New ring-linear codes of high minimum distance

Michael Kiermaier

Institut für Mathematik Universität Bayreuth

2012/11/01 Trends in Coding Theory Monte Verità

History of ring-linear codes

- 1967: John Robinson, electrical engineer at the University of Iowa: Talk for pupils about coding theory
- Discussed research problem:
 For length 16 and minimum distance 6:
 - Optimum size of a *linear* code is 2⁷.
 - ► For unrestricted block codes: Optimum size is in {2⁷,...,2⁸}.
- Pupil Alan W. Nordstrom Constructed a (16, 2⁸, 6)₂-code! Higher minimum distance than all *linear* codes of equal length and size.

We say: It is BTL (better than linear)

→ Famous Nordstrom-Robinson code (1967)

History of ring-linear codes (cont.)

- Generalization of the Nordstrom-Robinson-code:
 - 1968: Infinite series of the Preparata-codes 1993: All BTL.
 - 1972: Infinite series of the Kerdock-codes All BTKL (better than *known* linear), conjecture: BTL. (Research Problem 15.4 in MacWilliams, Sloane)
- 1994: All these non-linear codes are Gray images of Z₄-linear codes!
- Intensive study of ring-linear codes.
 However: No new Z₄-linear BTL-parameters.
 Only sporadic examples of new BTKL-codes.
- Johannes Zwanzger: heuristic search for ring-linear codes.
 2009: First examples of new BTL-parameters over Z₄.

Results

- Four new infinite series of ring-linear codes.
- All codes BTL or BTKL (in the table range).
- Found by analysis of the computer examples.
- "Tool": Projective Hjelmslev geometry.
- base rings: Galois rings of characteristic 4. (Smallest member: Z₄)

Galois rings

- Finite rings, "close" to the finite fields.
- Symbol: GR(c, r) (characteristic c, rank r).
- From now on: Let $\mathbf{R} = GR(4, r)$ and $\mathbf{q} = 2^r$.

• residue class field $R/2R \cong \mathbb{F}_q$.

Linear codes over Galois-rings

Definition

- ► *R*-linear code *C*: submodule of the *R*-module *Rⁿ*
- ▶ *n* is length of *C*
- ► #C is size of C

Experience

For *R*-linear codes: Hamming distance not interesting!

Definition (homogeneous weight)

Idea:

• w(0) = 0.

- associated ring elements have the same weight.
- ideals \neq zero ideal: Same average weight \neq 0.
- ▶ → homogeneous weight over *R*:

$$w_{\mathrm{hom}}(a) = egin{cases} 0 & ext{if } a = 0 \ q & ext{if } a \in 2R \setminus \{0\} \ q-1 & ext{if } a \in R^* \end{cases}$$

Example (Homogeneous weight on $\mathbb{Z}_4 = GR(2^2, 1)$) Here q = 2.

> $w_{hom}(0) = 0$ $w_{hom}(1) = 1$ $w_{hom}(2) = 2$ $w_{hom}(3) = 1$

Better known as the Lee weight w_{Lee}!

Example (Heptacode)

The \mathbb{Z}_4 -linear Heptacode \mathcal{H} is the row space of

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 2 & 3 & 1 \\ 0 & 1 & 0 & 1 & 1 & 2 & 3 \\ 0 & 0 & 1 & 1 & 3 & 1 & 2 \end{pmatrix}$$

Lee weight (=homogeneous weight) of the first row:

$$w_{\text{Lee}}((1,0,0,1,2,3,1)) = 1 + 0 + 0 + 1 + 2 + 1 + 1 = 6.$$

minimum weight $w_{\text{Lee}}(\mathcal{H}) = 6$.

 $\rightsquigarrow \mathcal{H} \text{ is a } (7, 2^6, 6)_{\mathbb{Z}_4}\text{-code.}$

Connection to traditional coding theory

- ► Define homogeneous distance $d_{hom}(\mathbf{c}, \mathbf{c}') = w_{hom}(\mathbf{c} \mathbf{c}')$.
- minimum distance = minimum weight.
- ► ∃ distance-preserving embedding

$$\psi: (\mathbf{R}^{n}, \mathbf{d}_{\mathrm{hom}}) \to (\mathbb{F}_{q}^{nq}, \mathbf{d}_{\mathrm{Ham}}).$$

generalized Gray map

So: *R*-linear (n, #C, d)_R-code C gives (qn, #C, d)_q-code ψ(C) in the Hamming metric (generally: non-linear).

Example (Heptacode (cont.))

- ► Gray image of the (7, 2⁶, 6)_{Z4} Heptacode: → binary non-linear (14, 2⁶, 6)₂-code ψ(O).
- Shortest Gray image which is BTL!
- Related to the (16, 2⁸, 6)₂ Nordstrom-Robinson code.

Projective Hjelmslev geometry

Let $k \ge 2$.

Definition Projective Hjelmslev geometry $PHG(R^k)$: Lattice of submodules of R^k .

- Points: Free submodules of R^k of rank 1.
- ▶ Lines: Free submodules of *R^k* of rank 2
- hyperplanes: Free submodules of R^k of rank k 1.

Duality

- The lattice $PHG(R^k)$ is self-dual.
- Duality interchanges points and hyperplanes.
- ► ~→ construction principle for two series.

Warning

Two different lines may meet in more than one point!

Connection between codes and geometry

Let C be an R-linear code of length n, free of rank k.

C is the row space of a matrix

$$\mathbf{G} = \begin{pmatrix} | & | & & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \\ | & | & & | \end{pmatrix} \in \mathbf{R}^{k \times n}$$

- ► If C fat (projection to each coordinate is onto): $\Rightarrow R\mathbf{v}_i$ is a point in PHG(R^k).
- ► ~→ multiset 𝔅 of points, spanning the full geometry
- We get a bijection

isomorphism classes of free, fat codes \mathcal{C} \updownarrow isomorphism classes of multisets \mathfrak{P} of points, spanning the full geometry.

Connection between codes and geometry (conn.)

Bijection:

isomorphism classes of free, fat codes \mathcal{C} \uparrow isomorphism classes of multisets \mathfrak{P} of points, spanning the full geometry.

 $egin{array}{ccc} \mathcal{C} & \longrightarrow & \mathsf{pts}(\mathcal{C}) \ \mathsf{cde}(\mathfrak{P}) & \longleftarrow & \mathfrak{P} \end{array}$

Codewords correspond to hyperplanes.

spectrum of a point set \$\varphi\$: information about the position of the points in \$\varphi\$ to the hyperplanes.

The spectrum of \$\mathcal{P}\$ determines the minimum distance of cde(\$\mathcal{P}\$)!

Example (Simplex-code)

- Chose \mathfrak{P} as the complete point set of $PHG(R^k)$.
- ► As a linear code: Gray image of cde(𝔅) would be optimal.
- However not BTL, since these optimum linear codes do exist.

Example (Heptacode (cont.))

Look again at the Heptacode \mathcal{H} :

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 2 & 3 & 1 \\ 0 & 1 & 0 & 1 & 1 & 2 & 3 \\ 0 & 0 & 1 & 1 & 3 & 1 & 2 \end{pmatrix}$$

Yields 7 points $pts(\mathcal{H})$ in $PHG(\mathbb{Z}_4^3)$.

Teichmüller codes

Consider ring extension

$$R = \mathsf{GR}(4, r) \quad \stackrel{k}{\subset} \quad \mathsf{GR}(4, r\mathbf{k}) =: \mathbf{S}.$$

- S* has a unique subgroup of order q^k − 1 (Teichmüller group T, cyclic, q = 2^r) Teichmüller group t of R*: order q − 1 and t < T.
- Consider elements of S as vectors v ∈ R^k. Units in S^{*} give points Rv in PHG(R^k).
- ► coset representatives of *T*/*t* yield Teichmüller point set 𝔅_{*q,k*}.
- T. Honold 2010: For k odd:
 \$\mathcal{T}_{q,k}\$ is two-intersection.
 (only two intersection numbers with the hyperplanes.)
- ► Teichmüller codes T_{q,k} = cde(𝔅_{q,k}) have very good parameters!

Generalization of the Teichmüller codes

- Instead of T: Take supergroups Σ of T!
- Which groups Σ yield 2-intersection sets?
- By the structure of S^* (Raghavendran 1969):

$$\mathcal{T} \leq \mathbf{\Sigma} < \mathcal{S}^* \quad \stackrel{ ext{bij.}}{\longleftrightarrow} \quad \mathbb{F}_2 ext{-subspaces } \mathbb{F}_q \leq \textit{U}_{\Sigma} < \mathbb{F}_{q^k}.$$

trace form B : 𝔽_{q^k} × 𝔽_{q^k} → 𝔽₂, (a, b) → Tr_{𝔼2}(ab) is a symmetric bilinear form on the 𝔽₂-vector space 𝔽_{q^k}.

Theorem

 Σ induces a two-intersection set in PHG(\mathbb{R}^k) if and only if

- 1. $B|_{U_{\Sigma} \times U_{\Sigma}}$ is non-degenerate or
- 2. $B|_{U_{\Sigma}^{\perp} \times U_{\Sigma}^{\perp}}$ is alternate. (*i.e.* U_{Σ}^{\perp} is totally isotropic.)

Theorem (restated)

 Σ induces a two-intersection set in $PHG(\mathbb{R}^k)$ if and only if

- 1. $B|_{U_{\Sigma} \times U_{\Sigma}}$ is non-degenerate or
- 2. $B|_{U_{\Sigma}^{\perp} \times U_{\Sigma}^{\perp}}$ is alternate. (*i.e.* U_{Σ}^{\perp} is totally isotropic.)

Notes on the proof

- Adaption of the proof by T. Honold.
- Representation of S as truncated Witt vectors.
- Use theory of association schemes.
- Use properties of the trace form on U_Σ.

Generated codes

- For good codes: Case 1.
- In which dimension exist suitable subspaces U_{Σ} ?

Lemma

There is an \mathbb{F}_2 -subspace U of \mathbb{F}_{q^k} with dim(U) = s + r, $\mathbb{F}_q \leq U$ and $B|_{U \times U}$ non-degenerate, if and only if

$$oldsymbol{s} \in egin{cases} \{0,2,4,\ldots,(k-1)r\} & ext{for k odd,} \ \{r,r+2,r+4,\ldots,(k-1)r\} & ext{for k even.} \end{cases}$$

Idea of the proof

$$\blacktriangleright \ \mathbb{F}_q \leq U \leq \mathbb{F}_{q^k} \quad \Longleftrightarrow \quad U^\perp \leq \mathbb{F}_q^\perp$$

 ► Use classification of bilinear forms over F₂ (A. A. Albert 1938).

Definition

Generated point set: \$\mathcal{T}_{q,k,s}\$

•
$$\mathcal{T}_{q,k,s} = \mathsf{cde}(\mathfrak{T}_{q,k,s})$$

For k odd:
$$\mathcal{T}_{q,k,0} = \mathcal{T}_{q,k}$$
.

Theorem The Gray image of $T_{q,k,s}$ has the parameters

$$\left(2^{s}q\cdot \frac{q^{k}-1}{q-1}, \quad q^{2k}, \quad 2^{s}q^{k}-2^{s/2}q^{\frac{k-1}{2}}\right)_{q}$$

Idea of the proof

Two intersection numbers of $\mathfrak{T}_{q,k,s}$

 \rightsquigarrow spec $(\mathfrak{T}_{q,k,s})$

 \rightsquigarrow Minimum distance of $\mathcal{T}_{q,k,s}$.

Comment

Algorithm of T. Feulner: Isomorphism Type of $\mathcal{T}_{q,k,s}$ generally depends on the choice of U_{Σ} .

Example

- $\mathcal{T}_{2,3,0}$ is the Heptacode, so BTL.
- Gray image of $\mathcal{T}_{2,4,1}$ has the BTL parameters

 $(60, 2^8, 28)_2$

(Same parameters as a doubly shortened Kerdock code.)

• Gray image of $\mathcal{T}_{2,5,2}$ has the BTKL parameters

 $(248, 2^{10}, 120)_2$

unknown!

Overview

Constructed Series

- ► Generalized Teichmüller codes T_{q,k,s}.
- Dualized generalized Teichmüller codes T^{*}_{q,k,s}.
- Dualized Kerdock codes $\hat{\mathcal{K}}_{k+1}^*$.
- Augmented Simplex codes $\hat{S}_{q,k}$.

Examples

Code	Gray image	Status	Comment
$T_{2,5,2}$	$(248, 2^{10}, 120)_2$	BTKL	new
$T_{4,3,0}$	$(84, 4^6, 60)_4$	BTKL	Hemme, Honold, Landjev 2000
$\mathcal{T}^*_{2,5,0}$	$(372, 2^{10}, 184)_2$	BTL	K., Zwanzger 2011
$\mathcal{T}^*_{4,3,0}$	$(504, 4^6, 376)_4$	BTKL	K., Kohnert 2007
$\mathcal{T}^{*}_{4,3,0} \ \hat{\mathcal{K}}^{*}_{3+1} \ \hat{\mathcal{S}}_{2,3}$	(114,2 ⁸ ,56) ₂	BTL	Zwanzger 2009
$\hat{\mathcal{S}}_{2,3}$	(58, 2 ⁷ , 28) ₂	BTL	Zwanzger 2009
Ŝ _{2,4}	$(244, 2^9, 120)_2$	BTKL	K., Zwanzger 2011