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Abstract
We consider learning formulations with non-convex objective functions that often occur in practical
applications. There are two approaches to this problem:

• Heuristic methods such as gradient descent that only find a local minimum. A drawback of
this approach is the lack of theoretical guarantee showing that the local minimum gives a good
solution.

• Convex relaxation such asL1-regularization that solves the problem under some conditions. How-
ever it often leads to a sub-optimal solution in reality.

This paper tries to remedy the above gap between theory and practice. In particular, we present a
multi-stage convex relaxation scheme for solving problemswith non-convex objective functions.
For learning formulations with sparse regularization, we analyze the behavior of a specific multi-
stage relaxation scheme. Under appropriate conditions, weshow that the local solution obtained by
this procedure is superior to the global solution of the standardL1 convex relaxation for learning
sparse targets.
Keywords: sparsity, non-convex optimization, convex relaxation, multi-stage convex relaxation

1. Introduction

We consider the general regularization framework for machine learning,where a loss function is
minimized, subject to a regularization condition on the model parameter. For manynatural machine
learning problems, either the loss function or the regularization condition canbe non-convex. For
example, the loss function is non-convex for classification problems, and the regularization condi-
tion is non-convex in problems with sparse parameters.

A major difficulty with nonconvex formulations is that the global optimal solution cannot be
efficiently computed, and the behavior of a local solution is hard to analyze.In practice, convex
relaxation (such as support vector machine for classification orL1 regularization for sparse learning)
has been adopted to remedy the problem. The choice of convex formulation makes the solution
unique and efficient to compute. Moreover, the solution is easy to analyze theoretically. That
is, it can be shown that the solution of the convex formulation approximately solves the original
problem under appropriate assumptions. However, for many practical problems, such simple convex
relaxation schemes can be sub-optimal.
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Because of the above gap between practice and theory, it is important to study direct solutions
of non-convex optimization problems beyond the standard convex relaxation. Our goal is to design
a numerical procedure that leads to areproducible solutionwhich is better than the standard convex
relaxation solution. In order to achieve this, we present a general framework of multi-stage con-
vex relaxation, which iteratively refine the convex relaxation formulation to give better solutions.
The method is derived from concave duality, and involves solving a sequence of convex relaxation
problems, leading to better and better approximations to the original nonconvex formulation. It
provides a unified framework that includes some previous approaches (such as LQA Jianqing Fan,
2001, LLA Zou and Li, 2008, CCCP Yuille and Rangarajan, 2003) as special cases. The procedure
itself may be regarded as a special case of alternating optimization, which automatically ensures its
convergence. Since each stage of multi-stage convex relaxation is a convex optimization problem,
the approach is also computationally efficient. Although the method only leads to alocal optimal
solution for the original nonconvex problem, this local solution is a refinement of the global solution
for the initial convex relaxation. Therefore intuitively one expects that thelocal solution is better
than the standard one-stage convex relaxation. In order to prove this observation more rigorously,
we consider least squares regression with nonconvex sparse regularization terms, for which we can
analyze the effectiveness of the multi-stage convex relaxation. It is shown that under appropriate
assumptions, the (local) solution computed by the multi-stage convex relaxation method using non-
convex regularization achieves better parameter estimation performance than the standard convex
relaxation withL1 regularization.

The main contribution of this paper is the analysis of sparse regularized least squares regression
presented in Section 3, where we derive theoretical results showing thatunder appropriate condi-
tions, it is beneficial to use multi-stage convex relaxation with nonconvex regularization as opposed
to the standard convexL1 regularization. This demonstrates the effectiveness of multi-stage convex
relaxation for a specific but important problem. Although without theoreticalanalysis, we shall also
present the general idea of multi-stage convex relaxation in Section 2, because it can be applied to
other potential application examples as illustrated in Appendix C. The gist of our analysis can be
applied to those examples (e.g., the multi-task learning problem in the setting of matrixcompletion,
which has drawn significant attention recently) as well. However, the detailed derivation will be
specific to each application and the analysis will not be trivial. Therefore while we shall present a
rather general form of multi-stage convex relaxation formulation in order tounify various previous
approaches, and put this work in a broader context, the detailed theoretical analysis (and empirical
studies) for other important applications will be left to future work.

2. Multi-stage Convex Relaxation

This section presents the general idea of multi-stage convex relaxation which can be applied to
various optimization problems. It integrates a number of existing ideas into a unified framework.

2.1 Regularized Learning Formulation

The multi-stage convex relaxation approach considered in the paper can be applied to the following
optimization problem, which can be motivated from supervised learning formulation. As back-
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ground information, its connection to regularized learning formula (15) is given in Appendix B.

ŵ =argmin
w

R(w),

R(w) = R0(w)+
K

∑
k=1

Rk(w), (1)

wherew = [w1, . . . ,wd] ∈ R
d is ad-dimensional parameter vector, andR(w) is the general form of

a regularized objective function. Moreover, for convenience, we assume thatR0(w) is convex inw,
and eachRk(w) is non-convex. In the proposed work, we shall employ convex/concave duality to
derive convex relaxations of (1) that can be efficiently solved.

Related to (1), one may also consider the constrained formulation

ŵ = argmin
w

R0(w) subject to
K

∑
k=1

Rk(w) ≤ A, (2)

whereA is a constant. One may also mix (1) and (2).

2.2 Concave Duality

In the following discussion, we consider a single nonconvex componentRk(w) in (1), which we
shall rewrite using concave duality. Lethk(w) : Rd → Ωk ⊂ Rdk be a vector function withΩk being
the convex hull of its range. It may not be a one-to-one map. However, we assume that there exists
a functionR̄k defined onΩk so that we can expressRk(w) as

Rk(w) = R̄k(hk(w)).

Assume that we can findhk so that the functionR̄k(uk) is concave onuk ∈ Ωk. Under this
assumption, we can rewrite the regularization functionRk(w) as:

Rk(w) = inf
vk∈Rdk

[

v⊤k hk(w)−R∗
k(vk)

]

(3)

using concave duality (Rockafellar, 1970). In this case,R∗
k(vk) is the concave dual of̄Rk(uk) given

below
R∗

k(vk) = inf
uk∈Ωk

[

v⊤k uk− R̄k(uk)
]

.

Note that using the convention in convex analysis (Rockafellar, 1970), we may assume thatR∗
k(vk) is

defined onRdk but may take−∞ value. Equivalently, we may consider the subset{vk : R∗
k(vk) >−∞}

as the feasible region of the optimization problem (3), and assume thatR∗
k(vk) is only defined on

this feasible region.
It is well-known that the minimum of the right hand side of (3) is achieved at

v̂k = ∇uR̄k(u)|u=hk(w). (4)

This is the general framework we suggest in the paper. For illustration, some example non-
convex problems encountered in machine learning are included in AppendixC.
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2.3 Penalized Formulation

Let hk(w) be a vector function with convex components, so that (3) holds. Given anappropriate
vectorvk ∈ Rdk, a simple convex relaxation of (1) becomes

ŵ = arg min
w∈Rd

[

R0(w)+
K

∑
k=1

hk(w)⊤vk

]

. (5)

This simple relaxation yields a solution that is different from the solution of (1). However, if each
hk satisfies the condition of Section 2.2, then it is possible to writeRk(w) using (3). Now, with this
new representation, we can rewrite (1) as

[ŵ, v̂] = arg min
w,{vk}

[

R0(w)+
K

∑
k=1

(hk(w)⊤vk−R∗
k(vk))

]

. (6)

This is clearly equivalent to (1) because of (3). If we can find a good approximation ofv̂ = {v̂k} that
improves upon the initial value of̂vk = 1, then the above formulation can lead to a refined convex
problem inw that is a better convex relaxation than (5).

Our numerical procedure exploits the above fact, which tries to improve the estimation ofvk

over the initial choice ofvk = 1 in (5) using an iterative algorithm. This can be done using an
alternating optimization procedure, which repeatedly applies the following two steps:

• First we optimizew with v fixed: this is a convex problem inw with appropriately chosen
h(w).

• Second we optimizev with w fixed: although non-convex, it has a closed form solution that
is given by (4).

Initialize v̂ = 1
Repeat the following two steps until convergence:

• Let

ŵ = argmin
w

[

R0(w)+
K

∑
k=1

hk(w)⊤v̂k

]

. (7)

• Let v̂k = ∇uR̄k(u)|u=hk(ŵ) (k = 1, . . . ,K)

Figure 1: Multi-stage Convex Relaxation Method

The general procedure for solving (6) is presented in Figure 1. It can be regarded as a gen-
eralization of CCCP (concave-convex programming) (Yuille and Rangarajan, 2003), which takes
h(w) = w. It is also more general than LQA (local quadratic approximation) (Jianqing Fan, 2001) or
LLA (local linear approximation) (Zou and Li, 2008). Specifically LQA takesh j(ŵ) = w2

j and LLA
takesh j(ŵ) = |w j |. The justification of those procedures rely on the so-called MM (majorization-
minimization) principle, where an upper bound of the objective function is minimized at each step
(see Zou and Li, 2008 and references therein). However, in order toapply MM, for each particular
choice ofh, one has to demonstrate that the convex relaxation is indeed an upper bound, which is
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necessary to show convergence. In the concave relaxation formulationadopted in this work, the
justification of convergence is automatically embedded in (6), which becomes ajoint optimization
problem. Figure 1 is simply an alternating optimization procedure for solving (6), which is equiva-
lent to (1). Since convex duality of many interesting objective functions (including matrix functions)
are familiar to many machine learning researchers, the concave duality derivation presented here
can be automatically applied to various applications without the need to worry about convergence
justification. This will be especially useful for complex formulations such as structured or matrix
regularization, where the more traditional MM idea cannot be easily applied.One may also regard
our framework as a principled method to design a class of algorithms that may beinterpreted as
MM procedures. Some examples illustrate its applications are presented in Appendix C.

Note that by repeatedly refining the parameterv, we can potentially obtain better and better
convex relaxation in Figure 1, leading to a solution superior to that of the initialconvex relaxation.
Since at each step the procedure decreases the objective function in (6), its convergence to a local
minimum is easy to show. In fact, in order to achieve convergence, one onlyneeds to approximately
minimize (7) and reasonably decrease the objective value at each step. Weskip the detailed analysis
here, because in the general case, a local solution is not necessarily agood solution, and there
are other approaches (such as gradient descent) that can compute a local solution. In order to
demonstrate the effectiveness of multi-stage convex relaxation, we shall include a more careful
analysis for the special case of sparse regularization in Section 3.1. Ourtheory shows that the local
solution of multi-stage relaxation with a nonconvex sparse regularizer is superior to the convexL1

regularization solution (under appropriate conditions).

2.4 Constrained Formulation

The multi-stage convex relaxation idea can also be used to solve the constrained formulation (2).
The one-stage convex relaxation of (2), given fixed relaxation parametervk, becomes

ŵ = arg min
w∈Rd

R0(w) subject to
K

∑
k=1

hk(w)⊤vk ≤ A+
K

∑
k=1

R∗
k(vk).

Because of (3), the above formulation is equivalent to (2) if we optimize over v. This means that by
optimizingv in addition tow, we obtain the following algorithm:

• Initialize v̂ = 1

• Repeat the following two steps until convergence:

– Let

ŵ = argmin
w

R0(w) subject to
K

∑
k=1

hk(w)⊤v̂k ≤ A+
K

∑
k=1

R∗
k(v̂k).

– Let v̂k = ∇uR̄k(u)|u=hk(ŵ) (k = 1, . . . ,K)

If an optimization problem includes both nonconvex penalization and nonconvex constrains,
then one may use the above algorithm with Figure 1.
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3. Multi-stage Convex Relaxation for Sparse Regularization

The multi-stage convex relaxation method described in the previous section tries to obtain better
approximations of the original nonconvex problem by refining the convexrelaxation formulation.
Since the local solution found by the algorithm is the global solution of a refined convex relaxation
formulation, it should be closer to the desired solution than that of the standard one-stage convex
relaxation method. Although this high level intuition is appealing, it is still necessarily to present a
more rigorous theoretical result which can precisely demonstrate the advantage of the multi-stage
approach over the standard single stage method. Unless we can develop atheory to show the effec-
tiveness of the multi-stage procedure in Figure 1, our proposal is yet another local minimum finding
scheme that may potentially get stuck at a bad local solution.

In order to obtain some strong theoretical results that can demonstrate the advantage of the
multi-stage approach, we consider the special case of sparse learning.This is because this problem
has been well-studied in recent years, and the behavior of convex relaxation (L1 regularization) is
well-understood.

3.1 Theory of Sparse Regularization

For a non-convex but smooth regularization condition such as capped-L1 or smoothed-Lp with
p ∈ (0,1), standard numerical techniques such as gradient descent lead to a local minimum so-
lution. Unfortunately, it is difficult to find the global optimum, and it is also difficult to analyze the
quality of the local minimum. Although in practice, such a local minimum solution may outperform
the Lasso solution, the lack of theoretical (and practical) performance guarantee prevents the more
wide-spread applications of such algorithms. As a matter of fact, results with non-convex regu-
larization are difficult to reproduce because different numerical optimization procedures can lead
to different local minima. Therefore the quality of the solution heavily dependon the numerical
procedure used.

The situation is very different for a convex relaxation formulation such asL1-regularization
(Lasso). The global optimum can be easily computed using standard convex programming tech-
niques. It is known that in practice, 1-norm regularization often leads to sparse solutions (although
often suboptimal). Moreover, its performance has been theoretically analyzed recently. For exam-
ple, it is known from the compressed sensing literature that under certain conditions, the solution of
L1 relaxation may be equivalent toL0 regularization asymptotically (e.g., Candes and Tao, 2005). If
the target is truly sparse, then it was shown in Zhao and Yu (2006) that under some restrictive con-
ditions referred to asirrepresentable conditions, 1-norm regularization solves the feature selection
problem. The prediction performance of this method has been considered inKoltchinskii (2008),
Zhang (2009a), Bickel et al. (2009) and Bunea et al. (2007).

In spite of its success,L1-regularization often leads to suboptimal solutions because it is not a
good approximation toL0 regularization. Statistically, this means that even though it converges to
the true sparse target whenn → ∞ (consistency), the rate of convergence can be suboptimal. The
only way to fix this problem is to employ a non-convex regularization condition that is closer to
L0 regularization. In the following, we formally prove a result for multi-stage convex relaxation
with non-convex sparse regularization that is superior to the Lasso result. In essence, we establish
a performance guarantee for non-convex formulations when they are solved by using the multi-
stage convex relaxation approach which is more sophisticated than the standard one-stage convex
relaxation.
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In supervised learning, we observe a set of input vectorsx1, . . . ,xn ∈ Rd, with corresponding
desired output variablesy1, . . . ,yn. In general, we may assume that there exists a targetw̄ ∈ Rd such
that

yi = w̄⊤xi + εi (i = 1, . . . ,n), (8)

whereεi are zero-mean independent random noises (but not necessarily identically distributed).
Moreover, we assume that the target vectorw̄ is sparse. That is, there existsk̄ = ‖w̄‖0 is small. This
is the standard statistical model for sparse learning.

Let y denote the vector of[yi ] andX be then× d matrix with each row a vectorxi . We are
interested in recoverinḡw from noisy observations using the following sparse regression method:

ŵ = argmin
w

[

1
n
‖Xw−y‖2

2 +λ
d

∑
j=1

g(|w j |)
]

, (9)

whereg(|w j |) is a regularization function. Here we require thatg′(u) is non-negative which means
we penalize largerumore significantly. Moreover, we assumeu1−qg′(u) is a non-increasing function
when u > 0, which means that[g(|w1|), . . . ,g(|wd|)] is concave with respect toh(w) =
[|w1|q, . . . , |wd|q] for someq ≥ 1. It follows that (9) can be solved using the multi-stage convex
relaxation algorithm in Figure 2, which we will analyze. Although this algorithm was mentioned in
Zou and Li (2008) as LLA whenq = 1, they only presented a one-step low-dimensional asymptotic
analysis. We present a true multi-stage analysis in high dimension. Our analysis also focuses on
q = 1 (LLA) for convenience because the Lasso analysis in Zhang (2009a) can be directly adapted;
however in principle, one can also analyze the more general case ofq > 1.

Initialize λ(0)
j = λ for j = 1, . . . ,d

For ℓ = 1,2, . . .

• Let

ŵ(ℓ) = arg min
w∈Rd

[

1
n
‖Xw−y‖2

2 +
d

∑
j=1

λ(ℓ−1)
j |w j |q

]

. (10)

• Let λ(ℓ)
j = λq−1|ŵ j |1−qg′(|ŵ(ℓ)

j |) ( j = 1, . . . ,d)

Figure 2: Multi-stage Convex Relaxation for Sparse Regularization

For convenience, we consider fixed design only, whereX is fixed and the randomness is with
respect toy only. We require some technical conditions for our analysis. First we assume sub-
Gaussian noise as follows.

Assumption 3.1 Assume that{εi}i=1,...,n in (8) are independent (but not necessarily identically
distributed) sub-Gaussians: there existsσ ≥ 0 such that∀i and∀t ∈ R,

Eεi e
tεi ≤ eσ2t2/2.

Both Gaussian and bounded random variables are sub-Gaussian usingthe above definition. For
example, if a random variableξ ∈ [a,b], then Eξet(ξ−Eξ) ≤ e(b−a)2t2/8. If a random variable is

Gaussian:ξ ∼ N(0,σ2), thenEξetξ ≤ eσ2t2/2.
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We also introduce the concept of sparse eigenvalue, which is standard inthe analysis ofL1

regularization.

Definition 1 Given k, define

ρ+(k) =sup

{

1
n
‖Xw‖2

2/‖w‖2
2 : ‖w‖0 ≤ k

}

,

ρ−(k) = inf

{

1
n
‖Xw‖2

2/‖w‖2
2 : ‖w‖0 ≤ k

}

.

Our main result is stated as follows. The proof is in the appendix.

Theorem 2 Let Assumption 3.1 hold. Assume also that the targetw̄ is sparse, withEyi = w̄⊤xi ,
andk̄ = ‖w̄‖0. Chooseλ such that

λ ≥ 20σ
√

2ρ+(1) ln(2d/η)/n.

Assume that g′(z) ≥ 0 is a non-increasing function such that g′(z) = 1 when z≤ 0. Moreover, we
require that g′(θ) ≥ 0.9 with θ = 9λ/ρ−(2k̄+s). Assume thatρ+(s)/ρ−(2k̄+2s) ≤ 1+0.5s/k̄ for
some s≥ 2k̄, then with probability larger than1−η:

‖ŵ(ℓ)− w̄‖2 ≤
17

ρ−(2k̄+s)

[

2σ
√

ρ+(k̄)

(

√

7.4k̄/n+
√

2.7ln(2/η)/n

)

+λ

(

∑
j:w̄ j 6=0

g′(|w̄ j |−θ)2

)1/2


+0.7ℓ 10

ρ−(2k̄+s)

√

k̄λ,

whereŵ(ℓ) is the solution of (10) with q= 1.

Note that the theorem allows the situationd ≫ n, which is what we are interested in. This
is the first general analysis of multi-stage convex relaxation for high dimensional sparse learning,
although some simpler asymptotic results for low dimensional two-stage procedures were obtained
in Zou (2006) and Zou and Li (2008), they are not comparable to ours.

Results most comparable to what we have obtained here are that of the FoBaprocedure in
Zhang (2009b) and that of the MC+ procedure in Zhang (2010). The former is a forward backward
greedy algorithm, which does not optimize (9), while the latter is a path-followingalgorithm for
solving (9). Although results in Zhang (2010) are comparable to ours, weshould note that efficient
path-following computation in MC+ requires specialized regularizersg(·). Moreover, unlike our
procedure, which is efficient because of convex optimization, there is noproof showing that the
path-following strategy in Zhang (2010) is always efficient (in the sensethat there may be expo-
nentially many switching points). However, empirical experience in Zhang (2010) does indicate its
efficiency for a class of regularizers that can be relatively easily handled by path-following. There-
fore we are not claiming here that our approach will always be superiorto Zhang (2010) in practice.
Nevertheless, our result suggests that different local solution procedures can be used to solve the
same nonconvex formulation with valid theoretical guarantees. This opens the door for additional
theoretical studies of other numerical procedures.

The conditionρ+(s)/ρ−(2k̄+ 2s) ≤ 1+ 0.5s/k̄ requires the eigenvalue ratioρ+(s)/ρ−(s) to
grow sub-linearly ins. Such a condition, referred to assparse eigenvalue condition, is also needed in
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the standard analysis ofL1 regularization (Zhang and Huang, 2008; Zhang, 2009a). It is relatedbut
weaker than therestricted isometry property(RIP) in compressive sensing (Candes and Tao, 2005).
Note that in the traditional low-dimensional statistical analysis, one assumes that ρ+(s)/ρ−(2k̄+
2s) < ∞ as s→ ∞, which is significantly stronger than the condition we use here. Although in
practice it is often difficult to verify the sparse eigenvalue condition for real problems, Theorem 2
nevertheless provides important theoretical insights for multi-stage convexrelaxation.

Since in standard Lasso,g′(|w j |) ≡ 1, we obtain the following bound from Theorem 2

‖ŵL1 − w̄‖2 = O(
√

kλ),

whereŵL1 is the solution of the standardL1 regularization. This bound is tight for Lasso, in the sense
that the right hand side cannot be improved except for the constant—this can be easily verified with
an orthogonal design matrix. It is known that in order for Lasso to be effective, one has to pickλ no
smaller than the orderσ

√

lnd/n. Therefore, the parameter estimation error of the standard Lasso is
of the orderσ

√

k̄ lnd/n, which cannot be improved.
In comparison, if we consider an appropriate regularization conditiong(|w j |) that is concave in

|w j |. Sinceg′(|w j |)≈ 0 when|w j | is large, the bound in Theorem 2 can be significantly better when
most non-zero coefficients of̄w are relatively large in magnitude. For example, consider the capped-
L1 regularizerg(|w j |) = min(α, |w j |) with α ≥ θ; in the extreme case where minj |w j | > α + θ
(which can be achieved when all nonzero components ofw̄ are larger than the orderσ

√

lnd/n), we
obtain the better bound

‖ŵ(ℓ)− w̄‖2 = O(
√

k̄/n+
√

ln(1/η)/n)

for the multi-stage procedure for a sufficiently largeℓ at the order of ln lnd. This bound is superior
to the standard one-stageL1 regularization bound‖ŵL1 − w̄‖2 = O(

√

k̄ ln(d/η)/n), which is tight
for Lasso. The difference can be significant when lnd is large.

Generally speaking, with a regularization conditiong(|w j |) that is concave in|w j |, the depen-
dency onλ is throughg′(|w̄ j |) which decreases as|w̄ j | increases. This removes the bias of the Lasso
and leads to improved performance. Specifically, ifw̄ j is large, theng′(|w̄ j |) ≈ 0. In comparison,
the Lasso bias is due to the fact thatg′(|w̄ j |)≡ 1. For illustration, the derivativeg′(·) of some sparse
regularizers are plotted in Figure 3.

Note that our theorem only applies to regularizers with finite derivative at zero. That is,g′(0) <
∞. The result doesn’t apply toLp regularization withp < 1 becauseg′(0) = ∞. Although a weaker
result can be obtained for such regularizers, we do not include it here. We only include an intuitive
example below to illustrate why the conditiong′(0) < ∞ is necessary for stronger results presented in
the paper. Observe that the multi-stage convex relaxation method only computes a local minimum,
and the regularization update rule is given byλ(ℓ−1)

j = g′(ŵ(ℓ−1)
j ). If g′(0) = ∞, thenλ(ℓ−1)

j = ∞
when ŵ(ℓ−1)

j = 0. This means that if a feature accidentally becomes zero in some stage, it will
always remain zero. This is why only weaker results can be obtained forLp regularizers (p < 1):

we need to further assume thatŵ(ℓ)
j never becomes close to zero whenw̄ j 6= 0. A toy example is

presented in Table 1 to demonstrate this point. The example is a simulated regression problem with
d = 500 variables andn = 100 training data. The first five variables of the targetw̄ are non-zeros,
and the remaining variables are zeros. For both capped-L1 andLp regularizers, the first stage is the
standardL1 regularization, which misses the correct feature #2 and wrongly selects some incorrect
ones. For capped-L1 regularization, in the second stage, because most correct features are identified,
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Figure 3: Derivativeg′(|w j |) of some sparse regularizers

Stageℓ coefficients ‖ŵ(ℓ)− w̄‖2

multi-stage capped-L1

1 [6.0,0.0,4.7,4.8,3.9,0.6,0.7,1.2,0.0, . . .] 4.4
2 [7.7,0.4,5.7,6.3,5.7,0.0,0.0,0.2,0.0, . . .] 1.6
3 [7.8,1.2,5.7,6.6,5.7,0.0,0.0,0.0,0.0, . . .] 0.98
4 [7.8,1.2,5.7,6.6,5.7,0.0,0.0,0.0,0.0, . . .] 0.98

multi-stageL0.5

1 [6.0,0.0,4.7,4.8,3.9,0.6,0.7,1.2,0.0, . . .] 4.4
2 [7.3,0.0,5.4,5.9,5.3,0.0,0.3,0.3,0.0,0.0, . . .] 2.4
3 [7.5,0.0,5.6,6.1,5.7,0.0,0.1,0.0,0.0,0.0, . . .] 2.2
4 [7.5,0.0,5.6,6.2,5.7,0.0,0.1,0.0,0.0,0.0, . . .] 2.1

targetw̄ [8.2,1.7,5.4,6.9,5.7,0.0,0.0,0.0,0.0, . . .]

Table 1: An Illustrative Example for Multi-stage Sparse Regularization

the corresponding “bias” is reduced by not penalizing the corresponding variables. This leads to
improved performance. Since the correct feature #2 shows up in stage 2, we are able to identify
it and further improve the convex relaxation in stage 3. After stage 3, the procedure stabilizes
because it computes exactly the same relaxation. ForLp regularization, since feature #2 becomes

zero in stage 1, it will remain zero thereafter becauseλ(ℓ)
2 = ∞ whenℓ ≥ 1. In order to remedy this

problem, one has to use a regularizer withg′(0) < ∞ such as the smoothedLp regularizer.
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3.2 Empirical Study

Although this paper focuses on the development of the general multi-stage convex relaxation frame-
work as well as its theoretical understanding (in particular the major result given in Theorem 2), we
include two simple numerical examples to verify our theory. More comprehensive empirical com-
parisons can be found in other related work such as Candes et al. (2008), Zou (2006) and Zou and
Li (2008).

In order to avoid cluttering, we only present results with capped-L1 andLp (p = 0.5) regular-
ization methods. Note that based on Theorem 2, we may tuneα in capped-L1 by using a formula
α = α0λ whereλ is the regularization parameter. We chooseα0 = 10 andα0 = 100.

In the first experiment, we generate ann×d random matrix with its columnj corresponding
to [x1, j , . . . ,xn, j ], and each element of the matrix is an independent standard GaussianN(0,1). We
then normalize its columns so that∑n

i=1x2
i, j = n. A truly sparse target̄β, is generated withk nonzero

elements that are uniformly distributed from[−10,10]. The observationyi = β̄⊤xi + εi , where each
εi ∼ N(0,σ2). In this experiment, we taken = 50,d = 200,k = 5,σ = 1, and repeat the experiment
100 times. The average training error and 2-norm parameter estimation error are reported in Fig-
ure 4. We compare the performance of multi-stage methods with different regularization parameter
λ. As expected, the training error for the multi-stage algorithms are smaller than that of L1, due
to the smaller bias. Moreover, substantially smaller parameter estimation error is achieved by the
multi-stage procedures, which is consistent with Theorem 2. This can be regarded as an empirical
verification of the theoretical result.

Figure 4: Performance of multi-stage convex relaxation on simulation data. Left: average training
squared error versusλ; Right: parameter estimation error versusλ.

In the second experiment, we use theBoston Housingdata to illustrate the effectiveness of
multi-stage convex relaxation. This data set contains 506 census tracts of Boston from the 1970
census, available from theUCI Machine Learning Database Repository: http://archive.ics.
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uci.edu/ml/. Each census tract is a data-point, with 13 features (we add a constant offset on e as
the 14th feature), and the desired output is the housing price. In this example, we randomly partition
the data into 20 training plus 486 test points. We perform the experiments 100 times, and report
training and test squared error versus the regularization parameterλ for differentq. The results are
plotted in Figure 5. In this case,L0.5 is not effective, while capped-L1 regularization withα = 100λ
is slightly better than Lasso. Note that this data set contains only a small number (d = 14) features,
which is not the case where we can expect significant benefit from the multi-stage approach (most of
other UCI data similarly contain only small number of features). In order to illustrate the advantage
of the multi-stage method more clearly, we also report results on a modified Boston Housing data,
where we append 20 random features (similar to the simulation experiments) to the original Boston
Housing data, and rerun the experiments. The results are shown in Figure6. As expected from
Theorem 2 and the discussion thereafter, sinced becomes large, the multi-stage convex relaxation
approach with capped-L1 regularization andL0.5 regularization perform significantly better than the
standard Lasso.

Figure 5: Performance of multi-stage convex relaxation on the original Boston Housing data. Left:
average training squared error versusλ; Right: test squared error versusλ.

4. Discussion

Many machine learning applications require solving nonconvex optimization problems. There are
two approaches to this problem:

• Heuristic methods such as gradient descent that only find a local minimum. A drawback of
this approach is the lack of theoretical guarantee showing that the local minimum gives a
good solution.
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Figure 6: Performance of multi-stage convex relaxation on the modified Boston Housing data. Left:
average training squared error versusλ; Right: test squared error versusλ.

• Convex relaxation such asL1-regularization that solves the problem under some conditions.
However it often leads to a sub-optimal solution in reality.

The goal of this paper is to remedy the above gap between theory and practice. In particular, we
investigated a multi-stage convex relaxation scheme for solving problems with non-convex objective
functions. The general algorithmic technique is presented first, which canbe applied to a wide range
of problems. It unifies a number of earlier approaches. The intuition is to refine convex relaxation
iteratively by using solutions obtained from earlier stages. This leads to better and better convex
relaxation formulations, and thus better and better solutions.

Although the scheme only finds a local minimum, the above argument indicates thatthe local
minimum it finds should be closer to the original nonconvex problem than the standard convex
relaxation solution. In order to prove the effectiveness of this approach theoretically, we considered
the sparse learning problem where the behavior of convex relaxation (Lasso) has been well studied
in recent years. We showed that under appropriate conditions, the local solution from the multi-stage
convex relaxation algorithm is superior to the global solution of the standardL1 convex relaxation
for learning sparse targets. Experiments confirmed the effectiveness of this method.

We shall mention that our theory only shows that nonconvex regularizationbehaves better than
Lasso under appropriate sparse eigenvalue conditions. When such conditions hold, multi-stage con-
vex relaxation is superior. On the other hand, when such conditions fail, neither Lasso nor (the
local solution of) multi-stage convex relaxation can be shown to work well. However, in such case,
some features will become highly correlated, and local solutions of non-convex formulations may
become unstable. In order to improve stability, it may be helpful to employ ensemble methods such
as bagging. Our empirical experience suggests that when features arehighly correlated, convex
formulations may perform better than (non-bagged) nonconvex formulations due to the added sta-
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bility. However, since our analysis doesn’t yield any insights in this scenario, further investigation
is necessary to theoretically compare convex formulations to bagged nonconvex formulations.

Finally, multi-stage convex relaxation is not the only numerical method that can solve noncon-
vex formulations with strong theoretical guarantee. For example, the MC+ procedure in Zhang
(2010) offers a different method with similar guarantee. This opens the possibility of investigating
other local solution methods for nonconvex optimization such as modified gradient descent algo-
rithms that may be potentially more efficient.

Appendix A. Proof of Theorem 2

The analysis is an adaptation of Zhang (2009a). We first introduce some definitions. Consider the
positive semi-definite matrixA = n−1X⊤X ∈ R

d×d. Givens,k ≥ 1 such thats+ k ≤ d. Let I ,J be
disjoint subsets of{1, . . . ,d} with k andselements respectively. LetAI ,I ∈ Rk×k be the restriction of
A to indicesI , AI ,J ∈ Rk×s be the restriction ofA to indicesI on the left andJ on the right. Similarly
we define restrictionwI of a vectorw ∈ Rd on I ; and for convenience, we allow eitherwI ∈ Rk or
wI ∈ Rd (where components not inI are zeros) depending on the context.

We also need the following quantity in our analysis:

π(k,s) = sup
v∈Rk,u∈Rs,I ,J

v⊤AI ,Ju‖v‖2

v⊤AI ,I v‖u‖∞
.

The following two lemmas are taken from Zhang (2009a). We skip the proof.

Lemma 3 The following inequality holds:

π(k,s) ≤ s1/2

2

√

ρ+(s)/ρ−(k+s)−1,

Lemma 4 Consider k,s> 0 and G⊂ {1, . . . ,d} such that|Gc| = k. Given anyw ∈ Rd. Let J be the
indices of the s largest components ofwG (in absolute values), and I= Gc∪J. Then

max(0,w⊤
I Aw) ≥ ρ−(k+s)(‖wI‖2−π(k+s,s)‖wG‖1/s)‖wI‖2.

The following lemma gives bounds for sub-Gaussian noise needed in our analysis.

Lemma 5 Defineε̂ = 1
n ∑n

i=1(w̄
⊤xi −yi)xi . Under the conditions of Assumption 3.1, with probabil-

ity larger than1−η:
‖ε̂‖2

∞ ≤ 2σ2ρ+(1) ln(2d/η)/n. (11)

Moreover, for any fixed F, with probability larger than1−η:

‖ε̂F‖2
2 ≤ ρ+(|F|)σ2[7.4|F|+2.7ln(2/η)]/n. (12)

Proof The proof relies on two propositions. The first proposition is a simple application of large
deviation bound for sub-Gaussian random variables.

Proposition 6 Consider a fixed vectoru = [u1, . . . ,un]∈R
n, and a random vectory = [y1, . . . ,yn]∈

R
n with independent sub-Gaussian components:Eet(yi−Eyi) ≤ eσ2t2/2 for all t and i, then∀ε > 0:

Pr
(∣

∣

∣
u⊤(y−Ey)

∣

∣

∣
≥ ε
)

≤ 2e−ε2/(2σ2‖u‖2
2).
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Proof (of Proposition 6). Let sn = ∑n
i=1ui(yi − Eyi); then by assumption,

E(etsn + e−tsn) ≤ 2e∑i u
2
i σ2t2/2, which implies that Pr(|sn| ≥ ε)etε ≤ 2e∑i u

2
i σ2t2/2. Now let

t = ε/(∑i u
2
i σ2), we obtain the desired bound.

The second proposition is taken from Pisier (1989).

Proposition 7 Consider the unit sphere Sk−1 = {u : ‖u‖2 = 1} in R
k (k≥ 1). Given anyε > 0, there

exists anε-cover Q⊂ Sk−1 such thatminq∈Q‖u−q‖2 ≤ ε for all ‖u‖2 = 1, with |Q| ≤ (1+2/ε)k.

Now are are ready to prove (11). Letxi, j be the j-th component ofxi , then by definition, we
have∑n

i=1x2
i, j ≤ nρ+(1) for all j = 1, . . . ,d. It follows from Proposition 6 that for allε > 0 and j:

Pr(|ε̂ j | ≥ ε) ≤ 2e−nε2/(2σ2ρ+(1)). Taking union bound forj = 1, . . . ,d, we obtain Pr(‖ε̂‖∞ ≥ ε) ≤
2de−nε2/(2σ2ρ+(1)), which is equivalent to (11).

Next we are ready to prove (12). LetP be the projection matrix to the column spanned byXF ,
and letk be the dimension ofP, thenk≤ |F|.

According to Proposition 7, givenε1 > 0, there exists a finite setQ= {qi} with |Q| ≤ (1+2/ε1)
k

such that‖Pqi‖2 = 1 for all i, and mini ‖Pz−Pqi‖2 ≤ ε1 for all ‖Pz‖2 = 1. To see the existence of
Q, we consider a rotation of the coordinate system (which does not change2-norm) so thatPz is the
projection ofz∈ R

n to its firstk coordinates in the new coordinate system. Proposition 7 can now
be directly applied to the firstk coordinates in the new system, implying that we can pickqi such
thatPqi = qi .

For eachi, Proposition 6 implies that∀ε2 > 0:

Pr
(∣

∣

∣
q⊤i P(y−Ey)

∣

∣

∣
≥ ε2

)

≤ 2e−ε2
2/(2σ2).

Taking union bound for allqi ∈ Q, we obtain with probability exceeding 1−2(1+2/ε1)
ke−ε2

2/2σ2
:

∣

∣

∣
q⊤i P(y−Ey)

∣

∣

∣
≤ ε2

for all i.
Let z = P(y−Ey)/‖P(y−Ey)‖2, then there existsi such that‖Pz−Pqi‖2 ≤ ε1. We have

‖P(y−Ey)‖2 =z⊤P(y−Ey)

≤‖Pz−Pqi‖2‖P(y−Ey)‖2 + |q⊤i P(y−Ey)|
≤ε1‖P(y−Ey)‖2 + ε2.

Therefore
‖P(y−Ey)‖2 ≤ ε2/(1− ε1).

Let ε1 = 2/15, andη = 2(1+2/ε1)
ke−ε2

2/2σ2
, we have

ε2
2 = 2σ2[(4k+1) ln2− lnη],

and thus

ρ+(|F|)−1/2‖ε̂F‖2 =ρ+(|F|)−1/2‖X⊤
F (y−Ey)‖2

≤‖P(y−Ey)‖2 ≤
15
13

σ
√

2(4k+1) ln2−2lnη.
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This simplifies to the desired bound.

Lemma 8 Considerw̄ such that{ j : w̄ j 6= 0} ⊂ F and F∩G = /0. Let ŵ = ŵ(ℓ) be the solution of

(10) with q= 1, and let∆ŵ = ŵ− w̄. LetλG = min j∈G λ(ℓ−1)
j andλ0 = maxj λ(ℓ−1)

j . Then

∑
j∈G

|ŵ j | ≤
2‖ε̂‖∞

λG−2‖ε̂‖∞
∑

j /∈F∪G

|ŵ j |+
2‖ε̂‖∞ +λ0

λG−2‖ε̂‖∞
∑
j∈F

|∆ŵ j |.

Proof For simplicity, letλ j = λ(ℓ−1)
j . The first order equation implies that

1
n

n

∑
i=1

2(x⊤i w−yi)xi, j +λ jsgn(w j) = 0,

where sgn(w j) = 1 whenw j > 0, sgn(w j) =−1 whenw j < 0, and sgn(w j) ∈ [−1,1] whenw j = 0.
This implies that for allv ∈ R

d, we have

2v⊤A∆ŵ ≤−2v⊤ε̂−
d

∑
j=1

λ jv jsgn(ŵ j). (13)

Now, letv = ∆ŵ in (13), we obtain

0≤2∆ŵ⊤A∆ŵ ≤ 2|∆ŵ⊤ε̂|−
d

∑
j=1

λ j∆ŵ jsgn(ŵ j)

≤2‖∆ŵ‖1‖ε̂‖∞ − ∑
j∈F

λ j∆ŵ jsgn(ŵ j)− ∑
j /∈F

λ j∆ŵ jsgn(ŵ j)

≤2‖∆ŵ‖1‖ε̂‖∞ + ∑
j∈F

λ j |∆ŵ j |− ∑
j /∈F

λ j |ŵ j |

≤ ∑
j∈G

(2‖ε̂‖∞ −λG)|ŵ j |+ ∑
j /∈G∪F

2‖ε̂‖∞|ŵ j |+ ∑
j∈F

(2‖ε̂‖∞ +λ0)|∆ŵ j |.

By rearranging the above inequality, we obtain the desired bound.

Lemma 9 Using the notations of Lemma 8, and let J be the indices of the largest s coefficients (in
absolute value) of̂wG. Let I = Gc∪J and k= |Gc|. If (λ0 +2‖ε̂‖∞)/(λG−2‖ε̂‖∞) ≤ 3, then

‖∆ŵ‖2 ≤ (1+(3k/s)0.5)‖∆ŵI‖2.

Proof Using(λ0 +2‖ε̂‖∞)/(λG−2‖ε̂‖∞) ≤ 3, we obtain from Lemma 8

‖ŵG‖1 ≤ 3‖∆ŵ− ŵG‖1.

Therefore‖∆ŵ−∆ŵI‖∞ ≤ ‖∆ŵG‖1/s≤ 3‖∆ŵ− ŵG‖1/s, which implies that

‖∆ŵ−∆ŵI‖2 ≤(‖∆ŵ−∆ŵI‖1‖∆ŵ−∆ŵI‖∞)1/2

≤31/2‖∆ŵ− ŵG‖1s−1/2 ≤ (3k/s)1/2‖∆ŵI‖2.
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By rearranging this inequality, we obtain the desired bound.

Lemma 10 Let the conditions of Lemma 8 hold, and let k= |Gc|. If t = 1−π(k+s,s)k1/2s−1 > 0,
and(λ0 +2‖ε̂‖∞)/(λG−2‖ε̂‖∞) ≤ (4− t)/(4−3t), then

‖∆ŵ‖2 ≤
1+(3k/s)0.5

tρ−(k+s)



2‖ε̂Gc‖2 +

(

∑
j∈F

(λ(ℓ−1)
j )2

)1/2


 .

Proof Let J be the indices of the largests coefficients (in absolute value) of̂wG, andI = Gc∪ J.
The conditions of the lemma imply that

max(0,∆ŵ⊤
I A∆ŵ) ≥ρ−(k+s)[‖∆ŵI‖2−π(k+s,s)‖ŵG‖1/s]‖∆ŵI‖2

≥ρ−(k+s)[1− (1− t)(4− t)(4−3t)−1]‖∆ŵI‖2
2

≥0.5tρ−(k+s)‖∆ŵI‖2
2.

In the above derivation, the first inequality is due to Lemma 4; the second inequality is due to the
conditions of this lemma plus Lemma 8, which implies that

‖ŵG‖1 ≤ 2
‖ε̂‖∞ +λ0

λG−2‖ε̂‖∞
‖ŵGc‖1 ≤

‖ε̂‖∞ +λ0

λG−2‖ε̂‖∞

√
k‖ŵI‖2;

and the last inequality follows from 1− (1− t)(4− t)(4−3t)−1 ≥ 0.5t.
If ∆ŵ⊤

I Â∆ŵ≤ 0, then the above inequality, together with Lemma 9, imply the lemma. Therefore
in the following, we can assume that

∆ŵ⊤
I A∆ŵ ≥ 0.5tρ−(k+s)‖∆ŵI‖2

2.

Moreover, letλ j = λ(ℓ−1)
j . We obtain from (13) withv = ∆ŵI the following:

2∆ŵ⊤
I Â∆ŵ ≤−2∆ŵ⊤

I ε̂−∑
j∈I

λ j∆ŵ jsgn(ŵ j)

≤2‖∆ŵI‖2‖ε̂Gc‖2 +2‖ε̂G‖∞ ∑
j∈G

|∆ŵ j |+ ∑
j∈F

λ j |∆ŵ j |− ∑
j∈G

λ j |∆ŵ j |

≤2‖∆ŵI‖2‖ε̂Gc‖2 +(∑
j∈F

λ2
j )

1/2‖∆ŵI‖2,

whereλ j ≥ λG ≥ 2‖ε̂G‖∞ is used to derive the last inequality. Now by combining the above two
estimates, we obtain

‖∆ŵI‖2 ≤
1

tρ−(k+s)

[

2‖ε̂Gc‖2 +(∑
j∈F

λ2
j )

1/2

]

.

The desired bound now follows from Lemma 9.
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Lemma 11 Consider g(·) that satisfies the conditions of Theorem 2. Letλ j = λg′(|w̃ j |) for some
w̃ ∈ Rd, then

(

∑
j∈F

λ2
j

)1/2

≤ λ

(

∑
j∈F

g′(|w̄ j |−θ)2

)1/2

+λθ−1

(

∑
j∈F

|w̄ j − w̃ j |2
)1/2

.

Proof By assumption, if|w̄ j − w̃ j | ≥ θ, then

g′(|w̃ j |) ≤ 1≤ θ−1|w̄ j − w̃ j |;

otherwise,g′(|w̃ j |) ≤ g′(|w̄ j |−θ). It follows that the following inequality always holds:

g′(|w̃ j |) ≤ g′(|w̄ j |−θ)+θ−1|w̄ j − w̃ j |.

The desired bound is a direct consequence of the above result and the2-norm triangle inequality
(∑ j(x j +∆x j)

2)1/2 ≤ (∑ j x
2
j )

1/2 +(∑ j ∆x2
j )

1/2.

Lemma 12 Under the conditions of Theorem 2, we have for all s≥ 2k̄:

‖ŵ(ℓ)− w̄‖2 ≤
7

ρ−(2k̄+s)

√

|F|λ.

Proof Let t = 0.5, then using Lemma 5, the condition of the theorem implies that

λ+2‖ε̂‖∞

λg′(θ)−2‖ε̂‖∞
≤ 4− t

4−3t
.

Moreover, Lemma 3 implies that the condition

t = 0.5≤ 1−π(2k̄+s,s)(2k̄)0.5/s

is also satisfied.
Now, if we assume that at someℓ ≥ 1 that

|Gc
ℓ| ≤ 2k̄, whereGℓ = { j /∈ F : λ(ℓ−1)

j ≥ λg′(θ)}, (14)

then we can obtain from Lemma 10 that

‖ŵ(ℓ)− w̄‖2 ≤
1+

√
3

tρ−(2k̄+s)

[

2
√

|Gc
ℓ|‖ε̂‖∞ +

√

|F |λ
]

≤ 3.2

tρ−(2k̄+s)

√

|F|λ,

where we have used the fact that|Gc
ℓ| ≤ 2k̄ ≤ 2|F| andλ ≥ 20‖ε̂‖∞ in the derivation of the second

inequality. This shows that (14) implies the lemma.
Therefore next we only need to prove by induction onℓ that (14) holds for allℓ = 1,2, . . .. When

ℓ = 1, we haveG1 = Fc, which implies that (14) holds.
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Now assume that (14) holds atℓ−1 for someℓ > 1. Since j ∈ Gc
ℓ −F implies that j /∈ F and

λg′(|ŵ(ℓ−1)
j |) = λ(ℓ)

j < λg′(θ) by definition, and sinceg′(z) is non-increasing whenz≥ 0 (theorem

assumption), we know that|ŵ(ℓ−1)
j | ≥ θ. Therefore by induction hypothesis we obtain

√

|Gc
ℓ −F | ≤

√

∑
j∈Gc

ℓ−F

|ŵ(ℓ−1)
j |2/θ2 ≤ ‖ŵ(ℓ−1)− w̄‖2

θ

≤ 7λ
ρ−(2k̄+s)θ

√

|F| ≤
√

|F|,

where the second to the last inequality is due to the fact that (14) implies the lemma at ℓ−1. The
last inequality uses the definition ofθ in the theorem. This inequality implies that|Gc

ℓ| ≤ 2|F | ≤ 2k̄,
which completes the induction step.

A.1 Proof of Theorem 2

As in the proof of Lemma 12, if we lett = 0.5, then using Lemma 5, the condition of the theorem
implies that

λ+2‖ε̂‖∞

λg′(θ)−2‖ε̂‖∞
≤ 4− t

4−3t
.

Moreover, Lemma 3 implies that the condition

t = 0.5≤ 1−π(2k̄+s,s)(2k̄)0.5/s

is also satisfied.

We prove by induction: forℓ = 1, the result follows from Lemma 12. Forℓ > 1, we letGc =

F ∪{ j : |ŵ(ℓ−1)
j | ≥ θ}. From the proof of Lemma 12, we know that

k = |Gc| ≤ 2k̄.

Let u =
√

ρ+(k̄)σ[
√

7.4k̄/n+
√

2.7ln(2/η)/n]. We know from Lemma 5, andλ ≥ 20‖ε̂‖∞ that
with probability 1−2η,

‖ε̂Gc‖2 ≤‖ε̂F‖2 +
√

|Gc−F|‖ε̂‖∞

≤u+
√

|Gc−F|λ/20

≤u+(λ/20)

√

∑
j∈Gc−F

|ŵ(ℓ−1)
j |2/θ2

≤u+λ(20θ)−1‖ŵ(ℓ−1)− w̄‖2.
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Now, using Lemma 10 and Lemma 11, we obtain

‖∆ŵ(ℓ)‖2

≤ 1+
√

3
tρ−(k+s)

[

2‖ε̂Gc‖2 +(∑
j∈F

(λ(ℓ−1)
j )2)1/2

]

≤ 1+
√

3
tρ−(k+s)



2‖ε̂Gc‖2 +λ

(

∑
j∈F

g′(|w̄ j |−θ)2

)1/2

+λθ−1

(

∑
j∈F

|w̄ j − ŵ(ℓ−1)
j |2

)1/2




≤ 1+
√

3
tρ−(k+s)



2u+λ

(

∑
j∈F

g′(|w̄ j |−θ)2

)1/2

+1.1λθ−1‖w̄− ŵ(ℓ−1)‖2





≤ 1+
√

3
tρ−(k+s)



2u+λ

(

∑
j∈F

g′(|w̄ j |−θ)2

)1/2


+0.67‖w̄− ŵ(ℓ−1)‖2.

The desired bound can now be obtained by solving this recursion with respect to

‖∆ŵ(ℓ)‖2 = ‖w̄− ŵ(ℓ)‖2

for ℓ = 2,3, . . ., where‖∆ŵ(1)‖2 is given by Lemma 12.

Appendix B. Some Non-convex Formulations in Machine Learning

Consider a set of input vectorsx1, . . . ,xn∈Rd, with corresponding desired output variablesy1, . . . ,yn.
The task of supervised learning is to estimate the functional relationshipy≈ f (x) between the in-
put x and the output variabley from the training examples{(x1,y1), . . . ,(xn,yn)}. The quality of
prediction is often measured through a loss functionφ( f (x),y).

Now, consider linear prediction modelf (x) = w⊤x. As in boosting or kernel methods, non-
linearity can be introduced by including nonlinear features inx. For linear models, we are mainly
interested in the scenario thatd ≫ n. That is, there are many more features than the number of sam-
ples. In this case, an unconstrained empirical risk minimization is inadequate because the solution
overfits the data. The standard remedy for this problem is to impose a constraint on w to obtain a
regularizedproblem. This leads to the following regularized empirical risk minimization method:

ŵ = arg min
w∈Rd

[

n

∑
i=1

φ(w⊤xi ,yi)+λg(w)

]

, (15)

whereλ > 0 is an appropriately chosen regularization condition. This is the motivation for the
general problem formulation (1) in Section 2.

B.1 Loss Function

Examples of loss functionφ(w⊤x,y) in (15) include least squares for regression:φ(w⊤x,y) =
(w⊤x− y)2, and 0-1 binary classification error:φ(w⊤x,y) = I(w⊤xy ≤ 0), wherey ∈ {±1} are
the class labels, andI(·) is the set indicator function. The latter is nonconvex. In practice, for
computational reasons, a convex relaxation such as the SVM lossφ(w⊤x,y) = max(0,1−w⊤xy)
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is often used to substitute the classification error loss. Such a convex loss isoften referred to as a
surrogate loss function, and the resulting method becomes a convex relaxation method for solving
binary classification. This class of methods have been theoretically analyzed in Bartlett et al. (2006)
and Zhang (2004). While asymptotically, convex surrogate methods are consistent (that is, they
can be used to obtain Bayes optimal classifiers when the sample size approaches infinity), for finite
data, these methods can be more sensitive to outliers. In order to alleviate the effect of outliers, one
may consider the smoothed classification error loss functionφ(w⊤x,y) = min(α,max(0,1−w⊤xy))
(α≥ 1). This loss function is bounded, and thus more robust to outliers than SVMs under finite sam-
ple size; moreover, it is piece-wise differentiable, and thus easier to handle than the discontinuous
classification error loss. For comparison purpose, the three loss functions are plotted in Figure 7.

Figure 7: Loss Functions: classification error versus smoothed classification error (α = 1) and SVM

B.2 Regularization Condition

Some examples of regularization conditions in (15) include squared regularization g(w) = w⊤w,
and 1-norm regularizationg(w) = ‖w‖1. The former can be generalized to kernel methods, and the
latter leads to sparse solutions. Sparsity is an important regularization condition, which corresponds
to the (non-convex)L0 regularization, defined as‖w‖0 = |{ j : w j 6= 0}| = k. That is, the measure
of complexity is the number of none zero coefficients. If we know the sparsity parameterk for the
target vector, then a good learning method isL0 regularization:

ŵ = arg min
w∈Rd

1
n

n

∑
i=1

φ(w⊤xi ,yi) subject to‖w‖0 ≤ k, (16)
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which applies the standard empirical risk minimization formulation to learningL0 constrained
sparse targets.

If k is not known, then one may regardk as a tuning parameter, which can be selected through
cross-validation. This method is often referred to assubset selectionin the literature. Sparse learn-
ing is an essential topic in machine learning, which has attracted considerableinterests recently. It
can be shown that the solution of theL0 regularization problem in (16) achieves good prediction
accuracy if the target function can be approximated by a sparsew̄. However, a fundamental dif-
ficulty with this method is the computational cost, because the number of subsets of {1, . . . ,d} of
cardinalityk (corresponding to the nonzero components ofw) is exponential ink.

Due to the computational difficult, in practice, it is necessary to replace (16)by some easier
to solve formulations in (15). Specifically,L0 regularization is equivalent to (15) by choosing the
regularization function asg(w) = ‖w‖0. However, this function is discontinuous. For computational
reasons, it is helpful to consider a continuous approximation withg(w) = ‖w‖p

p, wherep > 0. If
p≥ 1, the resulting formulation is convex. In particular, by choosing the closest approximation with
p = 1, one obtainLasso, which is the standard convex relaxation formulation for sparse learning.
With p∈ (0,1), theLp regularizer‖w‖p

p is non-convex but continuous.
Supervised learning can be solved using general empirical risk minimization formulation in

(15). Bothφ andg can be non-convex in application problems. The traditional approach is to use
convex relaxation to approximate it, leading to a single stage convex formulation. In this paper, we
try to extend the idea by looking at a more general multi-stage convex relaxation method, which
leads to more accurate approximations.

For illustration, we consider the following examples which will be used in our later discussion.

• Smoothed classification error loss: formulation (15) with convex regularization g(w) and
nonconvex loss function (withα ≥ 1)

φ(w⊤x,y) = min(α,max(0,1−w⊤xy)).

This corresponds toR0(w) = λg(w), andRk(w) = φ(ŵ⊤xk,yk) for k = 1, . . . ,n in (1).

• Lp regularization (0≤ p≤ 1): formulation (15) with nonconvex regularizationg(w) = ‖w‖p
p

and a loss functionφ(·, ·) that is convex inw. This corresponds toR0(w)= n−1 ∑n
i=1 φ(w⊤xi ,yi),

andRk(w) = λ|wk|p for k = 1, . . . ,d in (1).

• SmoothedLp regularization (with parametersα > 0 and 0≤ p ≤ 1): formulation (15) with
nonconvex regularizationg(w) = ∑k[(α + |wk|)p−αp]/(pαp−1), and a loss functionφ(·, ·)
that is convex inw. This corresponds toR0(w) = n−1 ∑n

i=1 φ(w⊤xi ,yi), andRk(w) = λ[(α +
|wk|)p−αp]/(pαp−1) for k = 1, . . . ,d in (1). The main difference between standardLp and
smoothedLp is at |wk| = 0, where the smoothedLp regularization is differentiable, with
derivative 1. This difference is theoretically important as discussed in Section 3.1.

• Smoothed log regularization (with parameterα > 0): formulation (15) with nonconvex reg-
ularizationg(w) = ∑k α ln(α + |wk|), and a loss functionφ(·, ·) that is convex inw. This
corresponds toR0(w) = n−1 ∑n

i=1 φ(w⊤xi ,yi), andRk(w) = λα ln(α + |wk|) for k = 1, . . . ,d
in (1). Similar to the smoothedLp regularization, the smoothed log-loss has derivative 1 at
|wk| = 0.
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• Capped-L1 regularization (with parameterα > 0): formulation (15) with nonconvex regu-
larization g(w) = ∑d

j=1min(|w j |,α), and a loss functionφ(·, ·) that is convex inw. This
corresponds toR0(w) = n−1 ∑n

i=1 φ(w⊤xi ,yi), andRk(w) = λmin(|wk|,α) for k = 1, . . . ,d
in (1). The capped-L1 regularization is a good approximation toL0 because asα → 0,
∑k min(|wk|,α)/α → ‖w‖0. Therefore whenα → 0, this regularization condition is equiv-
alent to the sparseL0 regularization up to a rescaling ofλ. Capped-L1 regularization is a
simpler but less smooth version of the SCAD regularization (Jianqing Fan, 2001). SCAD is
more complicated, but its advantage cannot be shown through our analysis.

Appendix C. Some Examples of Multi-stage Convex Relaxation Methods

The multi-stage convex relaxation method can be used with examples in Section 2.2to obtain con-
crete algorithms for various formulations. We describe some examples here.

C.1 Smoothed Classification Loss

We consider a loss term of the formRk(w) = min(α,max(0,1−w⊤xkyk)) for k = 1, . . . ,n (with
α ≥ 1), and relax it to the SVM losshk(w) = max(0,1−w⊤xkyk).

The optimization problem is

ŵ = argmin
w

[

n

∑
i=1

min(α,max(0,1−w⊤xiyi))+λg(w)

]

,

where we assume thatg(w) is a convex regularization condition such asg(w) = λ‖w‖2
2.

Consider concave duality in Section 2.2. Eachuk is a scalar in the rangeΩk = [0,∞), and
R̄k(uk) = min(α,uk). We haveR∗

k(vk) = α(vk−1)I(vk ∈ [0,1]), defined on the domainvk ≥ 0. The
solution in (4) is given bŷvk = I(w⊤xkyk ≥ 1−α) for k = 1, . . . ,n. Therefore Section 2.2 implies
that the multi-stage convex relaxation solves the weighted SVM formulation

ŵ = argmin
w

[

n

∑
i=1

v̂i max(0,1−w⊤xiyi)+λg(w)

]

,

where the relaxation parameterv is updated as

v̂i = I(ŵ⊤xiyi ≥ 1−α) (i = 1, . . . ,n).

Intuitively, the mis-classified pointŝw⊤xiyi < 1−α are considered as outliers, and ignored.

C.2 Lp and SmoothedLp Regularization

In sparse regularization, we may consider a regularization termRk(w) = λ|wk|p/p (k = 1, . . . ,d) for
somep ∈ (0,1). Given anyq > p, (3) holds withuk = hk(w) = |wk|q ∈ [0,∞), and R̄k(uk) =
λ|uk|p/q/p, whereuk ∈ Ωk = [0,∞). The dual isR∗

k(vk) = −λc(p,q)(vk/λ)p/(p−q), defined on
the domainvk ≥ 0, wherec(p,q) = (q− p)p−1qq/(p−q). The solution in (4) is given bŷvk =
(λ/q)|wk|p−q.

An extension is to consider a regularization termRk(w) = λ[(α + |wk|)p−αp]/(pαp−1) (k =
1, . . . ,d) for somep ∈ (0,1) and α > 0. Given anyq > p, (3) holds withuk = hk(w) = (α +
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|wk|)q ∈ [αq,∞), andR̄k(uk) = λ[up/q
k −αp]/(pαp−1), whereuk ∈ Ωk = [0,∞). The dual isR∗

k(vk) =
−λc(p,q)αp/(p−q)(vk/λ)p/(p−q) + λα/p, defined on the domainvk ≥ 0, where c(p,q) =
(q− p)pp/(q−p)qq/(p−q). The solution in (4) is given bŷvk = λ/(qαp−1)(α+ |wk|)p−q.

An alternative is to relax smoothedLp regularization (p ∈ (0,1)) directly to Lq regularization
for q≥ 1 (one usually takes eitherq = 1 or q = 2). In this case,uk = hk(w) = |wk|q ∈ [0,∞), and

R̄k(uk) = λ[(α+u1/q
k )p−αp]/(pαp−1). Although it is not difficult to verify thatR̄k(uk) is concave,

we do not have a simple closed form forR∗
k(vk). However, it is easy to check that the solution in (4)

is given byv̂k = λ/(qαp−1)(α+ |wk|)p−1|wk|1−q.
In summary, forLp and smoothedLp, we consider the following optimization formulation for

someα ≥ 0 andp∈ (0,1]:

ŵ = argmin
w

[

R0(w)+λ
d

∑
j=1

(α+ |w j |)p

]

,

where we assume thatR0(w) is a convex function ofw.
From previous discussion, the multi-stage convex relaxation method in Section2.2 becomes a

weightedLq regularization formulation forq≥ 1:

ŵ = argmin
w

[

R0(w)+
d

∑
j=1

v̂ j |w j |q
]

,

where the relaxation parameterv is updated as

v̂ j = λ(p/q)(α+ |ŵ j |)p−1|ŵ j |1−q ( j = 1, . . . ,d).

The typical choices ofq areq = 1 or q = 2. That is, we relaxLp regularization toL1 or L2 regular-
ization.

Finally, we note that the two stage version ofLp regularization, relaxed toLq with q = 1, is
referred to Adaptive-Lasso (Zou, 2006).

C.3 Smoothedlog Regularization

This is a different sparse regularization condition, where we consider aregularization termRk(w) =
λα ln(α+ |wk|) for someα > 0. Given anyq> 0, (3) holds withuk = hk(w) = (α+ |wk|)q ∈ [αq,∞),
and R̄k(uk) = λ(α/q) ln(uk), whereuk ∈ Ωk = [0,∞). The dual isR∗

k(vk) = λ(α/q)[lnvk + 1−
ln(λα/q)], defined on the domainvk ≥ 0. The solution in (4) is given bŷvk = λ(α/q)(α+ |wk|)−q.

Similar to smoothedLp, we may relax directly toLq, with uk = hk(w) = |wk|q ∈ [0,∞). R̄k(uk) =

λα ln(α+u1/q
k ), where The solution in (4) is given bŷvk = λ(α/q)(α+ |wk|)−1|wk|1−q.

Similar to smoothed log regularization, the multi-stage convex relaxation method in Section 2.2
becomes a weightedLq regularization formulation forq≥ 1:

ŵ = argmin
w

[

R0(w)+
d

∑
j=1

v̂ j |w j |q
]

,

where the relaxation parameterv is updated as

v̂ j = λ(α/q)(α+ |w j |)−1|w j |1−q ( j = 1, . . . ,d).

This resulting procedure is the same as the one empirically studied in Candes et al. (2008).
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C.3.1 CAPPEDL1 REGULARIZATION

We consider another sparse regularization term withRk(w) = λmin(|wk|,α) (k = 1, . . . ,d) for some
α > 0. In this case, (3) holds withuk = hk(w) = |wk| ∈ [0,∞), andR̄k(uk) = λmin(uk,α), where
uk ∈ Ωk = [0,∞). The dual isR∗

k(vk) = λα(−1+vk/λ)I(vk ∈ [0,λ]) defined[0,∞), whereI(·) is the
set indicator function. The solution in (4) is given byv̂k = λI(|wk| ≤ α).

In cappedL1 regularization, we consider the optimization problem

ŵ = argmin
w

[

R0(w)+λ
d

∑
j=1

min(α, |w j |)
]

,

where we assume thatR0(w) is a convex function ofw.
From Section 2.2, the multi-stage convex relaxation becomes a weightedL1 regularization for-

mulation:

ŵ = argmin
w

[

R0(w)+
d

∑
j=1

v̂ j |w j |
]

,

where the relaxation parameterv is updated as

v̂ j = λI(|ŵ j | ≤ α) ( j = 1, . . . ,d).

This method has an intuitive interpretation: in order to achieve sparsity, the standardL1 regular-
ization not only shrinks small coefficients to zero, but also shrinks large coefficients. This causes a
bias. The capped-L1 formulation removes the bias by adaptively adjusting the relaxation parameter
v̂ j so that if|ŵ j | is large, then we do not penalize the corresponding variablej.

C.3.2 SPARSEEIGENVALUE PROBLEM

We use a simple example to illustrate that the multi-stage convex relaxation idea doesnot only apply
to formulations with convex risks. Consider the sparse eigenvalue problem,where we are interested
in finding the largest eigenvalue of a positive semi-definite matrixA. One formulation is

ŵ = arg max
‖w‖2≤1

[

w⊤Aw−λ
d

∑
j=1

(α+ |w j |)p

]

,

with parameterp ∈ (0,1) and a small parameterα > 0 to encourage sparsity. Ifλ = 0, then it
is the standard eigenvalue problem without sparsity constraints. Although the standard eigenvalue
problem is not convex inw, it has a convex relaxation to a semi-definite programming problem,
and thus can be efficiently solved. For convenience, we think of the standard eigenvalue problem as
“convex” for the purpose of this paper. The multi-stage convex relaxation becomes:

ŵ = arg max
‖w‖2≤1

[

w⊤Aw−
d

∑
j=1

v jw2
j

]

,

which is a standard eigenvalue problem. The relaxation parameter is updatedas

v̂ j = λ(p/2)(α+ |ŵ j |)p−1|ŵ j |−1 ( j = 1, . . . ,d).

1105



ZHANG

C.3.3 MATRIX REGULARIZATION

Our final example is multi-task learning with matrix regularization, also considered in Argyriou
et al. (2008). In this case,w is not a vector, but a matrix, with columns (tasks)wℓ. We solve a
problem of the following form:

w = argmin
w

[

m

∑
ℓ=1

Rℓ(wℓ)+λtr((αI +ww⊤)p/2)

]

.

In the above formulation,Rℓ is the risk function for taskℓ. The matrix regularization used here is
the counterpart ofLp regularization for vectors. It encourages low-rank ifp < 2. In particular, the
case ofp = 1 is often called trace norm (or nuclear norm). It is convex and frequently used in the
literature. The parameterα > 0 gives some smoothness, similar to the vector case.

The case ofp< 1 gives better low-rank approximation, similar to the vector regularization case.
Again, this problem can be solved with multi-stage convex relaxation method. Inthis case, the
relaxation parameterv is a positive semi-definite matrix, and we relax the regularization term to
h(w) = (αI + ww⊤) as a matrix. Thus the relaxed regularization term becomes tr(v(αI + ww⊤)).
This regularization decouples the problems as follows, which allows us to solve each taskℓ sepa-
rately:

ŵℓ = argmin
wℓ

[

Rℓ(wℓ)+(wℓ)⊤v̂wℓ
]

(ℓ = 1,2, . . . ,m).

This is a key advantage of the method. Similar to the vector case, we have the following update
formula for the relaxation parameter:

v̂ = λ(p/2)(αI + ŵŵ⊤)(p−2)/2.
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