
A Lexicon Module for a Grammar Development Environment

Ann Copestake∗, Fabre Lambeau∗, Benjamin Waldron∗,
Francis Bond‡, Dan Flickinger†, Stephan Oepen†�

∗University of Cambridge Computer Laboratory †CSLI, Ventura Hall, Stanford University
JJ Thomson Avenue, Cambridge CB3 0FD (UK) Stanford, CA 94305-4115 (USA)
{aac10,faml2,bmw20}@cl.cam.ac.uk {danf,oe}@csli.stanford.edu

‡NTT Communication Science Labs �Institutt for Lingvistiske Fag
2-4, Hikaridai, Seika-cho, Soraku-gun Universitetet i Oslo

Kyoto 619-0237 (Japan) 0317 Oslo (Norway)
bond@cslab.kecl.ntt.co.jp

Abstract
Past approaches to developing an effective lexicon component in a grammar development environment have suffered from a number of
usability and efficiency issues. We present a lexical database module currently in use by a number of grammar development projects. The
database module presented addresses issues which have caused problems in the past and the power of a database architecture provides a
number of practical advantages as well as a solid framework for future extension.

1. Introduction
This paper concerns the use of a relational database

as a component of a grammar development environment
(GDE). The concept of a lexical database is of course very
well-known, with WordNet being the primary example. But
there is little reported work on the design of the base lexical
component within a GDE: that is, on the component which
associates stems with syntactic and semantic information.
(There is, of course, considerable work on lexical repre-
sentation within morphology, but this raises rather different
issues.) One reason for this is that speed of lexical lookup
is not a primary consideration in most systems, so while
developing efficient parsing algorithms is a core NLP prob-
lem, efficiency of lexical access is not. But much of the
work on parsing efficiency has been done with relatively
small grammars with tiny lexicons. Grammar engineering
aspects, such as lexicon maintenance, have been neglected
in the published literature.

The work reported here addresses these practical issues.
It concerns the use of a standard relational database system
as an integrated part of a GDE – specifically the LKB sys-
tem (Copestake, 2002) - although we believe that most of
the issues we raise are applicable to other processing envi-
ronments. We base the description that follows on the ERG
– the LinGO English Resource Grammar (Copestake and
Flickinger, 2000) – although the lexical module is also in
use with grammars of other languages such as Japanese1

and Norwegian2.

2. The Past Approach
Previous versions of the LKB relied on purpose-built

lexical database code. A lexicon, as seen by the grammar
writer, consisted of a series of text files written in the same
syntax as the rest of the grammar. For example in Figure
1 the identifier is bombard_v1; the syntactic/semantic
type is v_np_trans_le, which would be expanded into

1The JACY Grammar (Siegel and Bender, 2002).
2NorSource (www.ling.hf.ntnu.no/forskning/norsource)

bombard_v1 := v_np_trans_le &
[STEM < "bombard" >,

SYNSEM.LKEYS.KEYREL.PRED
"_bombard_v_rel"].

Figure 1: A lexical entry in textual format

a large typed feature structure (TFS) when the entry was
used in the system; the orthography is "bombard"; and
the semantic predicate is "_bombard_v_rel". These
lexicon files were converted to a special-purpose database
cache by the LKB system when loading a grammar, from
which individual lexical entries could later be retrieved for
expansion into a TFS.

2.1. Issues

This approach worked adequately in terms of process-
ing efficiency, even with large lexicons: lexical access is
not a significant fraction of parse times. However it had a
number of severe disadvantages. A lexicon encoded as a
large text file is very difficult to maintain. Lexical lookup
was restricted to values which had been explicitly indexed
(orthography and lexical identifier), meaning that, for in-
stance, a grammar developer could not easily retrieve and
modify all entries of a given type. Loading a large lexicon
could be time-consuming, but the cache mechanism was
not robust to changes in the lexicon or code. The only place
to store information was within the feature structures them-
selves or as a comment in the text file; this did not allow us
to keep track of bookkeeping information. Checking could
only be done when explicitly invoked: checking the entire
lexicon was too expensive to do every time a grammar was
loaded.

One could attempt to address some of these issues
by outputting the text files automatically from an offline
database. We experimented with this approach for some
time, but it proved too cumbersome for the grammar devel-
opers to make use of it systematically.

 1111

lexid bombard_v1
type v_np_trans_le
orth "bombard"

sempred "_bombard_v_rel"
source ERG
userid danf

timestamp 2003-11-01 00:00:00+00
lang EN

confidence 1.0
comments <UNINSTANTIATED>

...

Figure 2: Part of a sample database record

3. A Database Lexical Module

Our new version of the LKB lexicon module makes di-
rect use of PostgreSQL (The PostgreSQL Global Devel-
opment Group, 2003). PostgreSQL is an object-relational
database management system which we chose primarily be-
cause of its open source status. Our lexicons are main-
tained within PostgreSQL databases and these databases
are directly accessed by the LKB during parsing, genera-
tion and so on. This approach allows the use of all the stan-
dard database queries and update routines, which consid-
erably enhances lexicon management as well as processing
speed. Caching as used in the past is no longer required
and we are able to make use of a sophisticated range of
filters (as explained below) to change the accessibility of
lexical entries for parsing and generation. The new lexi-
cal module requires 10-15 seconds3 to load the ERG gram-
mar (11.9K lexical entries), in contrast to the 45 seconds
needed in the past; the JACY grammar (35.5K lexical en-
tries) now requires 10-20 seconds, reduced from 2 minutes.
Likewise, checking the full lexicon now takes 20 seconds
for the ERG, reduced from 35 seconds; JACY now requires
70 seconds reduced from 135 seconds.

The relational database encoding assumes that the lexi-
cal information for simplex words is a tuple of grammatical
‘slots’ from which the full TFS of the entry may be derived
(in a similar manner, the textual representation specified a
set of TFS path values which taken together allowed one
to construct the full TFS). Multiword expressions, such as
idioms, are more complex (Copestake et al., 2002) but can
also be encoded (§ 4.3.). For bookkeeping purposes, we
also store information about the source of the entry, the date
it was created, the lexicographer, confidence scores and so
on. Using this bookkeeping data we are able to define a
particular view of the lexicon by means of a filter. A filter
specifies that we are interested only in a subset of those lex-
ical entries stored in the full database – e.g. we may only
want to use entries from a particular source with a partic-
ular confidence threshold, or to omit entries pertaining to
non-standard dialects. Such filters can be encoded as fol-
lows:

source = ’corpusA’ AND confidence > 0.5
dialect = ’standard’

3All timings quoted relate to typical 2.2 GHz CPU machine.

4. The Database Structure
We store the lexicon within a PostgreSQL relational

database. The database contains a history for each lexi-
cal entry, and has a structure able to accommodate multiple
users and varying ‘views’ of the data; a particular subset of
the lexicon is chosen at load time by applying a filter on the
bookkeeping fields, and it is this subset (‘view’) which will
later be directly queried by the LKB during lexical lookup.
Such views are cached internally to boost lexical lookup
speed.

At lexicon load time the LKB establishes a connection
to a PostgreSQL database and specifies the required view of
the database. The PostgreSQL server may run locally, or al-
ternatively can be made available from a remote machine.
In order to accommodate multiple concurrent user logins
with multiple environments (and to accommodate simulta-
neous edits by multiple lexicographers) we utilise a public
schema and multiple private schemas. The public schema
contains the bulk of the lexical database (LexDB) in ad-
dition to other data and functionality shared by all users,
whilst each user login possesses a private schema used to
store that user’s working edits of the LexDB, their current
view of the LexDB and other data specific to that user.

4.1. Public Schema

Lexical entry revisions are stored in the database with
associated bookkeeping fields in addition to the grammat-
ical fields which provide the information necessary to re-
construct the TFS of the lexical entry (see Figure 2 for a
sample database record; the first four fields are the gram-
matical fields which provide the information which in the
past was stored in the textual lexicon files). Each gram-
matical field maps to a particular TFS path; for example an
entry in the predicate field may map to a TFS component
equivalent in the textual notation to:

SYNSEM.LKEYS.KEYREL.PRED "_bombard_v_rel"

The field entries are not restricted to mapping to atomic
values; for example, orthography will map to a list which
may contain multiple elements (e.g. ad hoc). The mappings
from fields to TFS substructures are themselves defined in
a database table; as such they may be edited as the grammar
evolves, and different ‘modes’ may be used to define differ-
ent sets of mappings (allowing distinct grammar encodings
to utilise the same lexical module).

The bookkeeping fields include userid and timestamp
(used to specify a unique revision of a lexical entry), doc-
umentation fields such as comments and exemplars, and
fields such as confidence, source, language, country, di-
alect, domain, genre and so forth. This bookkeeping data is
not available when using entries from textual lexicon files
(human-readable comments are possible but cannot be pro-
cessed in any effective way).

The grammatical and bookkeeping fields are an integral
part of the LexDB. Additional lexical data is made avail-
able when we link entries to external database resources
(see §6.). This at the time of writing includes a semantics
database and a database of idioms.

The database is queried directly during lexical lookup
and other tasks. The database code (that is, the set of

 1112

SQL queries) involved is defined in the database itself (via
database functions and using embedded SQL code in cases
where database functions do not suffice). The idea is to
ensure the lexical module is distinct from any particular
‘client’ (such as the LKB). Alternative clients may include
those performing editing tasks (see §5.), those for query-
ing/displaying (e.g. a web interface), as well as in future
alternative grammar processing tools such as the PET sys-
tem (Callmeier, 2000).

4.2. Private Schemas

The private schemas allow us to provide the multi-
user functionality. For example, whilst editing the LexDB
changes should be invisible to other users but should be
available as part of that user’s view of the lexicon. So per-
sonal edits are stored in the private schema (and effectively
added to the LexDB for all operations of the current user).
The database filter is also be specific to each user, as is their
current view of the LexDB.

4.3. Multi-Word Entries

Multi-word entries (MWEs) come in two classes. Mem-
bers of the class of non-decomposable MWEs, for which
an exemplar is ad hoc, are treated simply as simplex lexical
entries. Members of the class of decomposable MWEs, for
which spill the beans and its variants provide an exemplar,
are treated via templates and allow for a certain degree of
variation. See (Copestake et al., 2002) for a discussion of
issues and grammatical representation.

The lexical database stores multi-word entries of the
second class in separate tables to the simplex entries. Each
instance is associated with a type for the template as a
whole, and with specifications for each template slot (cor-
responding to spill and beans in the above example). These
slots require that idiomatic simplex forms be added to the
main lexicon. These idiomatic forms are derived from ba-
sic simplex forms (e.g. idiomatic spill differs from basic
spill only in its semantics). Such idiomatic forms would
ideally derive in the grammar from the base forms via a de-
fault inheritance mechanism, however for current purposes
they occupy a separate table in the lexical database, which
is used to generate idiomatic simplex forms which (concep-
tually) are added to the original set of simplex forms in the
database.

The grammar-specific data outlined above may be aug-
mented by linking such entries to the multilingual database
of idioms described in (Villavicencio et al., 2004).

5. Tools
5.1. Emacs Interface

The lexical module is designed in such a way that vari-
ous clients may interact with the database server. Here we
discuss an interface to a text editor (Emacs).

Easy and effective editing of lexical entries is vital if the
database module is to be useful for grammar development.
The lexical module as it existed in the past utilised text files
of the same format as the rest of the grammar. As such they
could be edited with a text editor (generally Emacs) in the
same way as the other files. Commercial database packages
tend to provide effective mechanisms for editing, viewing

and presenting the contents of a database. Unfortunately
PostgreSQL lacks such user-friendly interfaces; the various
interfaces that exist are not suited to our task. We have de-
veloped a custom Emacs interface to the lexical module.
Such an interface is important because the lexicon is gen-
erally edited at the same time as the type files on which
it depends; it would be inconvenient to require the use of
multiple editor applications for what is essentially a single
task. The main grammar developers/lexicographers are al-
ready familiar with Emacs.

The Emacs database interface (written in Emacs Lisp)
allows existing entries to be edited and new entries to be
added. Entries in the database may be browsed and cross-
indexed, tab completion may aid the lexicographer by pre-
senting possible completions for the current field based on
the contents of other lexical records, and so on. New re-
vision entries produced in this way reside initially in the
user’s private schema, from where they may be commit-
ted to the public table when the user is ready. Adding a
new revision entry achieves one of three purposes; alter an
existing lexical entry, add a new entry, or remove an exist-
ing entry (the revision history is not lost, the head revision
merely specifies that the lexical entry is not to be used).

5.2. CVS

The LinGO grammar development projects generally
use a version control system, such as CVS, where the gram-
mar is specified as a set of human-editable text files. The
old lexical module used text files in exactly this manner.
Lexical entries in the database module are stored as part
of a database system and are not immediately available in
such a format. Hence we share the lexicon on CVS via a set
of database dump files containing the entry- and grammar-
specific data held in the lexical database (one text file for
each such table in the public schema of the database).
These text dumps are effectively human-readable (and ed-
itable), but the idea is that they are simply a means of stor-
ing and distributing the database contents. Forks in lexicon
development are automatically merged on CVS check in –
there are no conflicts as each revision is unique to a par-
ticular user (and timestamp); equally, when checking out
an updated lexicon from CVS the new revisions are simply
merged into the database resident on the database server.

6. Additional Database Resources

By moving lexicon development into a lexical database
module we gain the opportunity to take advantage of ad-
ditional database resources. We currently augment the
LexDB by linking to a database which holds detailed lexical
semantics (effectively Minimum Recursion Semantics def-
initions (Copestake et al., 1999)). Among other purposes,
this acts as a data source when performing generation; we
avoid the necessity of a highly resource-intensive batch pro-
cess prior to performing generation on the grammar.

An additional external resource currently in use is a
database of idioms (Villavicencio et al., 2004). This links
idiomatic lexical entries (both simplex and the more com-
plex MWE forms) to extensive data on the meaning (and
foreign language equivalents) of the idioms.

 1113

colon-advp := adv-p-lex-1 &
[SYNSEM.LOCAL
[CAT.HEAD [PTYPE comma],

CONT.RELS <! [PRED ’wa] !>],
ORTH <! ":" !>].

Figure 3: A non-standard lexical entry in textual format

7. Issues
The database module addresses the major maintenance

and efficiency issues outlined in §2. By taking advantage
of the bookkeeping fields and custom tools (§5.) effective
maintenance of large lexica is facilitated. Efficiency issues
such as load time are addressed due to the speed of the
database access operations, and by the opportunity to do
away with the old caching mechanism – caching of lexicon
views can still be worthwhile with a large lexicon, but now
the times involved are less by an order of magnitude than in
the past, and such caching is robust to edits to the lexicon.

But although developing this module was originally
predicted to be a reasonably simple task, a number of is-
sues have arisen. For most users, the requirement to run
a PostgreSQL database server makes it considerably more
difficult to install the LKB; because of this, the old lex-
icon code is still supported. Supporting multiple operat-
ing systems is more complex; we currently only support
the LKB with PostgreSQL under Linux. Source control
becomes considerably more complex. The distinction be-
tween bookkeeping and other information is not completely
clear; for instance, dialect information has clear linguistic
significance but may not need to be encoded in the feature
structures.

The requirement to convert the lexicon to the standard-
ised tuple required for the database is non-trivial for many
grammars, especially for closed class words. Our imple-
mentation thus allows for a hybrid approach, where some
entries are stored in the database while others are repre-
sented in text files as a temporary measure while the lex-
icon is standardised. This standardization may generally
be achieved by moving certain definitions from the lexicon
into the type system; for example the entry shown in Figure
3 (taken from the JACY grammar) can be standardized by
moving the contents of SYNSEM.LOCAL into the type sys-
tem, because the remaining parts of the definition fit into the
‘type’ and ‘orthography’ database fields respectively. This
hybrid approach utilises a hierarchy of lexicons in which
the lexical database forms the main lexicon while additional
lexical sources form sublexica. Since grammar developers
are often adding to or modifying the lexicon at the same
time as the other grammar files, having to access separate
database interface functionality can be a nuisance; hence
the hybrid approach is thus also useful for quick experi-
ments with the lexicon when extending the grammar.

8. Conclusion
This paper has presented a lexical module utilising the

benefits of a database architecture. Such a module is able
to address issues such as lexicon maintenance, lookup and
efficiency which have proven problematic in the past. Al-

though we have based our illustration on a specific GDE
and a specific grammar, the system is sufficiently modular
to extend to alternative GDEs and is currently in use as a
component in the development of multiple large grammars.

Both the LKB system and the ERG grammar are
open source and are downloadable from lingo.stanford.edu.
(A longer version of this paper can be found at
www.cl.cam.ac.uk/users/bmw20.)

9. Acknowledgements
This document was generated partly in the context

of the DeepThought project, funded under the Thematic
Programme User-friendly Information Society of the 5th
Framework Programme of the European Community (Con-
tract No IST-2001-37836).

10. References
Callmeier, Ulrich, 2000. PET. A Platform for Experimenta-

tion with Efficient HPSG Processing Techniques. Jour-
nal of Natural Language Engineering, 6(1):99–108.

Copestake, Ann, 2002. Implementing Typed Feature Struc-
ture Grammars. CSLI Publications, Stanford, USA.

Copestake, Ann and Dan Flickinger, 2000. An open-source
grammar development environment and broad-coverage
English grammar using HPSG. In Proceedings of the
Second conference on Language Resources and Evalu-
ation (LREC-2000). Athens, Greece.

Copestake, Ann, Dan Flickinger, Ivan Sag, and
Carl Pollard, 1999. Minimal Recursion Seman-
tics: An introduction. Unpublished Manuscript
(www.cl.cam.ac.uk/users/aac10/papers/newmrs.pdf).

Copestake, Ann, Fabre Lambeau, Aline Villavicencio,
Francis Bond, Timothy Baldwin, Ivan Sag, and Dan
Flickinger, 2002. Multiword Expressions: Linguistic
Precision and Reusability. In Proceedings of the 4th
International Conference On Language Resources and
Evaluation (LREC-2002). Las Palmas, Canary Islands.

Siegel, Melanie and Emily Bender, 2002. Efficient Deep
Processing of Japanese. In Proceedings of the 3rd
Workshop on Asian Language Resources and Inter-
national Standardization. COLING-02 Post-Conference
Workshop. Kyoto, Japan.

The PostgreSQL Global Development Group, 2003. Post-
greSQL 7.4.1 Documentation. (www.postgresql.org).

Villavicencio, Aline, Timothy Baldwin, and Benjamin Wal-
dron, 2004. A Multilingual Database of Idioms. In Pro-
ceedings of the 4th International Conference On Lan-
guage Resources and Evaluation (LREC-2004). Lisbon,
Portugal.

 1114

