New ring-linear codes of high minimum distance

Michael Kiermaier

Institut für Mathematik Universität Bayreuth

2012/11/01 Trends in Coding Theory Monte Verità

History of ring-linear codes

- \blacktriangleright 1967: John Robinson, electrical engineer at the University of Iowa: Talk for pupils about coding theory
- \triangleright Discussed research problem: For length 16 and minimum distance 6:
	- \triangleright Optimum size of a *linear* code is 2⁷.
	- \blacktriangleright For unrestricted block codes: Optimum size is in $\{2^7, \ldots, 2^8\}$.
- ► Pupil Alan W. Nordstrom Constructed a $(16, 2^8, 6)_2$ -code! Higher minimum distance than all *linear* codes of equal length and size. We say: It is **BTL** (better than linear)

Famous *Nordstrom-Robinson code* (1967)

History of ring-linear codes (cont.)

- \triangleright Generalization of the Nordstrom-Robinson-code:
	- \blacktriangleright 1968: Infinite series of the Preparata-codes 1993: All BTL.
	- \triangleright 1972: Infinite series of the Kerdock-codes All BTKL (better than *known* linear), conjecture: BTL. (Research Problem 15.4 in MacWilliams, Sloane)
- \triangleright 1994: All these non-linear codes are Gray images of \mathbb{Z}_4 -linear codes!
- Intensive study of ring-linear codes. However: No new \mathbb{Z}_4 -linear BTL-parameters. Only sporadic examples of new BTKL-codes.
- \blacktriangleright Johannes Zwanzger: heuristic search for ring-linear codes. 2009: First examples of new BTL-parameters over \mathbb{Z}_4 .

Results

- \blacktriangleright Four new infinite series of ring-linear codes.
- \triangleright All codes BTL or BTKL (in the table range).
- \blacktriangleright Found by analysis of the computer examples.
- \blacktriangleright "Tool": Projective Hjelmslev geometry.
- \triangleright base rings: Galois rings of characteristic 4. (Smallest member: \mathbb{Z}_4)

Galois rings

- \blacktriangleright Finite rings, "close" to the finite fields.
- Symbol: $GR(c, r)$ (characteristic *c*, rank *r*).
- From now on: Let $R = \text{GR}(4, r)$ and $q = 2^r$.

^I residue class field *R*/2*R* ∼= F*q*.

Linear codes over Galois-rings

Definition

- \blacktriangleright *R*-linear code *C*: submodule of the *R*-module R^n
- \triangleright *n* is length of C
- $\blacktriangleright \#C$ is size of C

Experience

For *R*-linear codes: Hamming distance not interesting!

Definition (homogeneous weight)

 \blacktriangleright Idea:

 $W(0) = 0.$

- \triangleright associated ring elements have the same weight.
- ideals \neq zero ideal: Same average weight \neq 0.

 $\blacktriangleright \leadsto$ homogeneous weight over *R*:

$$
w_{\text{hom}}(a) = \begin{cases} 0 & \text{if } a = 0 \\ q & \text{if } a \in 2R \setminus \{0\} \\ q - 1 & \text{if } a \in R^* \end{cases}
$$

Example (Homogeneous weight on $\mathbb{Z}_4 = \text{GR}(2^2, 1)$) Here $q = 2$.

> $w_{\text{hom}}(0) = 0$ $w_{\text{hom}}(1) = 1$ $w_{\text{hom}}(2) = 2$ $w_{\text{hom}}(3) = 1$

Better known as the Lee weight $w_{\text{Lee}}!$

Example (Heptacode)

The \mathbb{Z}_4 -linear Heptacode H is the row space of

$$
\begin{pmatrix}\n1 & 0 & 0 & 1 & 2 & 3 & 1 \\
0 & 1 & 0 & 1 & 1 & 2 & 3 \\
0 & 0 & 1 & 1 & 3 & 1 & 2\n\end{pmatrix}
$$

Lee weight (=homogeneous weight) of the first row:

$$
w_{\text{Lee}}((1,0,0,1,2,3,1))=1+0+0+1+2+1+1=6.
$$

minimum weight $w_{\text{Lee}}(\mathcal{H})=6$.

 \rightsquigarrow ${\cal H}$ is a $(7,2^6,6)_{\mathbb{Z}_4}$ -code.

Connection to traditional coding theory

- ► Define homogeneous distance $d_{\text{hom}}(c, c') = w_{\text{hom}}(c c')$.
- \triangleright minimum distance = minimum weight.
- ► ∃ distance-preserving embedding

$$
\psi:(R^n,d_{\text{hom}})\to(\mathbb{F}_q^{nq},d_{\text{Ham}}).
$$

generalized Gray map

 \blacktriangleright So: *R*-linear $(n, \#C, d)_R$ -code *C* gives $(qn, \#C, d)_q$ -code $\psi(C)$ in the Hamming metric (generally: non-linear).

Example (Heptacode (cont.))

- Gray image of the $(7, 2^6, 6)_{\mathbb{Z}_4}$ Heptacode: \rightsquigarrow binary non-linear $(14, 2^6, 6)_2$ -code $\psi(\mathcal{O})$.
- \triangleright Shortest Gray image which is BTL!
- Related to the $(16, 2^8, 6)_2$ Nordstrom-Robinson code.

Projective Hjelmslev geometry

Let $k > 2$.

Definition Projective Hjelmslev geometry PHG(*R k*): Lattice of submodules of *R k* .

- \blacktriangleright Points: Free submodules of R^k of rank 1.
- \blacktriangleright Lines: Free submodules of R^k of rank 2
- ^I hyperplanes: Free submodules of *R ^k* of rank *k* − 1.

Duality

- If The lattice PHG(R^k) is self-dual.
- \triangleright Duality interchanges points and hyperplanes.
- $\triangleright \rightsquigarrow$ construction principle for two series.

Warning

Two different lines may meet in more than one point!

Connection between codes and geometry

Let C be an *R*-linear code of length *n*, free of rank *k*.

 \triangleright C is the row space of a matrix

$$
\mathbf{G} = \begin{pmatrix} | & | & & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \\ | & | & & | \end{pmatrix} \in \mathbb{R}^{k \times n}
$$

- If C fat (projection to each coordinate is onto): \Rightarrow R **v**_{*i*} is a point in PHG(R^k).
- $\blacktriangleright \leadsto$ multiset $\mathfrak P$ of points, spanning the full geometry
- \triangleright We get a bijection

isomorphism classes of free, fat codes $\mathcal C$ \updownarrow isomorphism classes of multisets $\mathfrak P$ of points, spanning the full geometry.

Connection between codes and geometry (conn.)

 \blacktriangleright Bijection:

isomorphism classes of free, fat codes $\mathcal C$ \mathbb{I} isomorphism classes of multisets $\mathfrak P$ of points, spanning the full geometry.

> $\mathcal{C} \longrightarrow \text{pts}(\mathcal{C})$ $cde(\mathfrak{P}) \leftarrow \mathfrak{P}$

 \triangleright Codewords correspond to hyperplanes.

► spectrum of a point set \mathfrak{P} : information about the position of the points in $\mathfrak V$ to the hyperplanes.

 \blacktriangleright The spectrum of $\mathfrak P$ determines the minimum distance of $cde(\mathfrak{P})!$

Example (Simplex-code)

- \blacktriangleright Chose $\mathfrak P$ as the complete point set of PHG(R^k).
- As a linear code: Gray image of cde(\mathfrak{P}) would be optimal.
- \blacktriangleright However not BTL, since these optimum linear codes do exist.

Example (Heptacode (cont.))

Look again at the Heptacode H :

$$
\begin{pmatrix}\n1 & 0 & 0 & 1 & 2 & 3 & 1 \\
0 & 1 & 0 & 1 & 1 & 2 & 3 \\
0 & 0 & 1 & 1 & 3 & 1 & 2\n\end{pmatrix}
$$

Yields 7 points pts (\mathcal{H}) in PHG (\mathbb{Z}_4^3) .

Teichmüller codes

 \blacktriangleright Consider ring extension

$$
R = \text{GR}(4, r) \quad \stackrel{k}{\subset} \quad \text{GR}(4, rk) =: S.
$$

- ► *S*[∗] has a unique subgroup of order $q^k 1$ (Teichmüller group *T*, cyclic, *q* = 2 *r*) Teichmüller group *t* of *R* ∗ : order *q* − 1 and *t* < *T*.
- ► Consider elements of *S* as vectors $\mathbf{v} \in R^k$. Units in S^* give points R **v** in PHG(R^k).
- \triangleright coset representatives of T/t yield Teichmüller point set $\mathfrak{T}_{q,k}$.
- \blacktriangleright T. Honold 2010: For *k* odd: $\mathfrak{T}_{a,k}$ is two-intersection. (only two intersection numbers with the hyperplanes.)
- \blacktriangleright Teichmüller codes $\mathcal{T}_{q,k} = \text{cde}(\mathfrak{T}_{q,k})$ have very good parameters!

Generalization of the Teichmüller codes

- Instead of *T*: Take supergroups Σ of *T*!
- \triangleright Which groups Σ yield 2-intersection sets?
- ► By the structure of S^{*} (Raghavendran 1969):

$$
\mathcal{T}\leq \Sigma < \mathcal{S}^* \quad \stackrel{\text{bij.}}{\longleftrightarrow} \quad \mathbb{F}_2\text{-subspaces} \ \mathbb{F}_q \leq U_\Sigma < \mathbb{F}_{q^k}.
$$

▶ trace form $B: \mathbb{F}_{q^k} \times \mathbb{F}_{q^k} \to \mathbb{F}_2$, $(a, b) \mapsto \text{Tr}_{\mathbb{F}_2}(ab)$ is a symmetric bilinear form on the \mathbb{F}_2 -vector space $\mathbb{F}_{q^k}.$

Theorem

 Σ *induces a two-intersection set in* PHG(R^k) *if and only if*

- 1. *B*|_{*U*Σ×*U_Σ*} *is non-degenerate or*
- 2. *B*|*U*[⊥] ^Σ [×]*U*[⊥] Σ *is alternate. (i.e.* U^{\perp}_{Σ} *is totally isotropic.)*

Theorem (restated)

 Σ *induces a two-intersection set in* PHG(R^k) *if and only if*

- 1. *B*|*U*Σ×*U*^Σ *is non-degenerate or*
- 2. *B*|*U*[⊥] ^Σ [×]*U*[⊥] Σ *is alternate. (i.e. U*[⊥] Σ *is totally isotropic.)*

Notes on the proof

- \triangleright Adaption of the proof by T. Honold.
- ► Representation of S as truncated Witt vectors.
- \triangleright Use theory of association schemes.
- \triangleright Use properties of the trace form on U_{Σ} .

Generated codes

- \blacktriangleright For good codes: Case 1.
- **►** In which dimension exist suitable subspaces U_5 ?

Lemma

There is an \mathbb{F}_2 -subspace U of \mathbb{F}_{q^k} *with* dim $(U) = s + r$, $\mathbb{F}_q \leq U$ *and B*|*U*×*^U non-degenerate, if and only if*

$$
s \in \begin{cases} \{0, 2, 4, \ldots, (k-1)r\} & \text{for } k \text{ odd,} \\ \{r, r+2, r+4, \ldots, (k-1)r\} & \text{for } k \text{ even.} \end{cases}
$$

Idea of the proof

$$
\quad \blacktriangleright \; \mathbb{F}_q \leq U \leq \mathbb{F}_{q^k} \quad \iff \quad U^{\perp} \leq \mathbb{F}_q^{\perp}
$$

 \blacktriangleright Use classification of bilinear forms over \mathbb{F}_2 (A. A. Albert 1938).

Definition

- Generated point set: $\mathfrak{T}_{q,k,s}$
- \blacktriangleright $\mathcal{T}_{a,k,s} = \text{cde}(\mathfrak{T}_{a,k,s})$

For *k* odd: $\mathcal{T}_{a,k,0} = \mathcal{T}_{a,k}$.

Theorem *The Gray image of* T*q*,*k*,*^s has the parameters*

$$
\left(2^sq\cdot\frac{q^k-1}{q-1},\quad q^{2k},\quad 2^sq^k-2^{s/2}q^{\frac{k-1}{2}}\right)_q.
$$

Idea of the proof

Two intersection numbers of $\mathfrak{T}_{a,k,s}$

 \rightsquigarrow spec($\mathfrak{T}_{q,k,s}$)

 \rightsquigarrow Minimum distance of $\mathcal{T}_{q,k,s}$.

Comment

Algorithm of T. Feulner: Isomorphism Type of $\mathcal{T}_{q,k,s}$ generally depends on the choice of $U_Σ$.

Example

- \blacktriangleright $\mathcal{T}_{2,3,0}$ is the Heptacode, so BTL.
- Gray image of $T_{2,4,1}$ has the BTL parameters

 $(60, 2^8, 28)_2$

(Same parameters as a doubly shortened Kerdock code.)

Gray image of $T_{2,5,2}$ has the BTKL parameters

 $(248, 2^{10}, 120)_2$

unknown!

Overview

Constructed Series

- Generalized Teichmüller codes $\mathcal{T}_{a,k,s}$.
- ► Dualized generalized Teichmüller codes $\mathcal{T}^*_{q,k,s}$.
- ► Dualized Kerdock codes $\hat{\mathcal{K}}^*_{k+1}$.
- **Exercise Augmented Simplex codes** $\hat{\mathcal{S}}_{q,k}$ **.**

Examples

