
Journal of Machine Learning Research 10 (2009) 2615-2637 Submitted 2/09; Revised 8/09; Published 11/09

Hash Kernels for Structured Data

Qinfeng Shi QINFENG.SHI@GMAIL .COM

College of Engineering and Computer Science
The Australian National University
Canberra, ACT 0200, Australia

James Petterson JPETTERSON@GMAIL .COM

Statistical Machine Learning
National ICT Australia
Locked Bag 8001
Canberra, ACT 2601, Australia

Gideon Dror GIDEON@MTA .AC.IL
Division of Computer Science
Academic College of Tel-Aviv-Yaffo, Israel

John Langford JL@HUNCH.NET

Alex Smola ALEX .SMOLA@GMAIL .COM

Yahoo! Research
New York, NY and Santa Clara, CA, USA

S.V.N. Vishwanathan VISHY@MAIL .RSISE.ANU .EDU.AU

Department of Statistics
Purdue University, IN, USA

Editor: Soeren Sonnenburg, Vojtech Franc, Elad Yom-Tov and MicheleSebag

Abstract

We propose hashing to facilitate efficient kernels. This generalizes previous work using sampling
and we show a principled way to compute the kernel matrix for data streams and sparse feature
spaces. Moreover, we give deviation bounds from the exact kernel matrix. This has applications to
estimation on strings and graphs.

Keywords: hashing, stream, string kernel, graphlet kernel, multiclass classification

1. Introduction

In recent years, a number of methods have been proposed to deal with the fact that kernel methods
have slow runtime performance if the number of kernel functions used in theexpansion is large.
We denote byX the domain of observations and we assume thatH is a Reproducing Kernel Hilbert
SpaceH with kernelk : X×X→ R.

1.1 Keeping the Kernel Expansion Small

One line of research (Burges and Schölkopf, 1997) aims to reduce the number of basis functions
needed in the overall function expansion. This led to a number of reducedset Support Vector algo-
rithms which work as follows: a) solve the full estimation problem resulting in a kernel expansion,

c©2009 Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola and S.V.N. Vishwanathan.

SHI , PETTERSON, DROR, LANGFORD, SMOLA AND V ISHWANATHAN

b) use a subset of basis functions to approximate the exact solution, c) use the latter for estimation.
While the approximation of the full function expansion is typically not very accurate, very good
generalization performance is reported. The big problem in this approachis that the optimization of
the reduced set of vectors is rather nontrivial.

Work on estimation on a budget (Dekel et al., 2006) tries to ensure that this problem does not
arise in the first place by ensuring that the number of kernel functions used in the expansion never
exceeds a given budget or by using anℓ1 penalty (Mangasarian, 1998). For some algorithms, for
example, binary classification, guarantees are available in the online setting.

1.2 Keeping the Kernel Simple

A second line of research uses variants of sampling to achieve a similar goal.That is, one uses the
feature map representation

k(x,x′) =
〈

φ(x),φ(x′)
〉

.

Hereφ mapsX into some feature spaceF. This expansion is approximated by a mappingφ : X→ F

k(x,x′) =
〈

φ(x),φ(x′)
〉

oftenφ(x) = Mφ(x).

Hereφ has more desirable computational properties thanφ. For instance,φ is finite dimensional
(Fine and Scheinberg, 2001; Kontorovich, 2007; Rahimi and Recht, 2008), orφ is particularly sparse
(Li et al., 2007).

1.3 Our Contribution

Firstly, we show that the sampling schemes of Kontorovich (2007) and Rahimiand Recht (2008)
can be applied to a considerably larger class of kernels than originally suggested—the authors only
consider languages and radial basis functions respectively. Secondly, we propose a biased approxi-
mationφ of φ which allows efficient computations even on data streams. Our work is inspired by the
count-min sketch of Cormode and Muthukrishnan (2004), which uses hash functions as a computa-
tionally efficient means of randomization. This affords storage efficiency(we need not store random
vectors) and at the same time they give performance guarantees comparable to those obtained by
means of random projections.

As an application, we demonstrate computational benefits over suffix arraystring kernels in the
case of document analysis and we discuss a kernel between graphs which only becomes computa-
tionally feasible by means of compressed representation.

1.4 Outline

We begin with a description of previous work in Section 2 and propose the hash kernels in Section 3
which is suitable for data with simple structure such as strings. An analysis follows in Section 4.
And we propose a graphlet kernel which generalizes hash kernels to data with general structure—
graphs and discuss a MCMC sampler in Section 5. Finally we conclude with experiments in Sec-
tion 6.

2616

HASH KERNELS FORSTRUCTUREDDATA

2. Previous Work and Applications

Recently much attention has been paid to efficient algorithms with randomization orhashing in the
machine learning community.

2.1 Generic Randomization

Kontorovich (2007) and Rahimi and Recht (2008) independently propose the following: denote by
c∈ C a random variable with measure P. Moreover, letφc : X→ R be functions indexed byc∈ C.
For kernels of type

k(x,x′) = Ec∼P(c)

[

φc(x)φc(x
′)
]

(1)

an approximation can be obtained by samplingC = {c1, . . . ,cn} ∼ P and expanding

k(x,x′) =
1
n

n

∑
i=1

φci (x)φci (x
′).

In other words, we approximate the feature mapφ(x) by φ(x) = n−
1
2 (φc1(x), . . . ,φcn(x)) in the

sense that their resulting kernel is similar. Assuming thatφc(x)φc(x′) has bounded range, that is,
φc(x)φc(x′) ∈ [a,a+R] for all c, x andx′ one may use Chernoff bounds to give guarantees for large
deviations betweenk(x,x′) and k(x,x′). For matrices of sizem×m one obtains bounds of type
O(R2ε−2 logm) by combining Hoeffding’s theorem with a union bound argument over theO(m2)
different elements of the kernel matrix. The strategy has widespread applications beyond those of
Kontorovich (2007) and Rahimi and Recht (2008):

• Kontorovich (2007) uses it to design kernels on regular languages by sampling from the class
of languages.
• The marginalized kernels of Tsuda et al. (2002) use a setting identical to (1) as the basis for

comparisons between strings and graphs by defining a random walk as thefeature extractor.
Instead of exact computation we could do sampling.
• The Binet-Cauchy kernels of Vishwanathan et al. (2007b) use this approach to compare tra-

jectories of dynamical systems. Herec is the (discrete or continuous) time and P(c) discounts
over future events.
• The empirical kernel map of Schölkopf (1997) usesC = X and employs some kernel function

κ to defineφc(x) = κ(c,x). Moreover, P(c) = P(x), that is, placing our sampling pointsci on
training data.
• For RBF kernels, Rahimi and Recht (2008) use the fact thatk may be expressed in the system

of eigenfunctions which commute with the translation operator, that is the Fourier basis

k(x,x′) = Ew∼P(w)[e
−i〈w,x〉ei〈w,x′〉]. (2)

Here P(w) is a nonnegative measure which exists for any RBF kernel by virtue of Bochner’s
theorem, hence (2) can be recast as a special case of (1). What setsit apart is the fact that the
variance of the featuresφw(x) = ei〈w,x〉 is relatively evenly spread. (2) extends immediately to
Fourier transformations on other symmetry groups (Berg et al., 1984).
• The conditional independence kernel of Watkins (2000) is one of the first instances of (1).

Here X,C are domains of biological sequences,φc(x) = P(x|c) denotes the probability of
observingx given the ancestorc, and P(c) denotes a distribution over ancestors.

2617

SHI , PETTERSON, DROR, LANGFORD, SMOLA AND V ISHWANATHAN

While in many cases straightforward sampling may suffice, it can prove disastrous wheneverφc(x)
has only a small number of significant terms. For instance, for the pair-HMMkernel most strings
c areunlikely ancestors ofx andx′, hence P(x|c) and P(x′|c) will be negligible for mostc. As a
consequence the number of strings required to obtain a good estimate is prohibitively large—we
need to reduceφ further.

2.2 Locally Sensitive Hashing

The basic idea of randomized projections (Indyk and Motawani, 1998) is that due to concentration of
measures the inner product〈φ(x),φ(x′)〉 can be approximated by∑n

i=1〈vi ,φ(x)〉〈vi ,φ(x′)〉 efficiently,
provided that the distribution generating the vectorsvi satisfies basic regularity conditions. For
example,vi ∼N(0, I) is sufficient, whereI is an identity matrix. This allows one to obtain Chernoff
bounds andO(ε−2 logm) rates of approximation, wherem is the number of instances. The main
cost is to storevi and perform theO(nm) multiply-adds, thus rendering this approach too expensive
as a preprocessing step in many applications.

Achlioptas (2003) proposes a random projection approach that uses symmetric random variables
to project the original feature onto a lower dimension feature space. This operation is simple and
faster and the author shows it does not sacrifice the quality of the embedding. Moreover, it can be
directly applied to online learning tasks. Unfortunately, the projection remainsdense resulting in
relatively poor computational and space performance in our experiments.

2.3 Sparsification

Li et al. (2007) propose to sparsifyφ(x) by randomization while retaining the inner products. One
problem with this approach is that when performing optimization for linear function classes, the
weight vectorw which is a linear combination ofφ(xi) remains large and dense, thus obliterating a
significant part of the computational savings gained in sparsifyingφ.

2.4 Count-Min Sketch

Cormode and Muthukrishnan (2004) propose an ingenious method for representing data streams.
Denote byI an index set. Moreover, leth : I→ {1, . . . ,n} be a hash function and assume that there
exists a distribution overh such that they are pairwise independent.

Assume that we drawd hash functionshi at random and letS∈ R
n×d be a sketch matrix. For

a stream of symbolss updateShi(s),i ← Shi(s),i + 1 for all 1≤ i ≤ d. To retrieve the (approximate)
counts for symbols′ compute mini Shi(s′),i . Hence the name count-min sketch. The idea is that
by storing counts ofs according to several hash functions we can reduce the probability of colli-
sion with another particularly large symbol. Cormode and Muthukrishnan (2004) show that only
O(ε−1 log1/δ) storage is required for anε-good approximation, where 1−δ is the confidence.

Cormode and Muthukrishnan (2004) discuss approximating inner products and the extension
to signed rather than nonnegative counts. However, the bounds degrade for real-valued entries.
Even worse, for the hashing to work, one needs to take the minimum over a set of inner product
candidates.

2618

HASH KERNELS FORSTRUCTUREDDATA

2.5 Random Feature Mixing

Ganchev and Dredze (2008) provide empirical evidence that using hashing can eliminate alphabet
storage and reduce the number of parameters without severely impacting model performance. In
addition, Langford et al. (2007) released the Vowpal Wabbit fast online learning software which
uses a hash representation similar to the one discussed here.

2.6 Hash Kernel on Strings

Shi et al. (2009) propose a hash kernel to deal with the issue of computational efficiency by a very
simple algorithm: high-dimensional vectors are compressed by adding up all coordinates which
have the same hash value—one only needs to perform as many calculations as there are nonzero
terms in the vector. The hash kernel can jointly hash both label and features, thus the memory
footprint is essentially independent of the number of classes used.

3. Hash Kernels

Our goal is to design a possibly biased approximation which a) approximately preserves the inner
product, b) which is generally applicable, c) which can work on data streams, and d) which increases
the density of the feature matrices (the latter matters for fast linear algebra onCPUs and graphics
cards).

3.1 Kernel Approximation

As before denote byI an index set and leth : I→ {1, . . . ,n} be a hash function drawn from a
distribution of pairwise independent hash functions. Finally, assume thatφ(x) is indexed byI and
that we may computeφi(x) for all nonzero terms efficiently. In this case we define the hash kernel
as follows:

k(x,x′) =
〈

φ(x),φ(x′)
〉

with φ j(x) = ∑
i∈I;h(i)= j

φi(x) (3)

We are accumulating all coordinatesi of φ(x) for whichh(i) generates the same valuej into coordi-
nateφ j(x). Our claim is that hashing preserves information as well as randomized projections with
significantly less computation. Before providing an analysis let us discuss two key applications:
efficient hashing of kernels on strings and cases where the number of classes is very high, such as
categorization in an ontology.

3.2 Strings

Denote byX = I the domain of strings on some alphabet. Moreover, assume thatφi(x) := λi#i(x)
denotes the number of times the substringi occurs inx, weighted by some coefficientλi ≥ 0. This
allows us to compute a large family of kernels via

k(x,x′) = ∑
i∈I

λ2
i #i(x)#i(x

′). (4)

Teo and Vishwanathan (2006) propose a storage efficientO(|x|+ |x′|) time algorithm for computing
k for a givenpair of stringsx,x′. Here|x| denotes the length of the string. Moreover, a weighted
combination∑i αik(xi ,x) can be computed inO(|x|) time afterO(∑i |xi |) preprocessing.

2619

SHI , PETTERSON, DROR, LANGFORD, SMOLA AND V ISHWANATHAN

The big drawback with string kernels using suffix arrays/trees is that theyrequire large amounts
of working memory. Approximately a factor of 50 additional storage is required for processing
and analysis. Moreover, updates to a weighted combination are costly. Thismakes it virtually
impossible to apply (4) to millions of documents. Even for modest document lengths this would
require Terabytes of RAM.

Hashing allows us to reduce the dimensionality. Since for every documentx only a relatively
small number of terms #i(x) will have nonzero values—at mostO(|x|2) but in practice we will
restrict ourselves to substrings of a bounded lengthl leading to a cost ofO(|x| · l)—this can be done
efficiently in a single pass overx. Moreover, we can computeφ(x) as a pre-processing step and
discardx altogether.

Note that this process spreads out the features available in a documentevenlyover the coordi-
nates ofφ(x). Moreover, note that a similar procedure can be used to obtain good estimates for a
TF/IDF reweighting of the counts obtained, thus rendering preprocessing as memory efficient as the
actual computation of the kernel.

3.3 Multiclass

Classification can sometimes lead to a very high dimensional feature vector even if the underly-
ing feature mapx→ φ(x) may be acceptable. For instance, for a bag-of-words representation of
documents with 104 unique words and 103 classes this involves up to 107 coefficients to store the
parameter vector directly when theφ(x,y) = ey⊗ φ(x), where⊗ is the tensor product andey is a
vector whosey-th entry is 1 and the rest are zero. The dimensionality ofey is the number of classes.

Note that in the above caseφ(x,y) corresponds to a sparse vector which has nonzero terms only
in the part corresponding toey. That is, by using the joint index(i,y) with φ(x,y)(i,y′) = φi(x)δy,y′

we may simply apply (3) to an extended index to obtain hashed versions of multiclass vectors. We
have

φ j(x,y) = ∑
i∈I;h(i,y)= j

φi(x).

In some cases it may be desirable to compute a compressed version ofφ(x), that is,φ(x) first and
subsequently expand terms withy. In particular for strings this can be useful since it means that
we need not parsex for every potential value ofy. While this deteriorates the approximation in an
additive fashion it can offer significant computational savings since all we need to do is permute a
given feature vector as opposed to performing any summations.

3.4 Streams

Some features of observations arrive as a stream. For instance, when performing estimation on
graphs, we may obtain properties of the graph by using an MCMC sampler. The advantage is that
we need not store the entire data stream but rather just use summary statisticsobtained by hashing.

4. Analysis

We show that the penalty we incur from using hashing to compress the numberof coordinates only
grows logarithmically with the number of objects and with the number of classes. While we are

2620

HASH KERNELS FORSTRUCTUREDDATA

unable to obtain the excellentO(ε−1) rates offered by the count-min sketch, our approach retains
the inner product property thus making hashing accessible to linear estimation.

4.1 Bias and Variance

A first step in our analysis is to compute bias and variance of the approximationφ(x) of φ(x).

Whenever needed we will writeφh
(x) andk

h
(x,x′) to make the dependence on the hash functionh

explicit. Using (3) we have

k
h
(x,x′) = ∑

j
∑

i:h(i)= j

φi(x) ∑
i′:h(i′)= j

φ′i(x
′)

= k(x,x′)+ ∑
i,i′:i 6=i′

φi(x)φi′(x
′)δh(i),h(i′) (5)

whereδ is the Kronecker delta function. Taking the expectation with respect to the random choice
of hash functionsh we obtain the expected bias

Eh[k
h
(x,x′)] =

(

1− 1
n

)

k(x,x′)+ 1
n ∑

i

φi(x)∑
i′

φi′(x
′)

Here we exploited the fact that for a random choice of hash functions thecollision probability is1
n

uniformly over all pairs(i, j). Consequentlyk(x,x′) is a biased estimator of the kernel matrix, with
the bias decreasing inversely proportional to the number of hash bins.

The main change is arank-1modification in the kernel matrix. Given the inherent high dimen-
sionality of the estimation problem, a one dimensional change does not in general have a significant
effect on generalization.

Straightforward (and tedious) calculation which is completely analogous to theabove derivation

leads to the following expression for the variance Varh[k
h
(x,x′)] of the hash kernel:

Varh[k
h
(x,x′)] = n−1

n2

(

k(x,x)k(x′,x′)+k2(x,x′)−2∑
i

φ2
i (x)φ

2
i (x
′)
)

Key in the derivation is our assumption that the family of hash functions we aredealing with is
pairwise independent.

As can be seen, the variance decreasesO(n−1) in the size of the values of the hash function.
This means that we have anO(n−

1
2) convergence asymptotically to the expected value of the kernel.

4.2 Information Loss

One of the key fears of using hashing in machine learning is that hash collisions harm performance.
For example, the well-known birthday paradox shows that if the hash function maps into a space of
sizen then withO(n

1
2) features a collision is likely. When a collision occurs, information is lost,

which may reduce the achievable performance for a predictor.

Definition 1 (Information Loss) A hash function h causes information loss on a distributionD with
a loss function L if the expected minimum loss before hashing is less than the expected minimum
loss after hashing:

min
f

E
(x,y)∼D

[L(f (x),y))] < min
g

E
(x,y)∼D

[L(g(h(x)),y))]

2621

SHI , PETTERSON, DROR, LANGFORD, SMOLA AND V ISHWANATHAN

Redundancy in features is very helpful in avoiding information loss. The redundancy can be
explicit or systemic such as might be expected with a bag-of-words or substring representation. In
the following we analyze explicit redundancy where a feature is mapped to two or more values in
the space of sizen. This can be implemented with a hash function by (for example) appending the
string i ∈ {1, . . . ,c} to featuref and then computing the hash off ◦ i for the i-th duplicate.

The essential observation is that the information in a feature is only lost if all duplicates of the
feature collide with other features. Given this observation, it’s unsurprising that increasing the size
of n by a constant multiplec and duplicating featuresc times makes collisions with all features
unlikely. It’s perhaps more surprising that when keeping the size ofn constantand duplicating
features, the probability of information loss can godown.

Theorem 2 For a random function mapping l features duplicated c times into a space of size n, for
all loss functions L and and distributions D on n features, the probability (overthe random function)
of no information loss is at least:

1− l [1− (1−c/n)c +(lc/n)c].

To see the implications considerl = 105 and n = 108. Without duplication, a birthday paradox
collision is virtually certain. However, ifc = 2, the probability of information loss is bounded by
about 0.404, and forc = 3 it drops to about 0.0117.
Proof The proof is essentially a counting argument with consideration of the fact that we are dealing
with a hashfunctionrather than a random variable. It is structurally similar to the proof for a Bloom
filter (Bloom, 1970), because the essential question we address is: “What is a lower bound on the
probability that all features have one duplicate not colliding with any other feature?”

Fix a featuref . We’ll argue about the probability that allc duplicates off collide with other
features.

For feature duplicatei, lethi = h(f ◦ i). The probability thathi = h(f ′ ◦ i′) for some other feature
f ′ ◦ i′ is bounded by(l −1)c/n because the probability for each other mapping of a collision is 1/n
by the assumption thath is a random function, and the union bound applied to the(l−1)c mappings
of other features yields(l −1)c/n. Note that we do not care about a collision of two duplicates of
the same feature, because the feature value is preserved.

The probability that all duplicates 1≤ i ≤ c collide with another feature is bounded by(lc/n)c+
1− (1−c/n)c. To see this, letc′ ≤ c be the number of distinct duplicates off after collisions. The
probability of a collision with the first of these is bounded by(l−1)c

n . Conditioned on this collision,

the probability of the next collision is at most(l−1)c−1
n−1 , where 1 is subtracted because the first

location is fixed. Similarly, for theith duplicate, the probability is(l−1)c−(i−1)
n−(i−1) . We can upper bound

each term aslcn , implying the probability of allc′ duplicates colliding with other features is at most
(lc/n)c′ . The probability thatc′ = c is the probability that none of the duplicates off collide, which
is (n−1)!

nc(n−c−1)! ≥ ((n− c)/n)c. If we pessimistically assume thatc′ < c implies that every duplicate
collides with another feature, then

P(coll)≤ P(coll|c′ = c)P(c′ = c)+P(c′ 6= c)

≤ (lc/n)c +1− ((l −c)/l)c.

Simplification gives(lc/n)c +1− (1−c/n)c as claimed. Taking a union bound over alll features,
we get that the probability any feature has all duplicates collide is bounded byl [1− (1− c/n)c +

2622

HASH KERNELS FORSTRUCTUREDDATA

(lc/n)c].

4.3 Rate of Convergence

As a first step note that any convergence bound only dependslogarithmically on the size of the
kernel matrix.

Theorem 3 Assume that the probability of deviation between the hash kernel and its expected value
is bounded by an exponential inequality via

P
[∣

∣

∣
k

h
(x,x′)−Eh

[

k
h
(x,x′)

]∣

∣

∣
> ε

]

≤ cexp(−c′ε2n)

for some constants c,c′ depending on the size of the hash and the kernel used. In this case the error
ε arising from ensuring the above inequality, with probability at least1−δ, for m observations and
M classes (for a joint feature mapφ(x,y), is bounded by

ε≤
√

(2log(m+1)+2log(M +1)− logδ+ logc−2log2)/nc′.

Proof Apply the union bound to the kernel matrix of size(mM)2, that is, to allT := m(m+1)M(M+
1)/4 unique elements. Solving

Tcexp(−c′ε2n) = δ,

we get the bound onε is

√

log(Tc)− logδ
c′n

. (6)

Bounding log(Tc) from above

log(Tc) = logT + logc≤ 2log(m+1)+2log(M +1)+ logc−2log2,

and plugging it into (6) yields the result.

4.4 Generalization Bound

The hash kernel approximates the original kernel by big storage and computation saving. An inter-
esting question is whether the generalization bound on the hash kernel will bemuch worsethan the
bound obtained on the original kernel.

Theorem 4 (Generalization Bound) For binary class SVM, letK =
〈

φ(x),φ(x′)
〉

,K = 〈φ(x),φ(x′)〉
be the hash kernel matrix and original kernel matrix. Assume there exists b≥ 0 such that b≥
tr(K)− tr(K). LetF be the class of functions mapping fromX×Y to R given by f(x,y) =−yg(x),
where g is a linear function in a kernel-defined feature space with norm at most 1. For any size
m sample{(x1,y1), . . . ,(xm,ym)} drawn i.i.d. from data distribution D overX× Y and for any

2623

SHI , PETTERSON, DROR, LANGFORD, SMOLA AND V ISHWANATHAN

δ ∈ (0,1) and anyγ > 0, with probability at least1−δ, we have

P(y 6= sgn(g(x)))≤ 1
mγ

m

∑
i=1

ξi +
4

mγ

√

tr(K)+3

√

ln(2
δ)

2m
(7)

≤ 1
mγ

m

∑
i=1

ξi +
4

mγ
√

tr(K)+
4

mγ
√

b+3

√

ln(2
δ)

2m
, (8)

whereξi = max{0,γ−yig(xi)}, and g(xi) =
〈

w,φ(xi ,yi)
〉

.

Proof The standard Rademacher bound states that for any sizem sample drawn i.i.d fromD, for
anyδ ∈ (0,1) and anyγ > 0, with probability at least 1−δ, the true error of the binary SVM ,whose
kernel matrix is denoted asK′, can be bounded as follows:

P(y 6= sgn(g(x)))≤ 1
mγ

m

∑
i=1

ξi +
4

mγ
√

tr(K′)+3

√

ln(2
δ)

2m
. (9)

We refer the reader to Theorem 4.17 in Shawe-Taylor and Cristianini (2004) for a detailed proof.
The inequality (7) follows by lettingK′ = K. Becausetr(K) ≤ b+ tr(K) ≤ (

√
b+

√

tr(K))2, we
have 4

mγ

√

tr(K)≤ 4
mγ

√

tr(K)+ 4
mγ
√

b. Plugging above inequality into inequality (7) gives inequal-
ity (8). So the theorem holds.

The approximation quality depends on the both the feature and the hash collision. From the defini-
tion of hash kernel (see (3)), the feature entries with the same hash valuewill add up and map to a
new feature entry indexed by the hash value. The higher collision of the hash has, the more entries
will be added up. If the feature is sparse, the added up entries are mostly zeros. So the difference
of the maximum and the sum of the entries is reasonably small. In this case, the hash kernel gives
a good approximation of the original kernel, sob is reasonably small. Thus the generalization error
does not increase much as the collision increases. This is verified in the experiment section in Ta-
ble 4—increasing the collision rate from 0.82% to 94.31% only slightly worsens the test error (from
5.586% to 6.096%).

Moreover, Theorem 4 shows us the generalization bounds on the hash kernel and the original
kernel only differ byO((mγ)−1). This means that when our data set is large, the difference can
be ignored. A surprising result as we shall see immediately is that in fact, the difference on the
generalization bound is always nearly zero regardless ofm,γ.

4.5 The Scaling Factor Effect

An interesting observation on Theorem 4 is that, if we use a new feature mapping φ′ = aφ, where
a∈ [0,1), it will make the bias term in (5) small. As we decreasea enough, the bias term can be
arbitrarily small. Indeed, it vanishes whena= 0. It seems that thus we can get a much tighter bound
according to Theorem 4—the term withb vanishes whena= 0. So is there an optimal scaling factor
a that maximizes the performance? It turns out that any nonzeroa doesn’t effect the performance at
all, although it does tighten the bound.

Let’s take a closer look at the hash kernel binary SVM, which can be formalized as

min
w

λ||w||2
2

+
m

∑
i=1

max{0,1−yi
〈

w,φ(xi ,yi)
〉

}. (10)

2624

HASH KERNELS FORSTRUCTUREDDATA

Applying a new feature mappinĝφ = aφ gives

min
ŵ

λ̂||ŵ||2
2

+
m

∑
i=1

max{0,1−yi
〈

ŵ,φ(xi ,yi)
〉

}, (11)

whereλ̂ = λ
a2 and ŵ = aw. λ̂ is usually determined by model selection. As we can see, given a

training data set, the solutions to (10) and (11) are exactly identical fora 6= 0. Whena= 0, g(x)≡ 0
for all x,w, and the prediction degenerates to random guessing. Moreover, the generalization bound
can be tighten by applying a smalla nearly zero. This shows that hashing kernel SVM has nearly
the same generalization bound as the original SVM in theory.

5. Graphlet Kernels

Denote byG a graph with verticesV(G) and edgesE(G). Several methods have been proposed to
perform classification on such graphs. Most recently, Przulj (2007)proposed to use the distribution
over graphlets, that is, subgraphs, as a characteristic property of thegraph. Unfortunately, brute
force evaluation does not allow calculation of the statistics for graphlets of size more than 5, since
the cost for exact computation scales exponentially in the graphlet size.

In the following we show that sampling and hashing can be used to make the analysis of larger
subgraphs tractable in practice. For this denote byS⊆ G an induced subgraph ofG, obtained by
restricting ourselves to onlyV(S) ⊆ V(G) vertices ofG and let #S(G) be the number of timesS
occurs inG. This suggests that the feature mapG→ φ(G), whereφS(G) = #S(G) will induce a
useful kernel: adding or removing an edge(i, j) only changes the properties of the subgraphs using
the pair(i, j) as part of their vertices.

5.1 Counting and Sampling

Depending on the application, the distribution over the counts of subgraphsmay be significantly
skewed. For instance, in sparse graphs we expect the fully disconnected subgraphs to be con-
siderably overrepresented. Likewise, whenever we are dealing with almost complete graphs, the
distribution may be skewed towards the other end (i.e., most subgraphs will becomplete). To deal
with this, we impose weightsβ(k) on subgraphs containingk edges|E(S)|.

To deal with the computational complexity issue simultaneously with the issue of reweighting
the graphsSwe simply replace explicit counting with sampling from the distribution

P(S|G) = c(G)β(|E(S)|) (12)

wherec(G) is a normalization constant. Samples from P(S|G) can be obtained by a Markov-Chain
Monte Carlo approach.

Lemma 5 The following MCMC sampling procedure has the stationary distribution (12).

1. Choose a random vertex, say i, of S uniformly.
2. Add a vertex j from G\Si to Si with probability c(Si ,G)β(|E(Si j)|).

Here Si denotes the subgraph obtained by removing vertex i from S, and Si j is the result of adding
vertex j to Si .

2625

SHI , PETTERSON, DROR, LANGFORD, SMOLA AND V ISHWANATHAN

Note that sampling overj is easy: all vertices ofG which do not share an edge withS\i occur with
the same probability. All others depend only on the number of joining edges. This allows for easy
computation of the normalizationc(Si ,G).
Proof We may encode the sampling rule via

T(Si j |S,G) =
1
k

c(Si ,G)β(|E(Si j)|)

wherec(Si ,G) is a suitable normalization constant. Next we show thatT satisfies the balance
equations and therefore can be used as a proposal distribution with acceptance probability 1.

T(Si j |S,G)P(S)

T(S|Si j ,G)P(Si j)

=
k−1c(Si ,G)β(|E(Si j)|)c(G)β(|E(S)|)

k−1c(Si j , j ,G)β(|E(Si j , ji)|)c(G)β(|E(Si j)|)
= 1.

This follows sinceSi j , j = Si and likewiseSi j , ji = S. That is, adding and removing the same vertex
leaves a graph unchanged.

In summary, we obtain an algorithm which will readily draw samplesSfrom P(S|G) to characterize
G.

5.2 Dependent Random Variables

The problem with sampling from a MCMC procedure is that the random variables aredependent
on each other. This means that we cannot simply appeal to Chernoff bounds when it comes to
averaging. Before discussing hashing we briefly discuss averages of dependent random variables:

Definition 6 (Bernoulli Mixing) Denote by Z a stochastic process indexed by t∈ Z with probabil-
ity measureP and letΣn be theσ-algebra on Zt with t ∈ Z\1, . . . ,n−1. Moreover, denote byP−
and P+ the probability measures on the negative and positive indices t respectively.The mixing
coefficientβ is

β(n,PX) := sup
A∈Σn

∣

∣

∣
P(A)−P−×P+(A)

∣

∣

∣
.

If limn→∞β(n,Pz) = 0 we call Z to beβ-mixing.

That is,β(n,PX) measures how much dependence a sequence has when cutting out a segment of
lengthn. Nobel and Dembo (1993) show how such mixing processes can be related to iid observa-
tions.

Theorem 7 Assume thatP is β-mixing. Denote byP∗ the product measure obtained from
. . .Pt×Pt+1 . . . Moreover, denote byΣl ,n theσ-algebra on Zn,Z2n, . . . ,Zln. Then the following holds:

sup
A∈Σl ,n

|P(A)−P∗(A)| ≤ lβ(n,P).

This allows us to obtain bounds for expectations of variables drawn from Prather than P∗.

2626

HASH KERNELS FORSTRUCTUREDDATA

Theorem 8 LetPbe a distribution over a domainX and denote byφ : X→H a feature map into a
Hilbert Space with〈φ(x),φ(x′)〉 ∈ [0,1]. Moreover, assume that there is aβ-mixing MCMC sampler
of P with distributionPMC from which we draw l observations xin with an interleave of n rather
than sampling fromP directly. Averages with respect toPMC satisfy the following with probability
at least1−δ:

∥

∥

∥ E
x∼P(x)

[φ(x)]− 1
l

l

∑
i=1

φ(xin)
∥

∥

∥
≤ lβ(n,PMC)+

2+
√

log 2
δ√

l
.

Proof Theorem 7, the bound on‖φ(x)‖, and the triangle inequality imply that the expectations with
respect to PMC and P∗ only differ by lβ. This establishes the first term of the bound. The second
term is given by a uniform convergence result in Hilbert Spaces from Altun and Smola (2006).

Hence, sampling from a MCMC sampler for the purpose of approximating inner products is sound,
provided that we only take sufficiently independent samples (i.e., a large enoughn) into account.
The translation of Theorem 8 into bounds on inner products is straightforward, since

| 〈x,y〉−
〈

x′,y′
〉

|
≤

∥

∥x−x′
∥

∥‖y‖+
∥

∥y−y′
∥

∥‖x‖+
∥

∥x−x′
∥

∥

∥

∥y−y′
∥

∥ .

5.3 Hashing and Subgraph Isomorphism

Sampling from the distribution over subgraphsS∈G has two serious problems in practice which we
will address in the following: firstly, there are several graphs which areisomorphic to each other.
This needs to be addressed with a graph isomorphism tester, such as Nauty(McKay, 1984). For
graphs up to size 12 this is a very effective method. Nauty works by constructing a lookup table to
match isomorphic objects.

However, even after the graph isomorphism mapping we are still left with a sizable number of
distinct objects. This is where a hash map on data streams comes in handy. It obviates the need to
store any intermediate results, such as the graphsS or their unique representations obtained from
Nauty. Finally, we combine the convergence bounds from Theorem 8 with the guarantees available
for hash kernels to obtain the approximate graph kernel.

Note that the two randomizations have very different purposes: the sampling over graphlets is
done as a way to approximate theextractionof features whereas the compression via hashing is
carried out to ensure that the representation is computationally efficient.

6. Experiments

To test the efficacy of our approach we applied hashing to the following problems: first we used it
for classification on the Reuters RCV1 data set as it has a relatively large feature dimensionality.
Secondly, we applied it to the DMOZ ontology of topics of webpages1 where the number of topics
is high. The third experiment—Biochemistry and Bioinformatics Graph Classification uses our
hashing scheme, which makes comparing all possible subgraph pairs tractable, to compare graphs
(Vishwanathan et al., 2007a). On publicly available data sets like MUTAG andPTC as well as on

1. Dmoz L2 denotes non-parent topic data in the top 2 levels of the topic tree and Dmoz L3 denotes non-parent topic
data in the top 3 levels of the topic tree.

2627

SHI , PETTERSON, DROR, LANGFORD, SMOLA AND V ISHWANATHAN

Data Sets #Train #Test #Labels
RCV1 781,265 23,149 2
Dmoz L2 4,466,703 138,146 575
Dmoz L3 4,460,273 137,924 7,100

Table 1: Text data sets. #X denotes the number of observations in X.

Algorithm Pre TrainTest Error %
BSGD 303.60s 10.38s 6.02
VW 303.60s 87.63s 5.39
VWC 303.60s 5.15s 5.39
HK 0s 25.16s 5.60

Table 2: Runtime and Error on RCV1. BSGD: Bottou’s SGD. VW: Vowpal Wabbit without cache.
VWC: Vowpal Wabbit using cache file. HK: hash kernel with feature dimension 220. Pre: prepro-
cessing time. TrainTest: time to load data, train and test the model. Error: misclassification rate.
Apart from the efficacy of hashing operation itself, the gain of speed is also due to a multi-core
implementation—hash kernel uses 4-cores to access the disc for online hash feature generation. For
learning and testing evaluation, all algorithms use single-core.

the biologically inspired data set DD used by Vishwanathan et al. (2007a),our method achieves the
best known accuracy.

In both RCV1 and Dmoz, we use linear kernel SVM with stochastic gradient descent (SGD)
as the workhorse. We apply our hash kernels and random projection (Achlioptas, 2003) to the
SGD linear SVM. We don’t apply the approach in Rahimi and Recht (2008)since it requires a
shift-invariant kernelk(x,y) = k(x− y), such as RBF kernel, which is not applicable in this case.
In the third experiment, existing randomization approaches are not applicable since enumerating
all possible subgraphs is intractable. Instead we compare hash kernel with existing graph kernels:
random walk kernel, shortest path kernel and graphlet kernel (seeBorgwardt et al. 2007).

6.1 Reuters Articles Categorization

We use the Reuters RCV1 binary classification data set (Lewis et al., 2004). 781,265 articles are
used for training by stochastic gradient descent (SGD) and 23,149 articles are used for testing. Con-
ventionally one would build a bag of words representation first and calculate exact term frequency
/ inverse document frequency (TF-IDF) counts from the contents of each article as features. The
problem is that the TF calculation needs to maintain a very large dictionary throughout the whole
process. Moreover, it is impossible to extract features online since the entire vocabulary dictionary
is usually unobserved during training. Another disadvantage is that calculating exact IDF requires
us to preprocess all articles in a first pass. This is not possible as articlessuch as news may vary
daily.

However, it suffices to compute TF and IDF approximately as follows: usinghash features, we
no longer require building the bag of words. Every word produces a hash key which is the dimension
index of the word. The frequency is recorded in the dimension index of its hash key. Therefore,

2628

HASH KERNELS FORSTRUCTUREDDATA

Algorithm Dim Pre TrainTest orgTrainSize newTrainSize Error %
28 748.30s 210.23s 423.29Mb 1393.65Mb 29.35%

RP 29 1079.30s 393.46s 423.29Mb 2862.90Mb 25.08%
210 1717.30s 860.95s 423.29Mb 5858.48Mb 19.86%
28 0s 22.82s NA NA 17.00%

HK 29 0s 24.19s NA NA 12.32%
210 0s 24.41s NA NA 9.93%

Table 3: Hash kernel vs. random projections with various feature dimensionalities on RCV1. RP:
random projections in Achlioptas (2003). HK: hash kernel. Dim: dimension ofthe new features.
Pre: preprocessing time. TrainTest: time to load data, train and test the model. orgTrainSize:
compressed original training feature file size. newTrainSize: compressed new training feature file
size. Error: misclassification rate. NA: not applicable. In hash kernel there is no preprocess step, so
there is no original/new feature files. Features for hash kernel are builtup online via accessing the
string on disc. The disc access time is taken into account inTrainTest. Note that the TrainTest for
random projection time increases as the new feature dimension increases, whereas for hash kernel
the TrainTest is almost independent of the feature dimensionality.

Dim #Unique Collision % Error %
224 285614 0.82 5.586
222 278238 3.38 5.655
220 251910 12.52 5.594
218 174776 39.31 5.655
216 64758 77.51 5.763
214 16383 94.31 6.096

Table 4: Influence of new dimension on Reuters (RCV1) on collision rates (reported for both train-
ing and test set combined) and error rates. Note that there is no noticeableperformance degradation
even for a 40% collision rate.

every article has a frequency count vector as TF. This TF is a much denser vector which requires no
knowledge of the vocabulary. IDF can be approximated by scanning a smaller part of the training
set.

A quantile-quantile plot in Figure 1 shows that this approximation is justified—the dependency
between the statistics on the subset (200k articles) and the full training set (800k articles) is perfectly
linear.

We compare the hash kernel with Leon Bottou’s Stochastic Gradient Descent SVM2 (BSGD),
Vowpal Wabbit (Langford et al., 2007) (VW) and Random Projections (RP) (Achlioptas, 2003). Our
hash scheme is generating features online. BSGD is generating features offline and learning them
online. VW uses BSGD’s preprocessed features and creates furtherfeatures online. Caching speeds
up VW considerably. However, it requires one run of the original VW code for this purpose. RP
uses BSGD’s preprocessed features and then creates the new projected lower dimension features.
Then it uses BSGD for learning and testing. We compare these algorithms on RCV1 in Table 2.

2. Code can be found athttp://leon.bottou.org/projects/sgd.

2629

SHI , PETTERSON, DROR, LANGFORD, SMOLA AND V ISHWANATHAN

(a)DF from part of data (b) DF from all data

(c) Quantile-Quantile plot

Figure 1: Quantile-quantile plot of the DF counts computed on a subset (200k documents) and the
full data set (800k documents). DF(t) is the number of documents in a collection containing word
t.

Table 2. RP is not included in this table because it would be intractable to run it with the same
feature dimensionality as HK for a fair comparison. As can be seen, the preprocessing time of
BSGD and VW is considerably longer compared to the time for training and testing, due to the TF-
IDF calculation which is carried out offline. For a fair comparison, we measure the time for feature
loading, training and testing together. It can also be seen that the speed ofonline feature generation

2630

HASH KERNELS FORSTRUCTUREDDATA

HLF (228) HLF (224) HF no hash U base P base
error mem error mem error mem mem error error

L2 30.12 2G 30.71 0.125G 31.28 2.25G (219) 7.85G 99.83 85.05
L3 52.10 2G 53.36 0.125G 51.47 1.73G (215) 96.95G 99.99 86.83

Table 5: Misclassification and memory footprint of hashing and baseline methods on DMOZ. HLF:
joint hashing of labels and features. HF: hash features only. no hash:direct model (not implemented
as too large, hence only memory estimates—we have 1,832,704 unique words). U base: baseline of
uniform classifier. P base: baseline of majority vote. mem: memory used for themodel. Note: the
memory footprint in HLF is essentially independent of the number of classes used.

HLF KNN Kmeans
228 224 S= 3% 6% 9% S= 3% 6% 9%

L2 69.88 69.29 50.23 52.59 53.81 42.29 42.96 42.76
L3 47.90 46.64 30.93 32.67 33.71 31.63 31.56 31.53

Table 6: Accuracy comparison of hashing, KNN and Kmeans. HLF: joint hashing of labels and
features. KNN: apply K Nearest Neighbor on sampled training set as search set. Kmeans: apply
Kmeans on sampled training set to do clustering and then take its majority class as predicted class.
S is the sample size which is the percentage of the entire training set.

is considerable compared to disk access. Table 2 shows that the test errors for hash kernel, BSGD
and VW are competitive.

In table 3 we compare hash kernel to RP with different feature dimensions.As we can see,
the error reduces as the new feature dimension increases. However, the error of hash kernel is
always much smaller (by about 10%) than RP given the same new dimension. Aninteresting thing
is that the new feature file created after applying RP is much bigger than the original one. This is
because the projection maps the original sparse feature to a dense feature. For example, when the
feature dimension is 210, the compressed new feature file size is already 5.8G. Hash kernel is much
more efficient than RP in terms of speed, since to compute a hash feature onerequires onlyO(dnz)
hashing operations, wherednz is the number of non-zero entries. To compute a RP feature one
requiresO(dn) operations, whered is the original feature dimension and andn is the new feature
dimension. And with RP the new feature is always dense even whenn is big, which further increases
the learning and testing runtime. Whendnz≪ d such as in text process, the difference is significant.
This is verified in our experiment (see in Table 3). For example, hash kernel (includingPre and
TrainTest) with 210 feature size is over 100 times faster than RP.

Furthermore, we investigate the influence of the new feature dimension on themisclassification
rate. As can be seen in Table 4, when the feature dimension decreases, the collision and the error
rate increase. In particular, a 224 dimension causes almost no collisions. Nonetheless, a 218 dimen-
sion which has almost 40% collisions performs equally well on the problem. Thisleads to rather
memory-efficient implementations.

2631

SHI , PETTERSON, DROR, LANGFORD, SMOLA AND V ISHWANATHAN

Data Algorithm Dim Pre TrainTest Error %

L2

RP 27 779.98s 1258.12s 82.06%
RP 28 1496.22s 3121.66s 72.66%
RP 29 2914.85s 8734.25s 62.75%
HK 27 0s 165.13s 62.28%
HK 28 0s 165.63s 55.96%
HK 29 0s 174.83s 50.98%

L3

RP 27 794.23s 18054.93s 89.46%
RP 28 1483.71s 38613.51s 84.06%
RP 29 2887.55s 163734.13s 77.25%
HK 27 0s 1573.46s 76.31%
HK 28 0s 1726.67s 71.93%
HK 29 0s 1812.98s 67.18%

Table 7: Hash kernel vs. random projections with various feature dimensionalities on Dmoz. RP:
random projections in Achlioptas (2003). HK: hash kernel. Dim: dimension ofthe new features.
Pre: preprocessing time—generation of the random projected features.TrainTest: time to load data,
train and test the model. Error: misclassification rate. Note that the TrainTesttime for random
projections increases as the new feature dimension increases, whereasfor hash kernel the TrainTest
is almost independent of the feature dimensionality. Moving the dimension from28 to 29 the in-
creasing in processing time of RP is not linear—we suspect this is because with 28 the RP model
has 256×7100×8≈ 14MB, which is small enough to fit in the CPU cache (we are using a 4-cores
cpu with a total cache size of 16MB), while with 29 the model has nearly 28MB, no longer fitting
in the cache.

6.2 Dmoz Websites Multiclass Classification

In a second experiment we perform topic categorization using the DMOZ topic ontology. The task
is to recognize the topic of websites given the short descriptions providedon the webpages. To
simplify things we categorize only the leaf nodes (Top two levels: L2 or Top three levels: L3) as a
flat classifier (the hierarchy could be easily taken into account by addinghashed features for each
part of the path in the tree). This leaves us with 575 leaf topics on L2 and with 7100 leaf topics on
L3.

Conventionally, assumingM classes andl features, trainingM different parameter vectorsw
requiresO(Ml) storage. This is infeasible for massively multiclass applications. However, by
hashing data and labels jointly we are able to obtain an efficient joint representation which makes
the implementation computationally possible.

As can be seen in Table 5 joint hashing of features and labels is very attractive in items of mem-
ory usage and in many cases is necessary to make large multiclass categorization computationally
feasible at all (naive online SVM ran out of memory). In particular, hashing features only produces
worse results than joint hashing of labels and features. This is likely due to the increased colli-
sion rate: we need to use a smaller feature dimension to store the class dependent weight vectors
explicitly.

2632

HASH KERNELS FORSTRUCTUREDDATA

Figure 2: Test accuracy comparison of KNN and Kmeans on Dmoz with various sample sizes. Left:
results on L2. Right: results on L3. Hash kernel (228) result is used as an upper bound.

Next we compare hash kernel with K Nearest Neighbor (KNN) and Kmeans. Running the
naive KNN on the entire training set is very slow.3 Hence we introduce sampling to KNN. We first
sample a subset from the entire training set as search set and then do KNNclassification. To match
the scheme of KNN, we use sampling in Kmeans too. Again we sample from the entire training set
to do clustering. The number of clusters is the minimal number of classes which have at least 90%
of the documents. Each test example is assigned to one of the clusters, and we take the majority
class of the cluster as the predicted label of the test example. The accuracy plot in Figure 2 shows
that in both Dmoz L2 and L3, KNN and Kmeans with various sample sizes get testaccuracies of
30% to 20% off than the upper bound accuracy achieved by hash kernel. The trend of the KNN and
Kmeans accuracy curve suggests that the bigger the sample size is, the lessaccuracy increment can
be achieved by increasing it. A numerical result with selected sample sizes is reported in Table 6.

We also compare hash kernel with RP with various feature dimensionality on Dmoz. Here RP
generates the random projected feature first and then does online learning and testing. It uses the
same 4-cores implementation as hash kernel does. The numerical result withselected dimensional-
ities is in Table 7. It can be seen that hash kernel is not only much faster but also has much smaller
error than RP given the same feature dimension. Note that both hash kernel and RP reduce the error
as they increase the feature dimension. However, RP can’t achieve competitive error to what hash
kernel has in Table 5, simply because with large feature dimension RP is too slow—the estimated
run time for RP with dimension 219 on dmoz L3 is 2000 days.

Furthermore we investigate whether such a good misclassification rate is obtained by predicting
well only on a few dominant topics. We reorder the topic histogram in accordance to ascending error
rate. Figure 3 shows that hash kernel does very well on the first one hundred topics. They correspond
to easy categories such as language related sets ”World/Italiano”,”World/Japanese”,”World/Deutsch”.

3. In fact the complexity of KNN isO(N×T), whereN,T are the size of the training set and the testing set. We estimate
the running time for the original KNN, in a batch processing manner ignoring the data loading time, is roughly 44
days on a PC with a 3.2GHz cpu.

2633

SHI , PETTERSON, DROR, LANGFORD, SMOLA AND V ISHWANATHAN

Figure 3: Left: results on L2. Right: results on L3. Top: frequency counts for topics as reported
on the training set (the test set distribution is virtually identical). We see an exponential decay in
counts. Bottom: log-counts and error probabilities on the test set. Note that the error is reasonably
evenly distributed among the size of the classes (besides a number of near empty classes which are
learned perfectly).

6.3 Biochemistry and Bioinformatics Graph Classification

For the final experiment we work with graphs. The benchmark data sets weused here contain three
real-world data sets: two molecular compounds data sets, Debnath et al. (1991) and PTC (Toivonen
et al., 2003), and a data set for protein function prediction task (DD) from Dobson and Doig (2003).
In this work we used the unlabeled version of these graphs, see, for example, Borgwardt et al.
(2007).

All these data sets are made of sparse graphs. To capture the structure of the graphs, we sam-
pled connected subgraphs with varying number of nodes, fromn = 4 to n = 9. We used graph
isomorphism techniques, implemented in Nauty (McKay, 1984) for getting a canonically-labeled
isomorph of each sampled subgraph. The feature vector of each example(graph) is composed of
the number of times each canonical isomorph was sampled. Each graph was sampled 10000 times
for each ofn = 4,5. . .9. Note that the number of connected unlabeled graphs grows exponentially
fast with the number of nodes, so the sampling is extremely sparse for large values ofn. For this
reason we normalized the counts so that for each data set each feature of φ(x) satisfies 1≥ φ(x)≥ 0.

2634

HASH KERNELS FORSTRUCTUREDDATA

Data Sets RW SP GKS GK HK HKF
MUTAG 0.719 0.813 0.819 0.822 0.855 0.865
PTC 0.554 0.554 0.594 0.597 0.606 0.635
DD >24h >24h 0.745 >24h 0.799 0.841

Table 8: Classification accuracy on graph benchmark data sets. RW: random walk kernel, SP: short-
est path kernel, GKS = graphlet kernel sampling 8497 graphlets, GK: graphlet kernel enumerating
all graphlets exhaustively, HK: hash kernel, HKF: hash kernel with feature selection. ’>24h’ means
computation did not finish within 24 hours.

Feature All Selection
STATS ACC AUC ACC AUC

MUTAG 0.855 0.93 0.865 0.912
PTC 0.606 0.627 0.635 0.670
DD 0.799 0.81 0.841 0.918

Table 9: Non feature selection vs feature selection for hash kernel. All: all features. Selection:
feature selection; ACC: accuracy; AUC: Area under ROC.

We compare the proposed hash kernel (with/without feature selection) withrandom walk kernel,
shortest path kernel and graphlet kernel on the benchmark data sets.From Table 8 we can see that
the hash Kernel even without feature selection still significantly outperforms the other three kernels
in terms of classification accuracy over all three benchmark data sets.

The dimensionality of the canonical isomorph representation is quite high and many features
are extremely sparse, a feature selection step was taken that removed features suspected as non-
informative. To this end, each feature was scored by the absolute vale ofits correlation with the
target. Only features with scores above median were retained. As can be seen in Table 9 feature
selection on hash kernel can furthermore improve the test accuracy andarea under ROC.

7. Discussion

In this paper we showed that hashing is a computationally attractive techniquewhich allows one to
approximate kernels for very high dimensional settings efficiently by means of a sparse projection
into a lower dimensional space. In particular for multiclass categorization this makes all the differ-
ence in terms of being able to implement problems with thousands of classes in practice on large
amounts of data and features.

References

D. Achlioptas. Database-friendly random projections:johnson-lindenstrauss with binary coins.
Journal of Computer and System Sciences, 66:671C687, June 2003.

Y. Altun and A.J. Smola. Unifying divergence minimization and statistical inference via convex
duality. In H.U. Simon and G. Lugosi, editors,Proc. Annual Conf. Computational Learning
Theory, LNCS, pages 139–153. Springer, 2006.

2635

SHI , PETTERSON, DROR, LANGFORD, SMOLA AND V ISHWANATHAN

C. Berg, J. P. R. Christensen, and P. Ressel.Harmonic Analysis on Semigroups. Springer, New
York, 1984.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.Communications of the
ACM, 13:422C426, July 1970.

K. M. Borgwardt, H.-P. Kriegel, S. V. N. Vishwanathan, and N. Schraudolph. Graph kernels for dis-
ease outcome prediction from protein-protein interaction networks. In Russ B. Altman, A. Keith
Dunker, Lawrence Hunter, Tiffany Murray, and Teri E Klein, editors, Proceedings of the Pacific
Symposium of Biocomputing 2007, Maui Hawaii, January 2007. World Scientific.

C. J. C. Burges and B. Schölkopf. Improving the accuracy and speed of support vector learning
machines. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors,Advances in Neural Information
Processing Systems 9, pages 375–381, Cambridge, MA, 1997. MIT Press.

G. Cormode and M. Muthukrishnan. An improved data stream summary: The count-min sketch
and its applications. InLATIN: Latin American Symposium on Theoretical Informatics, 2004.

A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C. Hansch. Structure-
activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.correlation with
molecular orbital energies and hydrophobicity.J Med Chem, 34:786–797, 1991.

O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: A kernel-based perceptron on a fixed
budget. In Y. Weiss, B. Schölkopf, and J. Platt, editors,Advances in Neural Information Process-
ing Systems 18, Cambridge, MA, 2006. MIT Press.

P. D. Dobson and A. J. Doig. Distinguishing enzyme structures from non-enzymes without align-
ments.J Mol Biol, 330(4):771–783, Jul 2003.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations.JMLR,
2:243–264, Dec 2001.

K. Ganchev and M. Dredze. Small statistical models by random feature mixing. In workshop on
Mobile NLP at ACL, 2008.

P. Indyk and R. Motawani. Approximate nearest neighbors: Towards removing the curse of di-
mensionality. InProceedings of the30th Symposium on Theory of Computing, pages 604–613,
1998.

L. Kontorovich. A universal kernel for learning regular languages. In Machine Learning in Graphs,
2007.

J. Langford, L. Li, and A. Strehl. Vowpal wabbit online learning project (technical report). Technical
report, 2007.

D.D. Lewis, Y. Yang, T.G. Rose, and F. Li. Rcv1: A new benchmark collection for text categoriza-
tion research.The Journal of Machine Learning Research, 5:361–397, 2004.

P. Li, K.W. Church, and T.J. Hastie. Conditional random sampling: A sketch-based sampling tech-
nique for sparse data. In B. Schölkopf, J. Platt, and T. Hoffman, editors,Advances in Neural
Information Processing Systems 19, pages 873–880. MIT Press, Cambridge, MA, 2007.

2636

HASH KERNELS FORSTRUCTUREDDATA

O. L. Mangasarian. Generalized support vector machines. Technicalreport, University of Wiscon-
sin, Computer Sciences Department, Madison, 1998.

B. D. McKay. nauty user’s guide. Technical report, Dept. Computer Science, Austral. Nat. Univ.,
1984.

A. Nobel and A. Dembo. A note on uniform laws of averages for dependent processes.Statistics
and Probability Letters, 17:169–172, 1993.

N. Przulj. Biological network comparison using graphlet degree distribution. Bioinformatics, 23
(2):e177–e183, Jan 2007.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In J.C. Platt, D. Koller,
Y. Singer, and S. Roweis, editors,Advances in Neural Information Processing Systems 20. MIT
Press, Cambridge, MA, 2008.

B. Scḧolkopf. Support Vector Learning. R. Oldenbourg Verlag, Munich, 1997. Download:
http://www.kernel-machines.org.

J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis. Cambridge University
Press, Cambridge, UK, 2004.

Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, A. Strehl, and S.V. N. Vishwanathan. Hash ker-
nels. In Max Welling and David van Dyk, editors,Proc. Intl. Workshop on Artificial Intelligence
and Statistics. Society for Artificial Intelligence and Statistics, 2009.

C. H. Teo and S. V. N. Vishwanathan. Fast and space efficient string kernels using suffix arrays. In
ICML ’06: Proceedings of the 23rd international conference on Machine learning, pages 929–
936, New York, NY, USA, 2006. ACM Press. ISBN 1-59593-383-2.doi: http://doi.acm.org/10.
1145/1143844.1143961.

H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, and C. Helma. Statistical evaluation of the
predictive toxicology challenge 2000-2001.Bioinformatics, 19(10):1183–1193, July 2003.

K. Tsuda, T. Kin, and K. Asai. Marginalized kernels for biological sequences.Bioinformatics, 18
(Suppl. 2):S268–S275, 2002.

S. V. N. Vishwanathan, Karsten Borgwardt, and Nicol N. Schraudolph. Fast computation of graph
kernels. In B. Scḧolkopf, J. Platt, and T. Hofmann, editors,Advances in Neural Information
Processing Systems 19, Cambridge MA, 2007a. MIT Press.

S. V. N. Vishwanathan, A. J. Smola, and R. Vidal. Binet-Cauchy kernels on dynamical systems and
its application to the analysis of dynamic scenes.International Journal of Computer Vision, 73
(1):95–119, 2007b.

C. Watkins. Dynamic alignment kernels. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuur-
mans, editors,Advances in Large Margin Classifiers, pages 39–50, Cambridge, MA, 2000. MIT
Press.

2637

