Journal of Machine Learning Research 11 (2010) 1081-1107 bm8ted 5/09; Revised 1/10; Published 3/10

Analysis of Multi-stage Convex Relaxation for Sparse Regularization

Tong Zhang * TZHANG @STAT.RUTGERSEDU
Statistics Department

110 Frelinghuysen Road

Rutgers University

Piscataway, NJ 08854

Editor: Francis Bach

Abstract

We consider learning formulations with non-convex objexfiinctions that often occur in practical
applications. There are two approaches to this problem:

e Heuristic methods such as gradient descent that only fincta lminimum. A drawback of
this approach is the lack of theoretical guarantee showiagthe local minimum gives a good
solution.

e Convex relaxation such &s-regularization that solves the problem under some canditiHow-
ever it often leads to a sub-optimal solution in reality.

This paper tries to remedy the above gap between theory actiqe. In particular, we present a
multi-stage convex relaxation scheme for solving problevite non-convex objective functions.

For learning formulations with sparse regularization, walgze the behavior of a specific multi-
stage relaxation scheme. Under appropriate conditionshaw that the local solution obtained by
this procedure is superior to the global solution of the déadL; convex relaxation for learning

sparse targets.

Keywords: sparsity, non-convex optimization, convex relaxation|tirgiage convex relaxation

1. Introduction

We consider the general regularization framework for machine learmihgre a loss function is
minimized, subject to a regularization condition on the model parameter. Formatumal machine
learning problems, either the loss function or the regularization conditiomearon-convex. For
example, the loss function is non-convex for classification problems, @gularization condi-
tion is non-convex in problems with sparse parameters.

A major difficulty with nonconvex formulations is that the global optimal solutionrntd be
efficiently computed, and the behavior of a local solution is hard to analyepractice, convex
relaxation (such as support vector machine for classificatiha megularization for sparse learning)
has been adopted to remedy the problem. The choice of convex formulatias rifee solution
unique and efficient to compute. Moreover, the solution is easy to analgpeetically. That
is, it can be shown that the solution of the convex formulation approximatéresthe original
problem under appropriate assumptions. However, for many practadagms, such simple convex
relaxation schemes can be sub-optimal.
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Because of the above gap between practice and theory, it is important yodéteick solutions
of non-convex optimization problems beyond the standard convex relax&iar goal is to design
a numerical procedure that leads teeproducible solutiorwhich is better than the standard convex
relaxation solution. In order to achieve this, we present a general frarkeof multi-stage con-
vex relaxation, which iteratively refine the convex relaxation formulationite better solutions.
The method is derived from concave duality, and involves solving a segqu# convex relaxation
problems, leading to better and better approximations to the original noncémvaulation. It
provides a unified framework that includes some previous approastels 4s LQA Jianging Fan,
2001, LLA Zou and Li, 2008, CCCP VYuille and Rangarajan, 2003) asiapeases. The procedure
itself may be regarded as a special case of alternating optimization, whighatigally ensures its
convergence. Since each stage of multi-stage convex relaxation is exagoimization problem,
the approach is also computationally efficient. Although the method only leadwtalaoptimal
solution for the original nonconvex problem, this local solution is a refin¢wfghe global solution
for the initial convex relaxation. Therefore intuitively one expects thatldbal solution is better
than the standard one-stage convex relaxation. In order to prove gesvation more rigorously,
we consider least squares regression with nonconvex sparserizgfisa terms, for which we can
analyze the effectiveness of the multi-stage convex relaxation. It isrsktizat under appropriate
assumptions, the (local) solution computed by the multi-stage convex relaxatibadnesing non-
convex regularization achieves better parameter estimation performamcth¢éhstandard convex
relaxation withL, regularization.

The main contribution of this paper is the analysis of sparse regularizédtpages regression
presented in Section 3, where we derive theoretical results showingriiat appropriate condi-
tions, it is beneficial to use multi-stage convex relaxation with nonconvexaggation as opposed
to the standard convey regularization. This demonstrates the effectiveness of multi-stage convex
relaxation for a specific but important problem. Although without theoretinalysis, we shall also
present the general idea of multi-stage convex relaxation in Section 2 ¢ can be applied to
other potential application examples as illustrated in Appendix C. The gistrdmalysis can be
applied to those examples (e.g., the multi-task learning problem in the setting of owatmpletion,
which has drawn significant attention recently) as well. However, the detd@dvation will be
specific to each application and the analysis will not be trivial. Therefdriiewe shall present a
rather general form of multi-stage convex relaxation formulation in ordenify various previous
approaches, and put this work in a broader context, the detailed thabeetadysis (and empirical
studies) for other important applications will be left to future work.

2. Multi-stage Convex Relaxation

This section presents the general idea of multi-stage convex relaxatioh wdicbe applied to
various optimization problems. It integrates a number of existing ideas into adifidimework.

2.1 Regularized Learning Formulation

The multi-stage convex relaxation approach considered in the papee@pplied to the following
optimization problem, which can be motivated from supervised learning fotimmlaAs back-
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ground information, its connection to regularized learning formula (15)Visrgin Appendix B.

W =arg rpvinR(w),
R(W) = Ro(W) + 3 Re(W), (1)

wherew = [wy,...,wq] € RY is ad-dimensional parameter vector, aR@v) is the general form of
a regularized objective function. Moreover, for convenience, sarag thaRy(w) is convex inw,
and eachR(w) is non-convex. In the proposed work, we shall employ convex/cendaality to
derive convex relaxations of (1) that can be efficiently solved.

Related to (1), one may also consider the constrained formulation

K
W = argminRy(w) subject to z Re(w) <A, 2
W K=1

whereA is a constant. One may also mix (1) and (2).

2.2 Concave Duality

In the following discussion, we consider a single nonconvex compdRgmt) in (1), which we
shall rewrite using concave duality. List(w) : R — Q, c R% be a vector function witl® being
the convex hull of its range. It may not be a one-to-one map. Howeweassume that there exists
a functionRy defined orQy so that we can expre§k(w) as

Re(w) = Re(hk(w)).

Assume that we can findy so that the functiorﬁk(uk) is concave orux € Q. Under this
assumption, we can rewrite the regularization functfw) as:

Ra(w) = inf, v hi(w) — Re(vi)| 3)

vieeRk

using concave duality (Rockafellar, 1970). In this cdggyy) is the concave dual @R (uk) given
below

Ri(vi = inf [ u— Re(uw)|

Note that using the convention in convex analysis (Rockafellar, 19%0nay assume th&; (vi) is
defined orR% but may take-« value. Equivalently, we may consider the subsgt R;(vi) > —oo}
as the feasible region of the optimization problem (3), and assum&{tat) is only defined on
this feasible region.

It is well-known that the minimum of the right hand side of (3) is achieved at

Ui = OuRe(U) luny w)- (4)

This is the general framework we suggest in the paper. For illustratione xample non-
convex problems encountered in machine learning are included in App€ndix
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2.3 Penalized Formulation

Let hy(w) be a vector function with convex components, so that (3) holds. Giveappropriate
vectorvy € R%, a simple convex relaxation of (1) becomes

K

z hk(W)TVk] . (5)

weRd =1

W = arg min [Ro(w) +
This simple relaxation yields a solution that is different from the solution of ifbwever, if each
hy satisfies the condition of Section 2.2, then it is possible to VRjtev) using (3). Now, with this
new representation, we can rewrite (1) as

K
[W,¥] = arg min [Ro(w) + 3 (hi(w) Tvie— R;‘;(vk))] : (6)
w,{v} K=1

This is clearly equivalent to (1) because of (3). If we can find a ggpdaimation ofv = {Vy} that
improves upon the initial value d@fi = 1, then the above formulation can lead to a refined convex
problem inw that is a better convex relaxation than (5).

Our numerical procedure exploits the above fact, which tries to improvestimaaion ofvy
over the initial choice ofrx = 1 in (5) using an iterative algorithm. This can be done using an
alternating optimization procedure, which repeatedly applies the followingtepss

e First we optimizew with v fixed: this is a convex problem w with appropriately chosen
h(w).

e Second we optimize with w fixed: although non-convex, it has a closed form solution that
is given by (4).

Initialize V =1
Repeat the following two steps until convergence:

o Let ‘
W = arg rpvin!Ro(w) +y hk(w)T\“/k] : (7)

k=1

o LetVy = DuRk(u)‘u:hk(vAv) (k=1,...,K)

Figure 1: Multi-stage Convex Relaxation Method

The general procedure for solving (6) is presented in Figure 1. nitbearegarded as a gen-
eralization of CCCP (concave-convex programming) (Yuille and Rajgard003), which takes
h(w) =w. Itis also more general than LQA (local quadratic approximation) (Jigrgam, 2001) or
LLA (local linear approximation) (Zou and Li, 2008). Specifically LQA takg(W) = WJ2 and LLA
takesh;(W) = |w;|. The justification of those procedures rely on the so-called MM (majorization
minimization) principle, where an upper bound of the objective function is minangteach step
(see Zou and Li, 2008 and references therein). However, in ordgdly MM, for each particular
choice ofh, one has to demonstrate that the convex relaxation is indeed an uppek, kduch is
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necessary to show convergence. In the concave relaxation formusatapted in this work, the
justification of convergence is automatically embedded in (6), which becojoa® @ptimization
problem. Figure 1 is simply an alternating optimization procedure for solvinguiéizh is equiva-
lentto (1). Since convex duality of many interesting objective function$ygicg matrix functions)
are familiar to many machine learning researchers, the concave dualipta®ripresented here
can be automatically applied to various applications without the need to wooyt abnvergence
justification. This will be especially useful for complex formulations suchtagired or matrix
regularization, where the more traditional MM idea cannot be easily apfliad.may also regard
our framework as a principled method to design a class of algorithms that mayebereted as
MM procedures. Some examples illustrate its applications are presented éméipc.

Note that by repeatedly refining the parametewe can potentially obtain better and better
convex relaxation in Figure 1, leading to a solution superior to that of the intialex relaxation.
Since at each step the procedure decreases the objective functignita (@nvergence to a local
minimum is easy to show. In fact, in order to achieve convergence, on@eatls to approximately
minimize (7) and reasonably decrease the objective value at each stsgip/tiee detailed analysis
here, because in the general case, a local solution is not necessgabtdasolution, and there
are other approaches (such as gradient descent) that can competd aolation. In order to
demonstrate the effectiveness of multi-stage convex relaxation, we sblaltléna more careful
analysis for the special case of sparse regularization in Section 3.1h€ury shows that the local
solution of multi-stage relaxation with a nonconvex sparse regularizer &isupo the convex ;
regularization solution (under appropriate conditions).

2.4 Constrained Formulation

The multi-stage convex relaxation idea can also be used to solve the cosdtf@imulation (2).
The one-stage convex relaxation of (2), given fixed relaxation paeawg becomes

K K
W = arg minRo(w)  subjectto’y hi(w) v < A+ > Revi).
weRd =] =1

Because of (3), the above formulation is equivalent to (2) if we optimizewav€his means that by
optimizingv in addition tow, we obtain the following algorithm:

e InitializeV =1
e Repeat the following two steps until convergence:
— Let
K K
W = argminRo(w)  subject to ) hi(w) "0 < A+ Y Re(W0).
K=1 K=1
— Let 0 = OuRe(U)uzh ) (K=1,...,K)

If an optimization problem includes both nonconvex penalization and neegocpnstrains,
then one may use the above algorithm with Figure 1.
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3. Multi-stage Convex Relaxation for Sparse Regularization

The multi-stage convex relaxation method described in the previous sectisnaridtain better
approximations of the original nonconvex problem by refining the comglaxation formulation.
Since the local solution found by the algorithm is the global solution of a finavex relaxation
formulation, it should be closer to the desired solution than that of the sthodarstage convex
relaxation method. Although this high level intuition is appealing, it is still necégda present a
more rigorous theoretical result which can precisely demonstrate thatadeaof the multi-stage
approach over the standard single stage method. Unless we can detleopyato show the effec-
tiveness of the multi-stage procedure in Figure 1, our proposal is géte@mocal minimum finding
scheme that may potentially get stuck at a bad local solution.

In order to obtain some strong theoretical results that can demonstratevidnatasge of the
multi-stage approach, we consider the special case of sparse ledrhiags because this problem
has been well-studied in recent years, and the behavior of convexatiela (L; regularization) is
well-understood.

3.1 Theory of Sparse Regularization

For a non-convex but smooth regularization condition such as capped-smoothed-, with

p € (0,1), standard numerical techniques such as gradient descent lead td enioitaum so-
lution. Unfortunately, it is difficult to find the global optimum, and it is also diffido analyze the
quality of the local minimum. Although in practice, such a local minimum solution mayeofapn
the Lasso solution, the lack of theoretical (and practical) performaramegiee prevents the more
wide-spread applications of such algorithms. As a matter of fact, results wittconvex regu-
larization are difficult to reproduce because different numerical optioizgrocedures can lead
to different local minima. Therefore the quality of the solution heavily dep@mthe numerical
procedure used.

The situation is very different for a convex relaxation formulation such asegularization
(Lasso). The global optimum can be easily computed using standardxcpragramming tech-
niques. It is known that in practice, 1-norm regularization often leadpaose solutions (although
often suboptimal). Moreover, its performance has been theoreticallyzmthhgcently. For exam-
ple, it is known from the compressed sensing literature that under ceotaditions, the solution of
L1 relaxation may be equivalent kg regularization asymptotically (e.g., Candes and Tao, 2005). If
the target is truly sparse, then it was shown in Zhao and Yu (2006) tkhiet some restrictive con-
ditions referred to asrepresentable conditionsl-norm regularization solves the feature selection
problem. The prediction performance of this method has been considekadt@hinskii (2008),
Zhang (2009a), Bickel et al. (2009) and Bunea et al. (2007).

In spite of its success,;-regularization often leads to suboptimal solutions because it is not a
good approximation tho regularization. Statistically, this means that even though it converges to
the true sparse target whan— o (consistency), the rate of convergence can be suboptimal. The
only way to fix this problem is to employ a non-convex regularization conditian ihcloser to
Lo regularization. In the following, we formally prove a result for multi-stagevex relaxation
with non-convex sparse regularization that is superior to the Lassh.resessence, we establish
a performance guarantee for non-convex formulations when theyoaredsby using the multi-
stage convex relaxation approach which is more sophisticated than tharstame-stage convex
relaxation.
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In supervised learning, we observe a set of input veoters ., x, € R4, with corresponding
desired output variablag, . ..,yn. In general, we may assume that there exists a targeR® such
that

Vi =W X+ (i=1,...,n), (8)

whereg; are zero-mean independent random noises (but not necessariticatlgrdistributed).
Moreover, we assume that the target veeias sparse. That is, there exists- ||w||o is small. This
is the standard statistical model for sparse learning.

Let y denote the vector dfy;] and X be then x d matrix with each row a vectox;. We are
interested in recovering from noisy observations using the following sparse regression method:

A 11 2 : .
W= argin| Cxw—yI+A 5 allwi)| ©

whereg(|w;|) is a regularization function. Here we require tgdu) is non-negative which means
we penalize largew more significantly. Moreover, we assumie % (u) is a non-increasing function
when u > 0, which means thafg(lwa|),...,g(|wg|)] is concave with respect td(w) =
[lwal|9,...,|wq|9 for someq > 1. It follows that (9) can be solved using the multi-stage convex
relaxation algorithm in Figure 2, which we will analyze. Although this algorithaswentioned in
Zou and Li (2008) as LLA wheq = 1, they only presented a one-step low-dimensional asymptotic
analysis. We present a true multi-stage analysis in high dimension. Our iarellys focuses on
g= 1 (LLA) for convenience because the Lasso analysis in Zhang (2@3@cbe directly adapted,;
however in principle, one can also analyze the more general cage &f

Initialize A" =Afor j=1,....d
Fori=1,2,...
o Let

1 d .,
A~ (0) . 2 (=1)\ns. 10
W' = arg min Xw — +S§ A w . 10
gwe nH yllz J:E:Lj |wi (10)

o LetA)” = Aq 2 99 (W) (j = 1,....d)

Figure 2: Multi-stage Convex Relaxation for Sparse Regularization

For convenience, we consider fixed design only, whe¢iie fixed and the randomness is with
respect toy only. We require some technical conditions for our analysis. First wenassub-
Gaussian noise as follows.

.....

distributed) sub-Gaussians: there exists 0 such thatvi and vt € R,
Egvetsi < e0'2t2/2‘

Both Gaussian and bounded random variables are sub-Gaussiarthesiagove definition. For
example, if a random variablé € [a,b], then E;e¢-E%) < e-@**/8 |f 3 random variable is

GaussianZ ~ N(0,02), thenEg € < e°t°/2,
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We also introduce the concept of sparse eigenvalue, which is standérd analysis ol ;
regularization.

Definition 1 Given k, define
1
p-(K) :sup{nuqu%/\wn% wlo < k},

. 1
p- (9 =int { ~lpxwl3/ w3 [wlo < k.

Our main result is stated as follows. The proof is in the appendix.

Theorem 2 Let Assumption 3.1 hold. Assume also that the tangét sparse, wittEy; = w'x;,
andk = ||w||o. Choose\ such that

A > 200+/2p. (1)In(2d/n)/n.

Assume that’gz) > 0 is a non-increasing function such thaty = 1 when z< 0. Moreover, we
require that §(8) > 0.9 with 8 = 9\ /p_(2k+s). Assume thap., (s)/p—(2k+2s) < 1+ 0.5s/k for
some s> 2Kk, then with probability larger thad —n:

HVAV(() — W2 Sﬁk:—s) 20\/p+(E) <\/7-4E/n+ 2.7|n(2/n)/n>
1/2

- 10 =

(g g -o7) ] O g VR

wherew®) is the solution of (10) with ¢ 1.

Note that the theorem allows the situatidn> n, which is what we are interested in. This
is the first general analysis of multi-stage convex relaxation for high dimeaissparse learning,
although some simpler asymptotic results for low dimensional two-stage presadare obtained
in Zou (2006) and Zou and Li (2008), they are not comparable to ours.

Results most comparable to what we have obtained here are that of thepFadalure in
Zhang (2009b) and that of the MC+ procedure in Zhang (2010). dimedr is a forward backward
greedy algorithm, which does not optimize (9), while the latter is a path-followlggrithm for
solving (9). Although results in Zhang (2010) are comparable to ourshaeld note that efficient
path-following computation in MC+ requires specialized regulariggrs Moreover, unlike our
procedure, which is efficient because of convex optimization, there @awf showing that the
path-following strategy in Zhang (2010) is always efficient (in the s¢hatthere may be expo-
nentially many switching points). However, empirical experience in Zha@gqpdoes indicate its
efficiency for a class of regularizers that can be relatively easilyledrny path-following. There-
fore we are not claiming here that our approach will always be sugteriéinang (2010) in practice.
Nevertheless, our result suggests that different local solution guoes can be used to solve the
same nonconvex formulation with valid theoretical guarantees. This opemodr for additional
theoretical studies of other numerical procedures.

The conditionp. (s)/p-(2k+ 2s) < 1+ 0.5s/k requires the eigenvalue ratm, (s)/p_(s) to
grow sub-linearly irs. Such a condition, referred to agarse eigenvalue conditipis also needed in
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the standard analysis of regularization (Zhang and Huang, 2008; Zhang, 2009a). It is related
weaker than theestricted isometry propertfRIP) in compressive sensing (Candes and Tao, 2005).
Note that in the traditional low-dimensional statistical analysis, one assuntegs.tf&/p_ (2k +
2s) < 0 ass — oo, which is significantly stronger than the condition we use here. Although in
practice it is often difficult to verify the sparse eigenvalue condition fat peoblems, Theorem 2
nevertheless provides important theoretical insights for multi-stage coelaation.

Since in standard Lassg/(|wj|) = 1, we obtain the following bound from Theorem 2

I, — Wiz = O(Vik),

wherew, is the solution of the standatd regularization. This bound is tight for Lasso, in the sense
that the right hand side cannot be improved except for the constant—athtseceasily verified with
an orthogonal design matrix. It is known that in order for Lasso to eeg¥e, one has to pick no
smaller than the order,/Ind/n. Therefore, the parameter estimation error of the standard Lasso is
of the ordero/kIind/n, which cannot be improved.

In comparison, if we consider an appropriate regularization condifin ) that is concave in
|wj|. Sinceg (Jw;|) ~ 0 when|w;j| is large, the bound in Theorem 2 can be significantly better when
most non-zero coefficients af are relatively large in magnitude. For example, consider the capped-
L1 regularizerg(|w;|) = min(a, |w;|) with a > 6; in the extreme case where mjw;| > o + 6
(which can be achieved when all nonzero componenig arfe larger than the order,/Ind/n), we

obtain the better bound
W — W]z = O(y/k/n++/In(1/n)/n)

for the multi-stage procedure for a sufficiently largat the order of Inll. This bound is superior
to the standard one-stagg regularization boundw,, — w||> = O(y/kIn(d/n)/n), which is tight
for Lasso. The difference can be significant whed is large.

Generally speaking, with a regularization conditmg(fw;|) that is concave ifw;|, the depen-
dency on\ is throughg'(Jw;|) which decreases &w/j| increases. This removes the bias of the Lasso
and leads to improved performance. Specificallyyifis large, therg/(|wj|) ~ 0. In comparison,
the Lasso bias is due to the fact tig&tiw;|) = 1. For illustration, the derivativg () of some sparse
regularizers are plotted in Figure 3.

Note that our theorem only applies to regularizers with finite derivativerat ZThat isg'(0) <
. The result doesn't apply to, regularization withp < 1 becaus@'(0) = «. Although a weaker
result can be obtained for such regularizers, we do not include it iégenly include an intuitive
example below to illustrate why the conditigh{0) < « is necessary for stronger results presented in
the paper. Observe that the multi-stage convex relaxation method only canadotsal minimum,
and the regularization update rule is given)tiffl) = g’(\iv(-ffl)). If g'(0) = oo, thenA" ™ = o

i i
when\fvgffl) = 0. This means that if a feature accidentally becomes zero in some stage, it will

always remain zero. This is why only weaker results can be obtaindd,fargularizers | < 1):

we need to further assume th?nf) never becomes close to zero whep## 0. A toy example is
presented in Table 1 to demonstrate this point. The example is a simulateditegpeeblem with

d = 500 variables and = 100 training data. The first five variables of the tangedre non-zeros,
and the remaining variables are zeros. For both cappehdL , regularizers, the first stage is the
standard_; regularization, which misses the correct feature #2 and wrongly setsois imcorrect
ones. For cappel; regularization, in the second stage, because most correct featidsratified,
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Figure 3: Derivativey (|wj|) of some sparse regularizers

| Stagel | coefficients | [IW — w2 |
multi-stage cappet
1 [6.0,0.0,4.7,4.8,3.9,0.6,0.7,1.2,0.0,.. ] 4.4
2 [7.7,0.4,5.7,6.3,5.7,0.0,0.0,0.2,0.0,.. ] 1.6
3 [7.8,1.2,5.7,6.6,5.7,0.0,0.0,0.0,0.0, .. ] 0.98
4 [7.8,1.2,5.7,6.6,5.7,0.0,0.0,0.0,0.0, .. ] 0.98
multi-stagelg 5
1 [6.0,0.0,4.7,4.8,3.9,0.6,0.7,1.2,0.0,.. ] 4.4
2 [7.3,0.0,5.4,5.9,5.3,0.0,0.3,0.3,0.0,0.0,. . ] 24
3 [7.5,0.0,5.6,6.1,5.7,0.0,0.1,0.0,0.0,0.0,.. ] 2.2
4 [7.5,0.0,5.6,6.2,5.7,0.0,0.1,0.0,0.0,0.0,. . ] 2.1
[

[ targetw | [8.2,1.7,5.4,6.9,5.7,0.0,0.0,0.0,0.0,.. ]

| |

Table 1: An lllustrative Example for Multi-stage Sparse Regularization

the corresponding “bias” is reduced by not penalizing the corresponariables. This leads to
improved performance. Since the correct feature #2 shows up in stage &e able to identify
it and further improve the convex relaxation in stage 3. After stage 3, theedure stabilizes
because it computes exactly the same relaxation.Li@egularization, since feature #2 becomes

zero in stage 1, it will remain zero thereafter beca?a%)e: c when/ > 1. In order to remedy this
problem, one has to use a regularizer vgitfD) < « such as the smoothég, regularizer.
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3.2 Empirical Study

Although this paper focuses on the development of the general multi-stagexcrelaxation frame-
work as well as its theoretical understanding (in particular the major regah @1 Theorem 2), we
include two simple numerical examples to verify our theory. More compréreempirical com-
parisons can be found in other related work such as Candes et &) (2@ (2006) and Zou and
Li (2008).

In order to avoid cluttering, we only present results with cappgdndL, (p = 0.5) regular-
ization methods. Note that based on Theorem 2, we maydunecappedt; by using a formula
o = dgA whereA is the regularization parameter. We choage= 10 andag = 100.

In the first experiment, we generate ax d random matrix with its column corresponding
to [X1j,...,Xnj], and each element of the matrix is an independent standard Gabksidn. We
then normalize its columns so thgtlej =n. A truly sparse targd?, is generated witk nonzero

elements that are uniformly distributed frgm10, 10]. The observatioy; = B x; + €, where each
& ~ N(0,02). In this experiment, we take= 50,d = 200 k = 5,0 = 1, and repeat the experiment
100 times. The average training error and 2-norm parameter estimatiorasgreported in Fig-
ure 4. We compare the performance of multi-stage methods with differamaregation parameter
A. As expected, the training error for the multi-stage algorithms are smaller taanfth;, due
to the smaller bias. Moreover, substantially smaller parameter estimation erahtiésed by the
multi-stage procedures, which is consistent with Theorem 2. This cargheded as an empirical
verification of the theoretical result.

8  _
8 P
* --0- capped-L1 (10 * lambda)
| ,4@ & -+ capped-L1 (100 * lambda)
S | 8" 5 o |2 Lp(p=09
5 P °© S
= . ‘ = Te}
S L g 2+
g’ oI — / / g gi»_-—o ——O‘\ *
S o . o 2 A “o
E © & o ° A |
£ yau g o] e h ;
9 ] R’ g T \n ah ,"’"
81" ° —o— L1 g +\\\;%¥* i/
-o- capped-L1 (10 * lambda) SR
- +- capped-L1 (100 * lambda) RV
S |o 4+ Lp (p=0.5) 0 | ¢ R
& T T T T T T T ° T T T T T T T
0.005 0.020 0.050 0.200 0.500 0.005 0.020 0.050 0.200 0.500
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Figure 4: Performance of multi-stage convex relaxation on simulation dath.average training
squared error versus Right: parameter estimation error vergus

In the second experiment, we use tBeston Housinglata to illustrate the effectiveness of
multi-stage convex relaxation. This data set contains 506 census tractstinBrom the 1970
census, available from tHg8Cl Machine Learning Database Repositoht t p: // ar chi ve. i cs.
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uci . edu/ M /. Each census tract is a data-point, with 13 features (we add a confitattom e as
the 14th feature), and the desired output is the housing price. In this éxamgorandomly partition
the data into 20 training plus 486 test points. We perform the experiments 10§ tme report
training and test squared error versus the regularization paramtedifferentq. The results are
plotted in Figure 5. In this caskgs is not effective, while cappet; regularization witho = 100\

is slightly better than Lasso. Note that this data set contains only a small nudnbelr4) features,
which is not the case where we can expect significant benefit from thiestage approach (most of
other UCI data similarly contain only small number of features). In order taiitesthe advantage
of the multi-stage method more clearly, we also report results on a modifiedrBldstesing data,
where we append 20 random features (similar to the simulation experimente)ddgimal Boston
Housing data, and rerun the experiments. The results are shown in Big#s expected from
Theorem 2 and the discussion thereafter, sthbecomes large, the multi-stage convex relaxation
approach with capped; regularization andl s regularization perform significantly better than the
standard Lasso.

— Lt o - L
--0- capped-L1 (10 * lambda) . -0 capped-L1 (10 * lambda) +
o o
O 7|+ capped-L1 (100 * lambda) */ .0 © -+ capped-L1 (100 * lambda)
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~ B 0
] i . o _| R *
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Figure 5: Performance of multi-stage convex relaxation on the originabBd$ousing data. Left:
average training squared error veraufight: test squared error vershis

4. Discussion
Many machine learning applications require solving nonconvex optimizatmlgms. There are

two approaches to this problem:

e Heuristic methods such as gradient descent that only find a local minimumawbedck of
this approach is the lack of theoretical guarantee showing that the local mimgiues a
good solution.
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Figure 6: Performance of multi-stage convex relaxation on the modified Bbktosing data. Left:
average training squared error veraufight: test squared error vershis

e Convex relaxation such dg-regularization that solves the problem under some conditions.
However it often leads to a sub-optimal solution in reality.

The goal of this paper is to remedy the above gap between theory arit@rda particular, we
investigated a multi-stage convex relaxation scheme for solving problems witborwex objective
functions. The general algorithmic technique is presented first, whicheapplied to a wide range
of problems. It unifies a number of earlier approaches. The intuition idfiteereonvex relaxation
iteratively by using solutions obtained from earlier stages. This leads ta lbeitebetter convex
relaxation formulations, and thus better and better solutions.

Although the scheme only finds a local minimum, the above argument indicatabehatal
minimum it finds should be closer to the original nonconvex problem than timelaté convex
relaxation solution. In order to prove the effectiveness of this apprtfemretically, we considered
the sparse learning problem where the behavior of convex relaxatamsgl). has been well studied
in recent years. We showed that under appropriate conditions, tietdation from the multi-stage
convex relaxation algorithm is superior to the global solution of the staridacdnvex relaxation
for learning sparse targets. Experiments confirmed the effectivehttis method.

We shall mention that our theory only shows that nonconvex regularizaébaves better than
Lasso under appropriate sparse eigenvalue conditions. When sugtitiaas hold, multi-stage con-
vex relaxation is superior. On the other hand, when such conditions &ihem Lasso nor (the
local solution of) multi-stage convex relaxation can be shown to work welvd¥er, in such case,
some features will become highly correlated, and local solutions of novegdormulations may
become unstable. In order to improve stability, it may be helpful to employ ereendthods such
as bagging. Our empirical experience suggests that when featurégyhhe correlated, convex
formulations may perform better than (non-bagged) nonconvex formntatioe to the added sta-
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bility. However, since our analysis doesn't yield any insights in this séenfarther investigation
is necessary to theoretically compare convex formulations to baggedmaxcimrmulations.

Finally, multi-stage convex relaxation is not the only numerical method that des s0NnCON-
vex formulations with strong theoretical guarantee. For example, the MGgegure in Zhang
(2010) offers a different method with similar guarantee. This opens th&ilgbty of investigating
other local solution methods for nonconvex optimization such as modifiedegtagdescent algo-
rithms that may be potentially more efficient.

Appendix A. Proof of Theorem 2

The analysis is an adaptation of Zhang (2009a). We first introduce sefimitidns. Consider the
positive semi-definite matriA = n-1X "X € R9%9, Givens k > 1 such thas+k < d. Letl,J be
disjoint subsets of1,...,d} with k ands elements respectively. L&, € Rk be the restriction of
Atoindicesl, A ; € R*S be the restriction oA to indicesl on the left and on the right. Similarly
we define restrictionv; of a vectorw € RY on|; and for convenience, we allow eithey € R or
w; € R (where components not inare zeros) depending on the context.

We also need the following quantity in our analysis:
VTA|"]UHV||2

nk,s)= sup —————-.
’ vercuere) oV ALIVIUe

The following two lemmas are taken from Zhang (2009a). We skip the proof.

Lemma 3 The following inequality holds:

sl/?
T(k,s) < 7\/p+(s)/p_(k+ s)—1,
Lemma 4 Consider ks> 0and Gc {1,...,d} such thatG®| = k. Given anyw € RY. Let J be the
indices of the s largest components\gf (in absolute values), and+ G°UJ. Then
max(0,w; Aw) > p_ (k+8)([[wi[|2 —Ti(k+s,5) [wgl|1/S) [w |-
The following lemma gives bounds for sub-Gaussian noise needed imalysgs.

Lemma 5 Defineg = % S (W'xi —yi)xi. Under the conditions of Assumption 3.1, with probabil-
ity larger thanl—n:
1812 < 20%p-(1)In(2d/n)/n. (11)

Moreover, for any fixed F, with probability larger thdn—n:
18113 < p--(|F|)0?[7.4[F| +2.7In(2/n)]/n. (12)

Proof The proof relies on two propositions. The first proposition is a simple apjicaf large
deviation bound for sub-Gaussian random variables.

Proposition 6 Consider a fixed vectar= [uy,...,up) € R", and arandom vectoy = [yi,...,yn] €
R" with independent sub-Gaussian componeB&Y —E¥) < e7*/2 for all t and i, thenve > O:

Pr(‘uT(y— Ey)‘ > s) < 2e7€/(20%|ul)
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Proof (of Proposition 6). Let s, = Y ui(yi — Eyi); then by assumption,
E(% + e ) < 2e540°"/2  which implies that Rifs,| > €)e® < 2e5i%o*/2. Now let
t = ¢/(3;u?0?), we obtain the desired bound. [ |

The second proposition is taken from Pisier (1989).

Proposition 7 Consider the unit spheré’S' = {u: ||u||2 = 1} in R¥ (k> 1). Given anye > 0, there
exists are-cover QC S such thatmingeg ||u — q||2 < € for all ||ul|z = 1, with |Q] < (1+2/¢)k.

Now are are ready to prove (11). Let; be thej-th component ok;, then by definition, we
havezi”:lej <np4+(1) forall j=1,...,d. It follows from Proposition 6 that for at > 0 andj:
Pr(|§j| > &) < 2e"*/(2°%+(1), Taking union bound foj = 1,...,d, we obtain Pf||&||. > ¢) <
2de"¢?/(20%+ (1) which is equivalent to (11).

Next we are ready to prove (12). LBtbe the projection matrix to the column spannedXay
and letk be the dimension d?, thenk < |F|.

According to Proposition 7, giveny > 0, there exists a finite s& = {q;} with |Q| < (1+2/g;1)¥
such that|Pg ||, = 1 for all i, and min||Pz— Pg||2 < &; for all ||Pz||> = 1. To see the existence of
Q, we consider a rotation of the coordinate system (which does not clzangeam) so thaPz is the
projection ofz € R" to its firstk coordinates in the new coordinate system. Proposition 7 can now
be directly applied to the fird¢ coordinates in the new system, implying that we can pjc&uch
thatPg = q;.

For each, Proposition 6 implies thate, > 0:

Pr(‘qiTP(y - Ey)\ > 82) < 2e7%/(29°),
Taking union bound for alf € Q, we obtain with probability exceeding-12(1+ 2/g;)ke£2/20";
4Py~ Ey)| <&

for all .
Letz=P(y —Ey)/||P(y — Ey)||2, then there existssuch thal|Pz — Pg||2 < €1. We have

IP(y—Ey)|l2 =2 P(y — Ey)
<||Pz—Pq||2||P(y — Ey)|l2+ | P(y — Ey)|
<&1||P(y — Ey) |2+ €2.

Therefore
[Py —Ey)ll2 < &2/(1—¢1).

Letey = 2/15, andn = 2(1+2/g;)%e /2", we have
€3 = 20°[(4k+1)In2—Inn],
and thus
P+ (IF) Y218l =p (IF)) 21X (v — EY)ll2
<||IP(y —Ey)||2 < go\/2(4k+ 1)In2—2Inn.
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This simplifies to the desired bound.

Lemma 8 Considerw such that{j : wj # 0} C F and FNG = 0. Letw ) be the solution of

W
(10) with g= 1, and letAW = W —w. LetAg = minjeg)\(-ffl) andAg = max; S Y. Then

2||€]|e . 2||€lo + Ao
Wy < i + .
DRLIES v TP NI b TP Nel

Proof For simplicity, leth; = A

i The first order equation implies that

1 n
ﬁiZ\Z(XiTW7yi)Xi’j +)\ngde) =0,

where sgfwj) = 1 whenw; > 0, sgriw;) = —1 whenw; < 0, and sgfw;) € [-1,1] whenw; = 0.
This implies that for alv € RY, we have

v AAW < —2v'E— il)\jvjsgr(wj). (13)
Now, letv = Aw in (13), we obtain
0 <2AW'AAW < 2JAW ' E| — Jil)\jAv‘vjsgr(v‘vj)
<2/|AW|[1 /|| — _EFMAWJSQT(WJ') - g AjAWjsgn(Wi)
i€ jF

<2[|AW|[1]|€]lo + Z:)\”AWJ"_ > Ajlwj
jE

I1¢F
< %(2\\§\!oo—>\e)!\fvj\+ Y 2l + EF(ZHéHooHo)IAWj\-
je j¢GUF i€
By rearranging the above inequality, we obtain the desired bound. |

Lemma 9 Using the notations of Lemma 8, and let J be the indices of the largestfcimrgs (in
absolute value) ofvg. Let | = G°UJ and k= |G°|. If (Ao+2||€]|»)/(Ac — 2||€|lw) < 3, then

1AW[J2 < (1+ (3K/9)%°) || AW 2.
Proof Using(Ao+ 2||€]|w)/(Ac — 2||€]|) < 3, we obtain from Lemma 8
[Well1 < 3[|AW —We1.
Therefore|| AW — AW || < [|AWG||1/S < 3||AW — Wg]|1/S, which implies that

1AW — A [ < (]| A — A ||| A — A3 || o) /2
<32 AW — g |12 < (3K/9)M2 Ak |
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By rearranging this inequality, we obtain the desired bound. |

Lemma 10 Let the conditions of Lemma 8 hold, and letKG®|. Ift = 1 — mi(k+s,5)k'/?s71 > 0,
and (Ao +2||€]|w)/(Ac — 2||€]|e) < (4—1t)/(4—3t), then

1+ (3k/s)05

1/2
“ ~ (L=1)\2
P R S — c ; .
[[Aw([2 < to_ (Kt 9 {250 2+ (jg Ay ) ) ]

Proof LetJ be the indices of the largestcoefficients (in absolute value) @fg, andl = G°U J.
The conditions of the lemma imply that

max(0, A" AAW) >p_ (k+8)[|| A [|2 — Ti(k + 5, 8) [ W |1/8]|| A% |2
>p-(K+9)[1— (1—t)(4—1)(4—3t) ]| A |3
>0.5tp (k+9) AW |3

In the above derivation, the first inequality is due to Lemma 4; the secondaliggis due to the
conditions of this lemma plus Lemma 8, which implies that

IWal|z < 2”(;5”‘”"")‘0

Ello +A0
2 |Wgel]1 < VK||[W
2l el < 12

A —2[[Elle

and the last inequality follows from-1 (1—t)(4—t)(4—3t)~1 > 0.5t.
If AW, AAW < 0, then the above inequality, together with Lemma 9, imply the lemma. Therefore
in the following, we can assume that

AW AAW > 0.5tp_ (k+8) || Ay ||3.
Moreover, let\j = )\gf_l). We obtain from (13) withv = Aw,; the following:
20 AAW < —2AWE — Z)\jA\fvjsgr‘(\fvj)
IB
<2[|avin [ 2]|Ece |2 + 2| €6 |es %IAVAVJ‘H Z:M\AWJI - %M!A\fvjl
j€ j€ j

<2/ A ||2][€ce 2+ ( EPA,Z)”ZHAW 2,
j€
where); > Ag > 2||€g]|« is used to derive the last inequality. Now by combining the above two

estimates, we obtain
ZHQGCHZ + (Z:}\Jz)l/zl .
Je

The desired bound now follows from Lemma 9. [ |

. 1
A [
1A 2 < tp_(k+59)
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Lemma 11 Consider ¢-) that satisfies the conditions of Theorem 2. Agt= Ag/(|W;|) for some
W € R4, then

1/2 1/2 1/2
A <A g(wj| —8)?| +re?t Wi —W;>| .
(iZF J) (1; J jg: b

Proof By assumption, ifwj —W;j| > 6, then
g (Wj]) < 1< 07w —W;
otherwiseg (|W;|) < d'(|w;| —8). It follows that the following inequality always holds:
g (IW;]) < g/ (IWj| —8) + 67w —Wj|.

The desired bound is a direct consequence of the above result aBehtiten triangle inequality
(350 +%)2) 2 < (3) Y2+ (3 0612, m

Lemma 12 Under the conditions of Theorem 2, we have for aH 2k:

WO W< — L /Fn

p—(2k+s)

Proof Lett =0.5, then using Lemma 5, the condition of the theorem implies that

A+ 2||€]| < 4t
Ag(0) —2||€]j — 4—3t

Moreover, Lemma 3 implies that the condition
t=05<1-m(2k+s5)(2k)%%/s

is also satisfied.
Now, if we assume that at sonde> 1 that

G| < 2k, whereG,={j ¢ F:A"" >Ag(8)}, (14)

then we can obtain from Lemma 10 that

A 1++/3 3.2
O P @Wﬂm+¢FA] o VM

H2—tp,(2k+ S) ~tp_(2k+9)

where we have used the fact théf| < 2k < 2|F| andA > 20||€||.. in the derivation of the second
inequality. This shows that (14) implies the lemma.

Therefore next we only need to prove by inductior/dhat (14) holds forall =1,2,.... When
¢ =1, we haveG; = F¢, which implies that (14) holds.
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Now assume that (14) holds &t- 1 for somel > 1. Sincej € G} — F implies thatj ¢ F and
A (|w (1) \) )\(()) < \g'(B) by definition, and since/(z) is non-increasing when> 0 (theorem
assumption), we know thaﬁlgé_l)| > 0. Therefore by induction hypothesis we obtain

p-Y _w
Jris [ 3 s e
S kaeV FI=VIFL

p 2k+s

where the second to the last inequality is due to the fact that (14) implies the letdmala The
last inequality uses the definition 6fin the theorem. This inequality implies th&7| < 2|F| < 2k,
which completes the induction step. |

A.1 Proof of Theorem 2

As in the proof of Lemma 12, if we ldét= 0.5, then using Lemma 5, the condition of the theorem
implies that

A2lEle 4t
AG () —2[Ele — 4—3

Moreover, Lemma 3 implies that the condition
t=05<1-m2k+s,s)(2k)°%/s
is also satisfied.
We prove by induction: fof = 1, the result follows from Lemma 12. Fér> 1, we letG°® =

Fu{j: |v”v§£*1)\ > 0}. From the proof of Lemma 12, we know that

=|G° < 2k.

Letu = \/p, (k)o[\/7.4k/n+/2.7In(2/n)/n]. We know from Lemma 5, and > 20)|&| that
with probability 1— 2n,

1Eeell2 <[IEF[l2+ v/|GE — F|[€]|es
<u++/|G°—FJA/20

gu+<A/zo>\/ 5 i e
jeGE—F

<u+A(200) YWY — w5
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Now, using Lemma 10 and Lemma 11, we obtain

1A% |2

14+v3 [, (-1),211/2
< =TV 9llgae Al /
<okt 9 [Ee |!2+(_ZF( P )

|
1++/3

1/2 1/2
< 2||Ece|l2+A ‘(|wi|—0)2] +a67?t Wi w2
to_(krg |2l2 Q;g(lﬂ >> 31—

_ 1443
“tp_(k+59)

__1+v3
~tp_(k+s)

1/2
2u+A (Zg’(va — e)2> + 1.0 Y jw — WY,
IE

1/2
2u+A (Zg'(yvvj\ - e)2> +0.67||w— WD,
j€

The desired bound can now be obtained by solving this recursion witbhaesp
2 = [~

for £ =2,3,..., where||AW™Y|» is given by Lemma 12.

Appendix B. Some Non-convex Formulations in Machine Learning

Consider a set of input vectaxs, . . ., x, € R, with corresponding desired output variabygs . ., yn.

The task of supervised learning is to estimate the functional relatiogship(x) between the in-
put x and the output variablg from the training example$§(x1,y1), ..., (Xn,Yn)}. The quality of
prediction is often measured through a loss funcgof(x),y).

Now, consider linear prediction modé(x) = w'X. As in boosting or kernel methods, non-
linearity can be introduced by including nonlinear features.ifror linear models, we are mainly
interested in the scenario théif>> n. That is, there are many more features than the number of sam-
ples. In this case, an unconstrained empirical risk minimization is inadequzaadeethe solution
overfits the data. The standard remedy for this problem is to impose a d¢ohefrav to obtain a
regularizedproblem. This leads to the following regularized empirical risk minimization method:

weRd

W = arg min [iCP(WTXi,yi) +>\9(W)] : (15)

whereA > 0 is an appropriately chosen regularization condition. This is the motivatiothé&
general problem formulation (1) in Section 2.

B.1 Loss Function

Examples of loss functiop(w'x,y) in (15) include least squares for regressiagiw'x,y) =
(w'x —y)?, and 0-1 binary classification errop(w'x,y) = I(w'xy < 0), wherey € {41} are
the class labels, and-) is the set indicator function. The latter is nonconvex. In practice, for
computational reasons, a convex relaxation such as the SVMplessx,y) = max0,1—w'xy)
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is often used to substitute the classification error loss. Such a convex loigsrigeferred to as a
surrogate loss function, and the resulting method becomes a conveximlax&thod for solving
binary classification. This class of methods have been theoretically adatyBartlett et al. (2006)
and Zhang (2004). While asymptotically, convex surrogate methods asestent (that is, they
can be used to obtain Bayes optimal classifiers when the sample size dygsrodmity), for finite
data, these methods can be more sensitive to outliers. In order to alleviatteett®koutliers, one
may consider the smoothed classification error loss fungifen x,y) = min(a, max0,1—w'xy))
(a >1). Thisloss function is bounded, and thus more robust to outliers tharsSiilier finite sam-
ple size; moreover, it is piece-wise differentiable, and thus easier tdehtlrah the discontinuous
classification error loss. For comparison purpose, the three loss fasetie plotted in Figure 7.

o |
™ - 0-1 error
- SVM
o —— smoothed 0-1 error
2
o |
(aV]
& v |
2 —
e \
o :
o .
o | :
o
T T T T T

Figure 7: Loss Functions: classification error versus smoothed clasisifierror ¢ = 1) and SVM

B.2 Regularization Condition

Some examples of regularization conditions in (15) include squared regian g(w) = w'w,

and 1-norm regularizatiog(w) = ||w||1. The former can be generalized to kernel methods, and the
latter leads to sparse solutions. Sparsity is an important regularization canditich corresponds

to the (non-convex), regularization, defined dsv|o = |{j : wj # 0}| = k. That is, the measure

of complexity is the number of none zero coefficients. If we know the #ggrarametek for the
target vector, then a good learning methotlgsegularization:

we

- 12 T .
W = arg min— W' X;,Yi) subjecttol|lw|o <Kk, 16
9, min g 2, ®W i w) - subject tofwllo < (16)
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which applies the standard empirical risk minimization formulation to learhingonstrained
sparse targets.

If kis not known, then one may regakds a tuning parameter, which can be selected through
cross-validation. This method is often referred tsabset selectioim the literature. Sparse learn-
ing is an essential topic in machine learning, which has attracted considaviapksts recently. It
can be shown that the solution of the regularization problem in (16) achieves good prediction
accuracy if the target function can be approximated by a sparsgdowever, a fundamental dif-
ficulty with this method is the computational cost, because the number of sulbddts.o,d} of
cardinalityk (corresponding to the nonzero componenta/pfs exponential irk.

Due to the computational difficult, in practice, it is necessary to replacekil &pme easier
to solve formulations in (15). Specificalliy regularization is equivalent to (15) by choosing the
regularization function ag(w) = ||w||o. However, this function is discontinuous. For computational
reasons, it is helpful to consider a continuous approximation g(ith) = ||w||p, wherep > 0. If
p > 1, the resulting formulation is convex. In particular, by choosing the cdl@ggsoximation with
p = 1, one obtairLassq which is the standard convex relaxation formulation for sparse learning.
With p € (0,1), theL, regularizer|w||p is non-convex but continuous.

Supervised learning can be solved using general empirical risk minimizatromufation in
(15). Bothg andg can be non-convex in application problems. The traditional approach =eto u
convex relaxation to approximate it, leading to a single stage convex formul#titims paper, we
try to extend the idea by looking at a more general multi-stage convex relaxagthod, which
leads to more accurate approximations.

For illustration, we consider the following examples which will be used in our tigzussion.

e Smoothed classification error loss: formulation (15) with convex regulssizg(w) and
nonconvex loss function (witbh > 1)

o(w'x,y) = min(a,max(0,1—w"' xy)).
This corresponds tBo(W) = Ag(w), andR (W) = @(W ' X, yk) fork=1,...,nin (1).

e L, regularization (6< p < 1): formulation (15) with nonconvex regularizatigiw) = \|w||8
and a loss functiogy(-, -) that is convex iw. This corresponds t8o(w) =n=1 5, @(wx;,yi),
andRg(w) = A|wg|P fork=1,...,din (1).

e Smoothed.p, regularization (with parameters > 0 and 0< p < 1): formulation (15) with
nonconvex regularizatiog(w) = ¥ [(a + |wi|)P — aP]/(paP~1), and a loss functiowy(-, )
that is convex inw. This corresponds tBo(w) =n=13; @w'x;,yi), andRe(w) = A[(a +
Iwi|)P —aP]/(paP-1) for k=1,...,d in (1). The main difference between standagdand
smoothedL,, is at |wy| = 0, where the smoothed, regularization is differentiable, with
derivative 1. This difference is theoretically important as discusseddtid®e3. 1.

e Smoothed log regularization (with parameter- 0): formulation (15) with nonconvex reg-
ularizationg(w) = Saln(a + |wy|), and a loss functiomp(-,-) that is convex inw. This
corresponds t&(w) = n~ 15", w'xi,yi), andRe(w) = AaIn(a + |wy|) fork=1,...,d
in (1). Similar to the smoothet, regularization, the smoothed log-loss has derivative 1 at
|wy| = 0.
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e Cappedk; regularization (with parametar > 0): formulation (15) with nonconvex regu-
larization g(w) = z?zlmin(|wj\,a), and a loss functiony(-,-) that is convex inw. This
corresponds tdp(w) = N5, e(w'xi,yi), and Re(w) = Amin(jwy|,a) for k =1,....d
in (1). The capped: regularization is a good approximation kg because ast — 0,
Ykmin(jwg|,a)/a — ||w||o. Therefore whem — 0, this regularization condition is equiv-
alent to the sparskg regularization up to a rescaling af Capped:; regularization is a
simpler but less smooth version of the SCAD regularization (Jianging F&1)28CAD is
more complicated, but its advantage cannot be shown through our analysis

Appendix C. Some Examples of Multi-stage Convex Relaxation Mébds

The multi-stage convex relaxation method can be used with examples in Sectiorobiain con-
crete algorithms for various formulations. We describe some examples here.

C.1 Smoothed Classification Loss

We consider a loss term of the forRkx(w) = min(a, max0,1—w'xyyk)) for k = 1,...,n (with
a > 1), and relax it to the SVM losis,(w) = max(0,1—w ' Xyk).
The optimization problem is

W = argmin [_imin(a, max0,1—w'xiyi)) + )\g(w)] ,

where we assume thgtw) is a convex regularization condition suchgga/) = A|jw||3.

_ Consider concave duality in Section 2.2. Eaghis a scalar in the rang@y = [0,»), and
R(uk) = min(a, uk). We haveR(vik) = a(vik— 1)l (vk € [0,1]), defined on the domaivy > 0. The
solution in (4) is given byl = 1 (WTxkyk > 1—a) for k=1,...,n. Therefore Section 2.2 implies

that the multi-stage convex relaxation solves the weighted SVM formulation

n
W = arg nv1vin [Zl\“/i max(0,1—w'xiy;) + )\g(w)] ,

where the relaxation parameters updated as
Gi=IW'xyi>1—0a) (i=1,...,n).
Intuitively, the mis-classified point& " xjy; < 1— o are considered as outliers, and ignored.

C.2 Lp and SmoothedL, Regularization

In sparse regularization, we may consider a regularizationR(m) = Ajwy|P/p (k=1,...,d) for
somep € (0,1). Given anyq > p, (3) holds withux = hg(w) = |wi|% € [0,), and R¢(ux) =
Auk|P/9/p, whereuy € Qy = [0,%). The dual isR:(vk) = —Ac(p,q)(vk/A)P/(P-9), defined on
the domainvy > 0, wherec(p,q) = (q— p)p *q¥(P-9. The solution in (4) is given by =
(A/a)wi P

An extension is to consider a regularization teRafw) = A[(at + [wi|)P — aP]/(paP1) (k =
1,...,d) for somep € (0,1) anda > 0. Given anyq > p, (3) holds withux = hy(w) = (a +
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wi|)9 € [a9, 00), andRy (Uy) = A[uP’?— aP]/(paP1), whereuy € Qy = [0,e0). The dual isRe (Vi) =
—Ac(p,q)aP/(P=9 (v /A)P/(P=9) 1 Aa/p, defined on the domairvk > 0, where c(p,q) =
(q— p)pP/(@-P)q¥(P-9, The solution in (4) is given by = A/(qaP 1) (a + |wy|)P9,

An alternative is to relax smoothed, regularization p € (0,1)) directly to Ly regularization
for g > 1 (one usually takes either= 1 orq = 2). In this caseuy = hx(w) = |wi|? € [0, ), and
Re(U) = A[(a+up/%)P —aP]/(paP-1). Although it is not difficult to verify thaRy(uy) is concave,
we do not have a simple closed form Rjf(vi). However, it is easy to check that the solution in (4)
is given byl = A/(qaP ) (a -+ [wi|) P~ w9,

In summary, forl, and smoothedl,, we consider the following optimization formulation for
somea > 0 andp € (0,1]:

d
W= argmin[Ro(w) +A Y (a+ |Wj|)p] ;
w J:]-

where we assume thBp(w) is a convex function ofv.
From previous discussion, the multi-stage convex relaxation method in S@cdrecomes a
weightedLq regularization formulation fog > 1:

d
N . o e 14
W = arg nvwvm[Ro(W) + J;VJ [wij ] :
where the relaxation parameters updated as

Vi = N(p/a) (o + W )P 19 (j=1,....d).

The typical choices off areq =1 orq = 2. That is, we relax , regularization td_; or L regular-
ization.

Finally, we note that the two stage versionlgf regularization, relaxed thg with g =1, is
referred to Adaptive-Lasso (Zou, 2006).

C.3 Smoothedog Regularization

This is a different sparse regularization condition, where we considgyuarization ternR(w) =
AaIn(a+|wy|) for somea > 0. Given anyg > 0, (3) holds withuy = hy(w) = (a + |w|)9 € [a9, o),
and R¢(ux) = A(a/q)In(uk), whereuy € Qy = [0,00). The dual isR;(vk) = A(a/g)[Invk+1—
In(Aa/q)], defined on the domaivk > 0. The solution in (4) is given byx = A(a/q) (o + [wy|) 9.

Similar to smoothed ,, we may relax directly thq, with ux = h(w) = |wg|9 € [0, ). Re(uk) =
Aaln(a 4+ uﬁ/q), where The solution in (4) is given B = A(a/q) (o + [wi|) =2 wy |19

Similar to smoothed log regularization, the multi-stage convex relaxation methodtinisa.2
becomes a weighted, regularization formulation fog > 1:

d
W = arg n\?vin[Ro(w) + levj W |C1] ’
where the relaxation parameters updated as

9 = Aa/a)a-+ ) w9 (j=1.....d).

This resulting procedure is the same as the one empirically studied in Candlg2@08).
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C.3.1 CAPPEDL; REGULARIZATION

We consider another sparse regularization term ®itlw) = Amin(jwy|,a) (k=1,...,d) for some
o > 0. In this case, (3) holds with, = hi(w) = [wy| € [0,), andRg(ux) = A min(u, a), where
Uk € Qk = [0,). The dual isR;(vk) = Aa(—14vi/A)l (vk € [0,A]) defined]0, ), wherel (-) is the
set indicator function. The solution in (4) is given iy= Al (jwg| < a).

In capped.; regularization, we consider the optimization problem

d
W = arg min[Ro(W) +A S min(a, [w; D] ;

where we assume thBH(w) is a convex function ofv.
From Section 2.2, the multi-stage convex relaxation becomes a weightedularization for-
mulation:

d
W =arg rpvin[Ro(W) - levjwn] ,
where the relaxation parameters updated as

V=MW <a) (j=1....d).

This method has an intuitive interpretation: in order to achieve sparsity, theesti_; regular-
ization not only shrinks small coefficients to zero, but also shrinks lasg#ficients. This causes a
bias. The cappetl; formulation removes the bias by adaptively adjusting the relaxation parameter
V; so that if|wj| is large, then we do not penalize the corresponding varipble

C.3.2 SPARSEEIGENVALUE PROBLEM

We use a simple example to illustrate that the multi-stage convex relaxation ideacdoety apply
to formulations with convex risks. Consider the sparse eigenvalue problleene we are interested
in finding the largest eigenvalue of a positive semi-definite ma&tri®ne formulation is

W =arg max

)
[wll2<1

d
.
w AW =AY (a+ |wj|)P
)

with parametemp € (0,1) and a small parameter > 0 to encourage sparsity. N =0, then it

is the standard eigenvalue problem without sparsity constraints. Althoegétahdard eigenvalue
problem is not convex imv, it has a convex relaxation to a semi-definite programming problem,
and thus can be efficiently solved. For convenience, we think of theatdeienvalue problem as
“convex” for the purpose of this paper. The multi-stage convex relaxdtzomes:

d
wh AW — 5 viws |
=1

W =arg max
[wll2<1

which is a standard eigenvalue problem. The relaxation parameter is updated

o = A(p/2)(a+ )P gL (j=1,....d).
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C.3.3 MATRIX REGULARIZATION

Our final example is multi-task learning with matrix regularization, also consideré\rgyriou
et al. (2008). In this casey is not a vector, but a matrix, with columns (taskg). We solve a
problem of the following form:

w = arg rpvinlﬁ R (W) + Atr((al +ww)P/2)|
=]

In the above formulation’ is the risk function for task. The matrix regularization used here is
the counterpart of , regularization for vectors. It encourages low-rank i 2. In particular, the
case ofp = 1 is often called trace norm (or nuclear norm). It is convex and fretiyuased in the
literature. The parameter> 0 gives some smoothness, similar to the vector case.

The case op < 1 gives better low-rank approximation, similar to the vector regularizatios cas
Again, this problem can be solved with multi-stage convex relaxation methothidrcase, the
relaxation parameter is a positive semi-definite matrix, and we relax the regularization term to
h(w) = (al +ww') as a matrix. Thus the relaxed regularization term becontegotr+ww')).

This regularization decouples the problems as follows, which allows us te salth task sepa-
rately:

W' = arg m{in[Rf(wf) + (WE)T\A/WZ] (¢=1,2,...,m).

This is a key advantage of the method. Similar to the vector case, we havdlthérfg update
formula for the relaxation parameter:

¥ =A(p/2)(al +Ww")(P-2)/2,
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