
Codes from translation schemes
on Galois rings of characteristic 4

Michael Kiermaier

Institut für Mathematik
Universität Bayreuth

Combinatorics 2012
September 11, 2012

Centro Congressi Hotel Giò, Perugia, Italy



Outline

Preliminaries
Motivation
Symmetric translation schemes
Galois rings

Construction of symmetric 3-class association schemes

Derived combinatorial objects
Point sets in projective Hjelmslev geometries
R-linear codes



Outline

Preliminaries
Motivation
Symmetric translation schemes
Galois rings

Construction of symmetric 3-class association schemes

Derived combinatorial objects
Point sets in projective Hjelmslev geometries
R-linear codes



Motivation
I Several series of good Z4-linear codes

are based on a Teichmüller point set T
in projective Hjelmslev geometry.
(More general: Galois ring R of char. 4 instead of Z4)

I Computer search for codes with Johannes Zwanzger:
Suggests similar constructions
from certain unions of disjoint copies of T.

I Question: What is the right way to combine copies of T?
I T is two-intersection set.

Done by Thomas Honold in 2010,
using theory of association schemes.
(more precisely:
Symmetric translation schemes on group (R,+).)

I Follow his approach to answer the question!



Definition (Symmetric translation scheme)
Given:
I finite Abelian group G,
I partition {G0, . . . ,Gn} of G.

Define relations
Ri = {(g,h) ∈ G ×G | g − h ∈ Gi}.

Then: A = {R0, . . . ,Rn} partition of G ×G.

A called symmetric n-class translation scheme on G, if
I G0 = {0},

(⇔ R0 is the diagonal of G ×G)
I −Gi = Gi for all i ,

(⇔ all Ri symmetric)
I For any i , j , k and (g,h) ∈ Rk : Intersection number

pk
ij := #{x ∈ G | (g, x) ∈ Ri and (x ,g) ∈ Rj}

only depends on i , j , k (but not on the choice of g,h).



Example
Symmetric 3-class translation scheme on G = (Z6,+).

G = { {0} , {3} , {±1} , {±2} }

Then
I R0 = {(0,0), (1,1), (2,2), (3,3), (4,4), (5,5)},
I R0 = {(0,3), (1,4), (2,5), (3,0), (4,1), (5,2)},
I R1 = {(0,1), (1,2), (2,3), (3,4), (4,5), (5,0), . . .},
I R2 = {(0,2), (1,3), (2,4), (3,5), (4,0), (5,1), . . .}.

G ×G 0 1 2 3 4 5
0
1
2
3
4
5



Example
Symmetric 3-class translation scheme on G = (Z6,+).

G = { {0} , {3} , {±1} , {±2} }

Then
I R0 = {(0,0), (1,1), (2,2), (3,3), (4,4), (5,5)},
I R0 = {(0,3), (1,4), (2,5), (3,0), (4,1), (5,2)},
I R1 = {(0,1), (1,2), (2,3), (3,4), (4,5), (5,0), . . .},
I R2 = {(0,2), (1,3), (2,4), (3,5), (4,0), (5,1), . . .}.

G ×G 0 1 2 3 4 5
0 0
1 0
2 0
3 0
4 0
5 0



Example
Symmetric 3-class translation scheme on G = (Z6,+).

G = { {0} , {3} , {±1} , {±2} }

Then
I R0 = {(0,0), (1,1), (2,2), (3,3), (4,4), (5,5)},
I R0 = {(0,3), (1,4), (2,5), (3,0), (4,1), (5,2)},
I R1 = {(0,1), (1,2), (2,3), (3,4), (4,5), (5,0), . . .},
I R2 = {(0,2), (1,3), (2,4), (3,5), (4,0), (5,1), . . .}.

G ×G 0 1 2 3 4 5
0 0 1
1 0 1
2 0 1
3 1 0
4 1 0
5 1 0



Example
Symmetric 3-class translation scheme on G = (Z6,+).

G = { {0} , {3} , {±1} , {±2} }

Then
I R0 = {(0,0), (1,1), (2,2), (3,3), (4,4), (5,5)},
I R0 = {(0,3), (1,4), (2,5), (3,0), (4,1), (5,2)},
I R1 = {(0,1), (1,2), (2,3), (3,4), (4,5), (5,0), . . .},
I R2 = {(0,2), (1,3), (2,4), (3,5), (4,0), (5,1), . . .}.

G ×G 0 1 2 3 4 5
0 0 2 1 2
1 2 0 2 1
2 2 0 2 1
3 1 2 0 2
4 1 2 0 2
5 2 1 2 0



Example
Symmetric 3-class translation scheme on G = (Z6,+).

G = { {0} , {3} , {±1} , {±2} }

Then
I R0 = {(0,0), (1,1), (2,2), (3,3), (4,4), (5,5)},
I R0 = {(0,3), (1,4), (2,5), (3,0), (4,1), (5,2)},
I R1 = {(0,1), (1,2), (2,3), (3,4), (4,5), (5,0), . . .},
I R2 = {(0,2), (1,3), (2,4), (3,5), (4,0), (5,1), . . .}.

G ×G 0 1 2 3 4 5
0 0 2 3 1 3 2
1 2 0 2 3 1 3
2 3 2 0 2 3 1
3 1 3 2 0 2 3
4 3 1 3 2 0 2
5 2 3 1 3 2 0



Example (continued)
Visualization as colored complete graph:

G ×G 0 1 2 3 4 5
0 0 2 3 1 3 2
1 2 0 2 3 1 3
2 3 2 0 2 3 1
3 1 3 2 0 2 3
4 3 1 3 2 0 2
5 2 3 1 3 2 0

 0

12

3

4 5

p 1

2 3
= 2

p 2

2 2
= 0

p
0

3 3
= 2



Aim for this talk
Find symmetric 3-class translation schemes on

G = (Z4 × . . .× Z4, +)

Idea
I Take finite ring R with (R,+) ∼= G.
I For construction: Make use of ring multiplication!

Choice for the ring R
Galois rings of characteristic 4.



Definition (Galois ring)
Given:
I Prime power q = pr .
I m positive integer.
I f ∈ Zpm [X ] monic, deg(f ) = r , image f̄ ∈ Zp[X ] irreducible.

Galois ring GR(pm, r) := Zpm [X ]/(f )

Remarks
I pm is the characteristic.
I r is the degree.
I Up to ring-isomorphism: Independent of the choice of f .
I Order: pmr .

Example

I GR(p, r) ∼= Fpr

I GR(pm,1) ∼= Zpm

I Smallest ”proper” Galois ring: GR(4,2) or order 16.



Fact
R∗ has a unique subgroup T of order q − 1 (Teichmüller group).
T is cyclic.

Example
Look at R = Z25 = GR(52,1).
Then q = 5. Its Teichmüller group is

T = 〈7〉 = {±1,±7} < R∗,

a cyclic group of order 4.



From now on
R = GR(4, r) Galois ring of characteristic 4 (i.e. p = m = 2).
Smallest case: R = GR(4,1) = Z4.

Lattice of ideals

R
|

2R
|
{0}

2R is maximum ideal.
Residue field R/2R ∼= Fq with q = 2r .
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For T ≤ Σ < R∗ consider partition of GR(4, r)

{{0}, 2Σ \ {0}, Σ, R∗ \ Σ}

Question
Which Σ induce 3-class translation scheme on (GR(4, r),+)?

Description by F2-vector spaces
By structure of R∗ (Raghavendran 1969):

T ≤ Σ ≤ R∗ 1−to−1←→ F2-subspaces UΣ ≤ Fq.

Conditions
I We need −ΣU = ΣU .

Corresponds to: F2 ≤ U.
I Critical point: Intersection number p3

22.



Look at trace form

B(x , y) : Fq × Fq → F2, (x , y) 7→ TrF2(xy).

B is nondegenerate symmetric bilinear form on Fq (as F2-vector
space).

Definition
Let U be a F2-subspace of Fq.
Restriction B|U×U is bilinear form on U.
Call U
I Type I, if B|U×U is nondegenerate.
I Type II, if B|U⊥×U⊥ is alternating.

(That is, U⊥ is totally isotropic)

Theorem
ΣU induces symm. 3-class transl. scheme on (GR(4, r),+) iff
I F2 ≤ U < Fq and
I U is of type I or II.



Theorem (restated)
ΣU induces symm. 3-class transl. scheme on (GR(4, r),+) iff
I F2 ≤ U < Fq and
I U is of type I or II.

Idea of proof
Thomas Honold (2010): Proof for particular group Σ.
Follow this proof.
For p3

22, extra work is needed.
Use properties of the trace form and type I/II property of U.



Theorem (restated)
ΣU induces symm. 3-class transl. scheme on (GR(4, r),+) iff
I F2 ≤ U < Fq and
I U is of type I or II.

Theorem
There exists F2-subspace U of Fq with F2 ≤ U and dim(U) = σ

I of type I, iff

σ ∈

{
{1,3,5, . . . , r} if r odd,
{2,4,6, . . . , r} if r even.

I of type II, iff
σ ∈ {dr/2e, dr/2e+ 1, dr/2e+ 2, . . . , r}.

Idea of proof

I F2 ≤ U ≤ Fq ⇐⇒ F⊥2 ≥ U⊥ ≥ F⊥q .
I Use classification of bilinear forms over F2. (Albert 1938).



Comparison with literature

I Type II: Translation schemes already known.
(as fusions of amorphous association schemes
by Ito, Munemasa, Yamada (1991)).

I Type I: Only known for
I σ ∈ {1,2} (Ma 2007).
I σ | r and r/σ odd (Honold 2010).
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Point sets in projective Hjelmslev geometries

I Schemes of type I and II:
 2-intersection sets in projective Hjelmslev geometries.

I In type I case:
Series of large u-arcs T2r ,k ,s in PHG(GR(4, r)k ),
generalizing

I Teichmüller point sets (k odd, s = 0)
I containing the hyperovals (k = 3, s = 0),

Examples of arcs of maximal possible size:
I T4,3,2 is (84,6)-arc in PHG(GR(4,2)3) (already known).
I T2,4,2 is (30,8)-arc in PHG(Z4

4) (new!)



R-linear codes
I From Type II schemes:

Infinite series U2r ,k ,s of GR(4, r)-linear two-weight codes.
I From Type I schemes:

Infinite series T2r ,k ,s of GR(4, r)-linear codes
of high minimum distance.
Generalization of Teichmüller codes (special case s = 0).

I Codes in T2r ,k ,s have very high minimum distance:
Gray image of any code T2r ,k ,s
is better than all known comparable F2r -linear codes.

I Example: Gray image of T2,5,2 is new nonlinear binary
(248,210,120)2-code.
Best known linear binary [248,10]-code has minimum
distance only 119.

I Generalization of two further series
of high-distance R-linear codes.
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