7$
4	$(q^3(q^5-q^4+1),$	$q\Phi_1\Phi_2\Phi_3\Phi_4,$	$\Phi_{3}\Phi_{4},$	0)	$q^4\Phi_6\Phi_7$
3	$(q^4\Phi_4\Phi_2\Phi_1,$	$q^2\Phi_3\Phi_4,$	0,	1)	$\Phi_6 \Phi_7$
3	$(q^3(q^5-q+1),$	$q(q^3+q-1)\Phi_3,$	$\Phi_{3},$	0)	$q\Phi_2\Phi_4\Phi_6\Phi_7$
2	$(q^{6}\Phi_{4},$	$q^2\Phi_2\Phi_4,$	1,	0)	$\Phi_3 \Phi_6 \Phi_7$
1	$(q^3\Phi_2\Phi_4\Phi_6,$	$\Phi_{3}\Phi_{6},$	0,	0)	Φ ₇
0	$(\Phi_6 \Phi_7,$	0,	0,	0)	1

Comment

Applying this method to $2-(9,3,1)_q$ or $2-(13,3,1)_q$,

we don't end up with a unique intersection vector distribution.

Theorem If there exists a $2-(7,3,1)_q$ design, then there exist designs with the parameters

▶ 2-(7, 3, q⁴)_q

► 2-
$$(7, 3, q^3 + q^2 + q + 1)_q$$

▶ 2-
$$(7, 3, q^4 + q^3 + q^2 + q)_q$$

Comment

A $2-(7,3,16)_2$ design does exist.

Open problems

- Use the Köhler equations for a nonexistence proof.
- Use the intersection structure to show the nonexistence / construct a 2-(7,3,1)₂.