Codes from translation schemes on Galois rings of characteristic 4

Michael Kiermaier

Institut für Mathematik Universität Bayreuth

Combinatorics 2012 September 11, 2012 Centro Congressi Hotel Giò, Perugia, Italy

KORKARA KERKER DAGA

Outline

[Preliminaries](#page-2-0) [Motivation](#page-3-0)

[Symmetric translation schemes](#page-4-0) [Galois rings](#page-12-0)

[Construction of symmetric 3-class association schemes](#page-15-0)

[Derived combinatorial objects](#page-21-0)

[Point sets in projective Hjelmslev geometries](#page-22-0) *R*[-linear codes](#page-23-0)

KORK ERKER ADAM ADA

Outline

[Preliminaries](#page-2-0)

[Motivation](#page-3-0) [Symmetric translation schemes](#page-4-0) [Galois rings](#page-12-0)

[Construction of symmetric 3-class association schemes](#page-15-0)

KEL KALEY KEY E NAG

[Derived combinatorial objects](#page-21-0) [Point sets in projective Hjelmslev geometries](#page-22-0) *R*[-linear codes](#page-23-0)

Motivation

- \triangleright Several series of good \mathbb{Z}_4 -linear codes are based on a Teichmüller point set $\mathfrak T$ in projective Hjelmslev geometry. (More general: Galois ring *R* of char. 4 instead of \mathbb{Z}_4)
- \triangleright Computer search for codes with Johannes Zwanzger: Suggests similar constructions from certain unions of disjoint copies of $\mathfrak T$.
- \blacktriangleright Question: What is the right way to combine copies of \mathfrak{T} ?
- \triangleright T is two-intersection set. Done by Thomas Honold in 2010, using theory of association schemes. (more precisely:

Symmetric translation schemes on group (*R*, +).)

KORK ERKEY EL POLO

 \triangleright Follow his approach to answer the question!

Definition (Symmetric translation scheme) Given:

- \blacktriangleright finite Abelian group *G*,
- partition $\{G_0, \ldots, G_n\}$ of *G*.

Define relations

$$
R_i = \{(g,h) \in G \times G \mid g-h \in G_i\}.
$$

Then: $A = \{R_0, \ldots, R_n\}$ partition of $G \times G$.

A called symmetric *n*-class translation scheme on *G*, if

▶
$$
G_0 = \{0\},
$$

(⇒ R_0 is the diagonal of $G \times G$)

►
$$
-G_i = G_i
$$
 for all *i*,
(⇔ all R_i symmetric)

► For any *i*, *j*, *k* and $(g, h) \in R_k$: Intersection number

$$
p_{ij}^k \quad := \quad \#\{x \in G \quad | \quad (g,x) \in R_i \quad \text{and} \quad (x,g) \in R_j\}
$$

only d[e](#page-3-0)pends [o](#page-4-0)n i, j, k i, j, k i, j, k (but not on the [ch](#page-3-0)[oic](#page-5-0)e o[f](#page-5-0) g, h g, h g, h [\).](#page-1-0)

Symmetric 3-class translation scheme on $G = (\mathbb{Z}_6, +)$.

$$
G = \{\{0\}, \{3\}, \{\pm 1\}, \{\pm 2\}\}\
$$

Then

- \blacktriangleright $R_0 = \{(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)\},\$
- \blacktriangleright $\boldsymbol{R_0} = \{(0, 3), (1, 4), (2, 5), (3, 0), (4, 1), (5, 2)\},\$
- \blacktriangleright $R_1 = \{(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 0), \ldots\},\$
- \blacktriangleright $R_2 = \{(0, 2), (1, 3), (2, 4), (3, 5), (4, 0), (5, 1), \ldots\}.$

KEL KALEY KEY E NAG

Symmetric 3-class translation scheme on $G = (\mathbb{Z}_6, +)$.

$$
G = \{ \{0\}, \{3\}, \{\pm 1\}, \{\pm 2\} \}
$$

Then

- \blacktriangleright $\overline{R_0}$ = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)},
- \blacktriangleright $R_0 = \{(0, 3), (1, 4), (2, 5), (3, 0), (4, 1), (5, 2)\},\$
- \blacktriangleright $R_1 = \{(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 0), \ldots\},\$
- \blacktriangleright $R_2 = \{(0, 2), (1, 3), (2, 4), (3, 5), (4, 0), (5, 1), \ldots\}.$

Symmetric 3-class translation scheme on $G = (\mathbb{Z}_6, +)$.

$$
G = \{ \{0\}, \{3\}, \{\pm 1\}, \{\pm 2\} \}
$$

Then

- \blacktriangleright $\overline{R_0}$ = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)},
- $R_0 = \{(0, 3), (1, 4), (2, 5), (3, 0), (4, 1), (5, 2)\},\$
- \blacktriangleright $R_1 = \{(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 0), \ldots\},\$
- \blacktriangleright $R_2 = \{(0, 2), (1, 3), (2, 4), (3, 5), (4, 0), (5, 1), \ldots\}.$

Symmetric 3-class translation scheme on $G = (\mathbb{Z}_6, +)$.

$$
G = \{ \{0\}, \{3\}, \{\pm 1\}, \{\pm 2\} \}
$$

Then

- \blacktriangleright $\overline{R_0}$ = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)},
- \blacktriangleright $\overline{R_0}$ = {(0, 3), (1, 4), (2, 5), (3, 0), (4, 1), (5, 2)},
- \blacktriangleright $\overline{R_1}$ = {(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 0), ...},
- \blacktriangleright $R_2 = \{(0, 2), (1, 3), (2, 4), (3, 5), (4, 0), (5, 1), \ldots\}.$

Symmetric 3-class translation scheme on $G = (\mathbb{Z}_6, +)$.

$$
G = \{\{0\}, \{3\}, \{\pm 1\}, \{\pm 2\}\}\
$$

Then

$$
\blacktriangleright \ \frac{R_0}{R_0} = \{ (0,0), (1,1), (2,2), (3,3), (4,4), (5,5) \},
$$

$$
\blacktriangleright \big\vert R_0 \big\vert = \{ (0,3), (1,4), (2,5), (3,0), (4,1), (5,2) \},
$$

$$
\blacktriangleright \big\vert R_1 \big\vert = \{ (0,1), (1,2), (2,3), (3,4), (4,5), (5,0), \ldots \},
$$

$$
\blacktriangleright \ \ P_2 = \{ (0,2), (1,3), (2,4), (3,5), (4,0), (5,1), \ldots \}.
$$

$G \times G$	0	1	2	3	4	5
0	0	2	3	1	3	2
1	2	0	2	3	1	3
2	3	2	0	2	3	1
3	1	3	2	0	2	8
4	3	1	3	2	0	2
5	2	3	1	3	2	0

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q*

Example (continued)

Visualization as colored complete graph:

$$
p \frac{1}{2|3} = 2
$$

$$
p \frac{2}{2|2} = 0
$$

$$
p \frac{0}{3|3} = 2
$$

Aim for this talk

Find symmetric 3-class translation schemes on

$$
G=(\mathbb{Z}_4\times\ldots\times\mathbb{Z}_4,\quad+)
$$

KORK ERKER ADAM ADA

Idea

- **►** Take finite ring *R* with $(R,+) \cong G$.
- \blacktriangleright For construction: Make use of ring multiplication!

Choice for the ring *R*

Galois rings of characteristic 4.

Definition (Galois ring)

Given:

- **Prime power** $q = p^r$ **.**
- \blacktriangleright *m* positive integer.

► $f \in \mathbb{Z}_{p^m}[X]$ monic, deg $(f) = r$, image $\overline{f} \in \mathbb{Z}_p[X]$ irreducible.

Galois ring $GR(p^m, r) := \mathbb{Z}_{p^m}[X]/(f)$

Remarks

- \blacktriangleright p^m is the characteristic.
- \blacktriangleright *r* is the degree.
- ► Up to ring-isomorphism: Independent of the choice of f.
- \triangleright Order: p^{mr} .

Example

- ^I GR(*p*, *r*) ∼= F*^p r*
- ^I GR(*p ^m*, 1) ∼= Z*p^m*
- **Smallest "proper" Galois ring: GR(4, 2[\)](#page-11-0) o[r](#page-13-0) [o](#page-11-0)[rd](#page-12-0)[e](#page-13-0)[r](#page-11-0) [1](#page-12-0)[6](#page-14-0)[.](#page-15-0)**

Fact

R [∗] has a unique subgroup *T* of order *q* − 1 (Teichmüller group). *T* is cyclic.

Example

Look at $R = \mathbb{Z}_{25} = \text{GR}(5^2, 1)$. Then $q = 5$. Its Teichmüller group is

$$
\mathcal{T}=\langle 7\rangle=\{\pm 1,\pm 7\}<\mathcal{R}^*,
$$

KOD KARD KED KED BE YOUR

a cyclic group of order 4.

From now on

 $R = \text{GR}(4, r)$ Galois ring of characteristic 4 (i.e. $p = m = 2$). Smallest case: $R = GR(4, 1) = \mathbb{Z}_4$.

Lattice of ideals

KORKARA KERKER DAGA

2*R* is maximum ideal. Residue field $R/2R \cong \mathbb{F}_q$ with $q = 2^r$.

Outline

[Preliminaries](#page-2-0)

[Motivation](#page-3-0) [Symmetric translation schemes](#page-4-0) [Galois rings](#page-12-0)

[Construction of symmetric 3-class association schemes](#page-15-0)

KOD KARD KED KED BE YOUR

[Derived combinatorial objects](#page-21-0) [Point sets in projective Hjelmslev geometries](#page-22-0)

R[-linear codes](#page-23-0)

For $\mathcal{T} \leq \mathsf{\Sigma} < R^*$ consider partition of $\mathsf{GR}(4, r)$

$$
\{\{0\},\quad 2\Sigma\setminus\{0\},\quad \Sigma,\quad \mathit{R}^*\setminus\Sigma\}
$$

Question

Which Σ induce 3-class translation scheme on $(GR(4, r), +)$?

Description by \mathbb{F}_2 -vector spaces

By structure of *R* ∗ (Raghavendran 1969):

$$
T\leq \Sigma \leq R^* \quad \stackrel{1-t0-1}{\longleftrightarrow} \quad \mathbb{F}_2\text{-subspaces } U_{\Sigma}\leq \mathbb{F}_q.
$$

KORKARA KERKER DAGA

Conditions

- \triangleright We need $-\Sigma_U = \Sigma_U$. Corresponds to: $\mathbb{F}_2 \leq U$.
- **•** Critical point: Intersection number p_{22}^3 .

Look at trace form

$$
B(x,y): \mathbb{F}_q \times \mathbb{F}_q \to \mathbb{F}_2, \quad (x,y) \mapsto \text{Tr}_{\mathbb{F}_2}(xy).
$$

B is nondegenerate symmetric bilinear form on \mathbb{F}_q (as \mathbb{F}_2 -vector space).

Definition

```
Let U be a \mathbb{F}_2-subspace of \mathbb{F}_q.
Restriction B|U×U is bilinear form on U.
Call U
```
- \blacktriangleright Type I, if $B|_{U\times U}$ is nondegenerate.
- **► Type II, if** $B|_{U^{\perp} \times U^{\perp}}$ **is alternating.** (That is, U^{\perp} is totally isotropic)

Theorem

Σ*^U induces symm.* 3*-class transl. scheme on* (GR(4, *r*), +) *iff*

KORK ERKEY EL POLO

- \blacktriangleright \mathbb{F}_2 $\lt U$ \lt \mathbb{F}_q and
- ► *U* is of type I or II.

Theorem (restated)

 Σ_{U} induces symm. 3-class transl. scheme on $(GR(4, r), +)$ iff

- \blacktriangleright \mathbb{F}_2 < U < \mathbb{F}_q and
- \triangleright *U* is of type I or II.

Idea of proof

Thomas Honold (2010): Proof for particular group Σ .

Follow this proof.

For p_{22}^3 , extra work is needed.

Use properties of the trace form and type I/II property of *U*.

KORK ERKER ADAM ADA

Theorem (restated)

 Σ_{U} induces symm. 3-class transl. scheme on $(GR(4, r), +)$ iff

- \blacktriangleright $\mathbb{F}_2 \leq U < \mathbb{F}_q$ and
- \triangleright *U* is of type I or II.

Theorem

There exists \mathbb{F}_2 -subspace U of \mathbb{F}_q with $\mathbb{F}_2 \leq U$ and dim(U) = σ

 \triangleright of type *I*, iff

$$
\sigma \in \begin{cases} \{1,3,5,\ldots,r\} & \text{if } r \text{ odd,} \\ \{2,4,6,\ldots,r\} & \text{if } r \text{ even.} \end{cases}
$$

 \triangleright *of type II, iff*

 $\sigma \in \{ [r/2], [r/2]+1, [r/2]+2, \ldots, r \}.$

KORK ERKER ADAM ADA

Idea of proof

$$
\quad \blacktriangleright \ \mathbb{F}_2 \leq U \leq \mathbb{F}_q \iff \mathbb{F}_2^\perp \geq U^\perp \geq \mathbb{F}_q^\perp.
$$

If Use classification of bilinear forms over \mathbb{F}_2 . (Albert 1938).

Comparison with literature

 \blacktriangleright Type II: Translation schemes already known. (as fusions of amorphous association schemes by Ito, Munemasa, Yamada (1991)).

KORK ERKER ADAM ADA

- ► Type I: Only known for
	- $\triangleright \ \sigma \in \{1, 2\}$ (Ma 2007).
	- \triangleright σ | *r* and r/σ odd (Honold 2010).

Outline

[Preliminaries](#page-2-0)

[Motivation](#page-3-0) [Symmetric translation schemes](#page-4-0) [Galois rings](#page-12-0)

[Construction of symmetric 3-class association schemes](#page-15-0)

[Derived combinatorial objects](#page-21-0)

[Point sets in projective Hjelmslev geometries](#page-22-0) *R*[-linear codes](#page-23-0)

KOD KARD KED KED BE YOUR

Point sets in projective Hjelmslev geometries

- \triangleright Schemes of type I and II:
	- \rightarrow 2-intersection sets in projective Hielmslev geometries.
- \blacktriangleright In type I case: Series of large *u*-arcs $\mathfrak{T}_{2^r,k,s}$ in PHG(GR(4, *r*)^{*k*}), generalizing
	- \blacktriangleright Teichmüller point sets (*k* odd, $s = 0$)
	- **•** containing the hyperovals $(k = 3, s = 0)$,

Examples of arcs of maximal possible size:

 \blacktriangleright $\mathfrak{T}_{4,3,2}$ is (84,6)-arc in PHG(GR(4,2)³) (already known).

KORKAR KERKER E VOOR

 $\blacktriangleright \mathfrak{T}_{2,4,2}$ is (30, 8)-arc in PHG(\mathbb{Z}_4^4) (new!)

R-linear codes

- \blacktriangleright From Type II schemes: Infinite series $\mathcal{U}_{2^r,k,s}$ of GR(4, *r*)-linear two-weight codes.
- \blacktriangleright From Type I schemes: Infinite series $\mathcal{T}_{2^r,k,s}$ of GR(4, *r*)-linear codes of high minimum distance. Generalization of Teichmüller codes (special case $s = 0$).
- \blacktriangleright Codes in $\mathcal{T}_{2^r,k,s}$ have very high minimum distance: Gray image of any code $\mathcal{T}_{2^r,k,s}$ is better than all known comparable F² *^r* -linear codes.
- Example: Gray image of $\mathcal{T}_{2,5,2}$ is new nonlinear binary $(248, 2^{10}, 120)_2$ -code. Best known *linear* binary [248, 10]-code has minimum distance only 119.

KORK ERKEY EL POLO

 \triangleright Generalization of two further series of high-distance *R*-linear codes.