Codes from translation schemes on Galois rings of characteristic 4

Michael Kiermaier

Institut für Mathematik Universität Bayreuth

Combinatorics 2012 September 11, 2012 Centro Congressi Hotel Giò, Perugia, Italy

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Preliminaries

Motivation Symmetric translation schemes Galois rings

Construction of symmetric 3-class association schemes

Derived combinatorial objects

Point sets in projective Hjelmslev geometries *R*-linear codes

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Preliminaries

Motivation Symmetric translation schemes Galois rings

Construction of symmetric 3-class association schemes

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Derived combinatorial objects Point sets in projective Hjelmslev geometries *R*-linear codes

Motivation

- Several series of good Z₄-linear codes are based on a Teichmüller point set S in projective Hjelmslev geometry. (More general: Galois ring *R* of char. 4 instead of Z₄)
- Computer search for codes with Johannes Zwanzger: Suggests similar constructions from certain unions of disjoint copies of *I*.
- Question: What is the right way to combine copies of \$\mathcal{T}\$?

(ロ) (同) (三) (三) (三) (○) (○)

- T is two-intersection set.
 Done by Thomas Honold in 2010, using theory of association schemes.
 (more precisely: Symmetric translation schemes on group (R, +).)
- Follow his approach to answer the question!

Definition (Symmetric translation scheme)

Given:

- ▶ finite Abelian group G,
- partition $\{G_0, \ldots, G_n\}$ of G.

Define relations

$$\mathsf{R}_i = \{(g,h) \in G imes G \mid g-h \in G_i\}.$$

Then: $\mathcal{A} = \{R_0, \ldots, R_n\}$ partition of $G \times G$.

 \mathcal{A} called symmetric *n*-class translation scheme on *G*, if

•
$$G_0 = \{0\},\ (\Leftrightarrow R_0 \text{ is the diagonal of } G \times G)$$

•
$$-G_i = G_i$$
 for all *i*,
(\Leftrightarrow all R_i symmetric)

For any i, j, k and $(g, h) \in R_k$: Intersection number

$$p_{ij}^k$$
 := $\#\{x\in G \mid (g,x)\in R_i \text{ and } (x,g)\in R_j\}$

only depends on *i*, *j*, *k* (but not on the choice of *g*, *h*).

Symmetric 3-class translation scheme on $G = (\mathbb{Z}_6, +)$.

$$G = \{ \{0\}, \{3\}, \{\pm 1\}, \{\pm 2\} \}$$

Then

- $\blacktriangleright R_0 = \{(0,0), (1,1), (2,2), (3,3), (4,4), (5,5)\},\$
- $R_1 = \{(0,1), (1,2), (2,3), (3,4), (4,5), (5,0), \ldots\},$
- $| R_2 | = \{ (0,2), (1,3), (2,4), (3,5), (4,0), (5,1), \ldots \}.$

G imes G	0	1	2	3	4	5
0						
1						
2						
3						
4						
5						

(日) (日) (日) (日) (日) (日) (日)

Symmetric 3-class translation scheme on $G = (\mathbb{Z}_6, +)$.

$$G = \{ \{0\}, \{3\}, \{\pm 1\}, \{\pm 2\} \}$$

Then

- $\bullet \ \mathbf{R_0} = \{(0,0), (1,1), (2,2), (3,3), (4,4), (5,5)\},\$
- $\bullet \ R_0 = \{(0,3), (1,4), (2,5), (3,0), (4,1), (5,2)\},\$
- $\blacktriangleright R_1 = \{(0,1), (1,2), (2,3), (3,4), (4,5), (5,0), \ldots\},\$
- $R_2 = \{(0,2), (1,3), (2,4), (3,5), (4,0), (5,1), \ldots \}.$

Symmetric 3-class translation scheme on $G = (\mathbb{Z}_6, +)$.

$$G = \{ \{0\}, \{3\}, \{\pm 1\}, \{\pm 2\} \}$$

Then

- $\bullet R_0 = \{(0,0), (1,1), (2,2), (3,3), (4,4), (5,5)\},\$
- $\bullet R_0 = \{(0,3), (1,4), (2,5), (3,0), (4,1), (5,2)\},\$

$G \times G \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5$

Symmetric 3-class translation scheme on $G = (\mathbb{Z}_6, +)$.

$$G = \{ \{0\}, \{3\}, \{\pm 1\}, \{\pm 2\} \}$$

Then

$$\bullet \ \mathbf{R_0} = \{(0,0), (1,1), (2,2), (3,3), (4,4), (5,5)\},\$$

$$\blacktriangleright R_0 = \{(0,3), (1,4), (2,5), (3,0), (4,1), (5,2)\},\$$

$$\blacktriangleright R_1 = \{(0,1), (1,2), (2,3), (3,4), (4,5), (5,0), \ldots\},\$$

$$| R_2 | = \{(0,2), (1,3), (2,4), (3,5), (4,0), (5,1), \ldots \}.$$

Symmetric 3-class translation scheme on $G = (\mathbb{Z}_6, +)$.

$$G = \{ \{0\}, \{3\}, \{\pm 1\}, \{\pm 2\} \}$$

Then

$$\bullet \ R_0 = \{(0,0), (1,1), (2,2), (3,3), (4,4), (5,5)\},\$$

$$\blacktriangleright R_0 = \{(0,3), (1,4), (2,5), (3,0), (4,1), (5,2)\},\$$

$$\blacktriangleright \ R_1 = \{(0,1), (1,2), (2,3), (3,4), (4,5), (5,0), \ldots\},\$$

$$\blacktriangleright R_2 = \{(0,2), (1,3), (2,4), (3,5), (4,0), (5,1), \ldots\}.$$

Example (continued)

Visualization as colored complete graph:

$$p_{23}^{1} = 2$$

 $p_{22}^{2} = 0$
 $p_{33}^{0} = 2$

・ロト・西ト・ヨト ・日・ うろの

Aim for this talk

Find symmetric 3-class translation schemes on

$$G = (\mathbb{Z}_4 \times \ldots \times \mathbb{Z}_4, +)$$

Idea

- Take finite ring R with $(R, +) \cong G$.
- For construction: Make use of ring multiplication!

Choice for the ring *R*

Galois rings of characteristic 4.

Definition (Galois ring)

Given:

- Prime power $q = p^r$.
- *m* positive integer.

• $f \in \mathbb{Z}_{p^m}[X]$ monic, deg(f) = r, image $\overline{f} \in \mathbb{Z}_p[X]$ irreducible.

Galois ring $GR(p^m, r) := \mathbb{Z}_{p^m}[X]/(f)$

Remarks

- *p^m* is the characteristic.
- r is the degree.
- ▶ Up to ring-isomorphism: Independent of the choice of *f*.
- ▶ Order: *p^{mr}*.

Example

- $GR(p, r) \cong \mathbb{F}_{p^r}$
- $GR(p^m, 1) \cong \mathbb{Z}_{p^m}$
- ► Smallest "proper" Galois ring: GR(4, 2) or order 16.

Fact

 R^* has a unique subgroup T of order q - 1 (Teichmüller group). T is cyclic.

Example

Look at $R = \mathbb{Z}_{25} = GR(5^2, 1)$. Then q = 5. Its Teichmüller group is

$$T = \langle 7 \rangle = \{\pm 1, \pm 7\} < R^*,$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

a cyclic group of order 4.

From now on

R = GR(4, r) Galois ring of characteristic 4 (i.e. p = m = 2). Smallest case: $R = GR(4, 1) = \mathbb{Z}_4$.

Lattice of ideals

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

2*R* is maximum ideal. Residue field $R/2R \cong \mathbb{F}_q$ with $q = 2^r$.

Outline

Preliminaries

Motivation Symmetric translation schemes Galois rings

Construction of symmetric 3-class association schemes

Derived combinatorial objects

Point sets in projective Hjelmslev geometries *R*-linear codes

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

For $T \leq \Sigma < R^*$ consider partition of GR(4, *r*)

$$\{\{0\}, \quad 2\Sigma \setminus \{0\}, \quad \Sigma, \quad \boldsymbol{R}^* \setminus \Sigma\}$$

Question

Which Σ induce 3-class translation scheme on (GR(4, *r*), +)?

Description by \mathbb{F}_2 -vector spaces

By structure of R^* (Raghavendran 1969):

$$\mathcal{T} \leq \mathbf{\Sigma} \leq \mathcal{R}^* \quad \stackrel{1- ext{to}-1}{\longleftrightarrow} \quad \mathbb{F}_2 ext{-subspaces } \mathcal{U}_{\mathbf{\Sigma}} \leq \mathbb{F}_q.$$

Conditions

- We need $-\Sigma_U = \Sigma_U$. Corresponds to: $\mathbb{F}_2 \leq U$.
- Critical point: Intersection number p³₂₂.

Look at trace form

$$B(x,y): \mathbb{F}_q imes \mathbb{F}_q o \mathbb{F}_2, \quad (x,y) \mapsto \mathsf{Tr}_{\mathbb{F}_2}(xy).$$

B is nondegenerate symmetric bilinear form on \mathbb{F}_q (as \mathbb{F}_2 -vector space).

Definition

```
Let U be a \mathbb{F}_2-subspace of \mathbb{F}_q.
Restriction B|_{U \times U} is bilinear form on U.
Call U
```

- Type I, if $B|_{U \times U}$ is nondegenerate.
- ► Type II, if B|_{U[⊥]×U[⊥]} is alternating. (That is, U[⊥] is totally isotropic)

Theorem

 Σ_U induces symm. 3-class transl. scheme on (GR(4, r), +) iff

- $\mathbb{F}_2 \leq U < \mathbb{F}_q$ and
- U is of type I or II.

Theorem (restated)

 Σ_U induces symm. 3-class transl. scheme on (GR(4, r), +) iff

- $\mathbb{F}_2 \leq U < \mathbb{F}_q$ and
- ► *U* is of type I or II.

Idea of proof

Thomas Honold (2010): Proof for particular group Σ .

Follow this proof.

For p_{22}^3 , extra work is needed.

Use properties of the trace form and type I/II property of U.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem (restated)

 Σ_U induces symm. 3-class transl. scheme on (GR(4, r), +) iff

- $\mathbb{F}_2 \leq U < \mathbb{F}_q$ and
- U is of type I or II.

Theorem

There exists \mathbb{F}_2 -subspace U of \mathbb{F}_q with $\mathbb{F}_2 \leq U$ and dim $(U) = \sigma$

▶ of type I, iff

$$\sigma \in egin{cases} \{1,3,5,\ldots,r\} & \textit{if } r \textit{ odd,} \ \{2,4,6,\ldots,r\} & \textit{if } r \textit{ even}. \end{cases}$$

► of type II, iff $\sigma \in \{ \lceil r/2 \rceil, \quad \lceil r/2 \rceil + 1, \quad \lceil r/2 \rceil + 2, \quad \dots, \quad r \}.$

Idea of proof

$$\blacktriangleright \ \mathbb{F}_2 \leq U \leq \mathbb{F}_q \iff \mathbb{F}_2^{\perp} \geq U^{\perp} \geq \mathbb{F}_q^{\perp}.$$

► Use classification of bilinear forms over F₂. (Albert 1938).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Comparison with literature

 Type II: Translation schemes already known. (as fusions of amorphous association schemes by Ito, Munemasa, Yamada (1991)).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Type I: Only known for
 - *σ* ∈ {1,2} (Ma 2007).
 - $\sigma \mid r$ and r/σ odd (Honold 2010).

Outline

Preliminaries

Motivation Symmetric translation schemes Galois rings

Construction of symmetric 3-class association schemes

Derived combinatorial objects

Point sets in projective Hjelmslev geometries *R*-linear codes

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Point sets in projective Hjelmslev geometries

- Schemes of type I and II:
 - → 2-intersection sets in projective Hjelmslev geometries.
- In type I case: Series of large *u*-arcs 𝔅_{2^r,k,s} in PHG(GR(4, r)^k), generalizing
 - Teichmüller point sets (k odd, s = 0)
 - containing the hyperovals (k = 3, s = 0),

Examples of arcs of maximal possible size:

▶ 𝔅_{4,3,2} is (84,6)-arc in PHG(GR(4,2)³) (already known).

• $\mathfrak{T}_{2,4,2}$ is (30,8)-arc in PHG(\mathbb{Z}_4^4) (new!)

R-linear codes

- ► From Type II schemes: Infinite series U_{2^r,k,s} of GR(4, r)-linear two-weight codes.
- From Type I schemes: Infinite series T_{2^r,k,s} of GR(4, r)-linear codes of high minimum distance. Generalization of Teichmüller codes (special case s = 0).
- ► Codes in T_{2^r,k,s} have very high minimum distance: Gray image of any code T_{2^r,k,s} is better than all known comparable F_{2^r}-linear codes.
- Example: Gray image of T_{2,5,2} is new nonlinear binary (248, 2¹⁰, 120)₂-code.
 Best known *linear* binary [248, 10]-code has minimum distance only 119.
- Generalization of two further series of high-distance *R*-linear codes.