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Abstract

We propose hashing to facilitate efficient kernels. Thisegalizes previous work using sampling
and we show a principled way to compute the kernel matrix fiadtreams and sparse feature
spaces. Moreover, we give deviation bounds from the exanekenatrix. This has applications to
estimation on strings and graphs.
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1. Introduction

In recent years, a number of methods have been proposed to deal evitittithat kernel methods
have slow runtime performance if the number of kernel functions used iexpansion is large.
We denote byX the domain of observations and we assumeltisd a Reproducing Kernel Hilbert
SpaceH with kernelk : XX x X — R.

1.1 Keeping the Kernel Expansion Small

One line of research (Burges and Stkopf, 1997) aims to reduce the number of basis functions
needed in the overall function expansion. This led to a number of recisteRLipport Vector algo-
rithms which work as follows: a) solve the full estimation problem resulting inraéddeexpansion,
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b) use a subset of basis functions to approximate the exact solutiorg t)eukatter for estimation.
While the approximation of the full function expansion is typically not veryuaate, very good
generalization performance is reported. The big problem in this appie#tat the optimization of
the reduced set of vectors is rather nontrivial.

Work on estimation on a budget (Dekel et al., 2006) tries to ensure thatrtbtem does not
arise in the first place by ensuring that the number of kernel functicer insthe expansion never
exceeds a given budget or by usingfrmenalty (Mangasarian, 1998). For some algorithms, for
example, binary classification, guarantees are available in the online setting.

1.2 Keeping the Kernel Simple

A second line of research uses variants of sampling to achieve a similarignadlis, one uses the
feature map representation

k(%,X) = (@(x),9(X)) .
Here@mapsX into some feature spade This expansion is approximated by a mappmdl — F
K(x,X) = (@(x), (X)) often@(x) = M@(x).

Here @ has more desirable computational properties thaifror instancep is finite dimensional
(Fine and Scheinberg, 2001; Kontorovich, 2007; Rahimi and Recf8)20r@is particularly sparse
(Li et al., 2007).

1.3 Our Contribution

Firstly, we show that the sampling schemes of Kontorovich (2007) and RamidchRecht (2008)
can be applied to a considerably larger class of kernels than originalyestegl—the authors only
consider languages and radial basis functions respectively. Sgcamedropose a biased approxi-
mationgof @which allows efficient computations even on data streams. Our work is indpjrthe
count-min sketch of Cormode and Muthukrishnan (2004), which usésfbastions as a computa-
tionally efficient means of randomization. This affords storage effici@weyneed not store random
vectors) and at the same time they give performance guarantees colapartdmse obtained by
means of random projections.

As an application, we demonstrate computational benefits over suffixstriag kernels in the
case of document analysis and we discuss a kernel between grajghsonty becomes computa-
tionally feasible by means of compressed representation.

1.4 Outline

We begin with a description of previous work in Section 2 and propose gtekenels in Section 3
which is suitable for data with simple structure such as strings. An analysisvéolioSection 4.
And we propose a graphlet kernel which generalizes hash kernedgaanvith general structure—
graphs and discuss a MCMC sampler in Section 5. Finally we conclude widriegnts in Sec-
tion 6.
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2. Previous Work and Applications

Recently much attention has been paid to efficient algorithms with randomizati@sbing in the
machine learning community.

2.1 Generic Randomization

Kontorovich (2007) and Rahimi and Recht (2008) independently m®gte following: denote by
c € € arandom variable with measure P. Moreoverget X — R be functions indexed by € C.
For kernels of type

k(x,X) = Ecep(o) [(PC(X)(PC(X,)] (1)
an approximation can be obtained by samplihg {ci,...,c,} ~ P and expanding

K0u) = 15 @ (9 0)

In other words, we approximate the feature nmgg) by @(x) = n-2 (@ (X),. .., @, (X)) in the
sense that their resulting kernel is similar. Assuming théx)@:(X') has bounded range, that is,
a(X)@c(X) € [a,a+ R] for all ¢, x andx’ one may use Chernoff bounds to give guarantees for large
deviations betweek(x,x') andk(x,x). For matrices of sizen x m one obtains bounds of type
O(R?c2logm) by combining Hoeffding’s theorem with a union bound argument oveCie?)
different elements of the kernel matrix. The strategy has widespredidatiyms beyond those of
Kontorovich (2007) and Rahimi and Recht (2008):

e Kontorovich (2007) uses it to design kernels on regular languagesmgleg from the class
of languages.

e The marginalized kernels of Tsuda et al. (2002) use a setting identica) &s the basis for
comparisons between strings and graphs by defining a random walk i@athee extractor.
Instead of exact computation we could do sampling.

e The Binet-Cauchy kernels of Vishwanathan et al. (2007b) use thi®apipito compare tra-
jectories of dynamical systems. Heres the (discrete or continuous) time angtPdiscounts
over future events.

e The empirical kernel map of Sotkopf (1997) use€ = X and employs some kernel function
K to define@:(X) = K(c,X). Moreover, Fc) = P(x), that is, placing our sampling pointson
training data.

e For RBF kernels, Rahimi and Recht (2008) use the factthady be expressed in the system
of eigenfunctions which commute with the translation operator, that is the Fdases

K(X,X) = Eyypu[€7 0 0)]. 2)

Here Rw) is a nonnegative measure which exists for any RBF kernel by virtue cififgar’s
theorem, hence (2) can be recast as a special case of (1). Whiabpetd is the fact that the
variance of the featuragy(x) = € is relatively evenly spread. (2) extends immediately to
Fourier transformations on other symmetry groups (Berg et al., 1984).

e The conditional independence kernel of Watkins (2000) is one of theifistances of (1).
Here X, C are domains of biological sequences(x) = P(x|c) denotes the probability of
observingx given the ancestar, and Rc) denotes a distribution over ancestors.
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While in many cases straightforward sampling may suffice, it can provetdisasvheneveg(x)
has only a small number of significant terms. For instance, for the pair-Hidiel most strings
c areunlikely ancestors ok andx/, hence Px|c) and RX/|c) will be negligible for mostc. As a
consequence the number of strings required to obtain a good estimate ilsitprelly large—we
need to reduce further.

2.2 Locally Sensitive Hashing

The basic idea of randomized projections (Indyk and Motawani, 1998isitle to concentration of
measures the inner produgi(x),®(x')) can be approximated by, (vi, @(x)) (vi, @(X)) efficiently,
provided that the distribution generating the vectgrsatisfies basic regularity conditions. For
example,v; ~ N(0O, 1) is sufficient, wheré is an identity matrix. This allows one to obtain Chernoff
bounds andd(¢~?logm) rates of approximation, whema is the number of instances. The main
cost is to store; and perform thé&(nm) multiply-adds, thus rendering this approach too expensive
as a preprocessing step in many applications.

Achlioptas (2003) proposes a random projection approach thatyrs@sedric random variables
to project the original feature onto a lower dimension feature space. Pkigton is simple and
faster and the author shows it does not sacrifice the quality of the emieddoreover, it can be
directly applied to online learning tasks. Unfortunately, the projection rentinse resulting in
relatively poor computational and space performance in our experiments.

2.3 Sparsification

Li et al. (2007) propose to sparsifyx) by randomization while retaining the inner products. One
problem with this approach is that when performing optimization for linear funatlasses, the
weight vectow which is a linear combination af(x ) remains large and dense, thus obliterating a
significant part of the computational savings gained in sparsifging

2.4 Count-Min Sketch

Cormode and Muthukrishnan (2004) propose an ingenious methodpiersenting data streams.
Denote byJ an index set. Moreover, lét: I — {1,...,n} be a hash function and assume that there
exists a distribution oven such that they are pairwise independent.

Assume that we draw hash functiondy at random and leg € R™ be a sketch matrix. For
a stream of symbols updateS, )i < Sy(s)i +1 for all 1 <i <d. To retrieve the (approximate)
counts for symbok’ compute minS, ). Hence the name count-min sketch. The idea is that
by storing counts o§ according to several hash functions we can reduce the probabilityllaef co
sion with another particularly large symbol. Cormode and Muthukrishna®4(26how that only
O(elog 1/8) storage is required for amgood approximation, where-13 is the confidence.

Cormode and Muthukrishnan (2004) discuss approximating inner piodnd the extension
to signed rather than nonnegative counts. However, the boundsddefgnareal-valued entries.
Even worse, for the hashing to work, one needs to take the minimum ovéméiseer product
candidates.
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2.5 Random Feature Mixing

Ganchev and Dredze (2008) provide empirical evidence that usitgnigasan eliminate alphabet
storage and reduce the number of parameters without severely impactired peotbrmance. In

addition, Langford et al. (2007) released the Vowpal Wabbit fast erarning software which
uses a hash representation similar to the one discussed here.

2.6 Hash Kernel on Strings

Shi et al. (2009) propose a hash kernel to deal with the issue of cotigmatizefficiency by a very
simple algorithm: high-dimensional vectors are compressed by adding upatlicates which
have the same hash value—one only needs to perform as many calculatithreseaare nonzero
terms in the vector. The hash kernel can jointly hash both label and feathres the memory
footprint is essentially independent of the number of classes used.

3. Hash Kernels

Our goal is to design a possibly biased approximation which a) approximatsgmes the inner
product, b) which is generally applicable, ¢) which can work on datarsseand d) which increases
the density of the feature matrices (the latter matters for fast linear algelZ®0s and graphics
cards).

3.1 Kernel Approximation

As before denote by an index set and let: J — {1,...,n} be a hash function drawn from a
distribution of pairwise independent hash functions. Finally, assumeptkiats indexed by and

that we may compute (x) for all nonzero terms efficiently. In this case we define the hash kernel
as follows:

k(x,X) = (@(x),9(x)) with g;(x) =} @(x) (3)
iezh()=]
We are accumulating all coordinatesf @(x) for whichh(i) generates the same valp@to coordi-
nateg;(x). Our claim is that hashing preserves information as well as randomizggtpons with
significantly less computation. Before providing an analysis let us discus&dw applications:
efficient hashing of kernels on strings and cases where the numblaiseés is very high, such as
categorization in an ontology.

3.2 Strings

Denote byX = J the domain of strings on some alphabet. Moreover, assumeptixat= A;#(x)
denotes the number of times the substiimgcurs inx, weighted by some coefficieat > 0. This
allows us to compute a large family of kernels via
k(x.X) =y N# ()#(X). 4)
i€d
Teo and Vishwanathan (2006) propose a storage effi@@mt + |X|) time algorithm for computing

k for a givenpair of stringsx,x. Here|x| denotes the length of the string. Moreover, a weighted
combinationy; aik(x;, x) can be computed i®(|x|) time afterO(y;|x;|) preprocessing.
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The big drawback with string kernels using suffix arrays/trees is thatrdwyire large amounts
of working memory. Approximately a factor of 50 additional storage is regufor processing
and analysis. Moreover, updates to a weighted combination are costly. mBfhiss it virtually
impossible to apply (4) to millions of documents. Even for modest document etigighwould
require Terabytes of RAM.

Hashing allows us to reduce the dimensionality. Since for every docuxrmamiy a relatively
small number of terms;#x) will have nonzero values—at mos&li(|x|?) but in practice we will
restrict ourselves to substrings of a bounded lehdghding to a cost o®(|x| -1)—this can be done
efficiently in a single pass ovex: Moreover, we can comput@ax) as a pre-processing step and
discardx altogether.

Note that this process spreads out the features available in a doceweshover the coordi-
nates ofg(x). Moreover, note that a similar procedure can be used to obtain good estifmiate
TF/IDF reweighting of the counts obtained, thus rendering preproagasimemory efficient as the
actual computation of the kernel.

3.3 Multiclass

Classification can sometimes lead to a very high dimensional feature vectoifde underly-

ing feature mapx — @(x) may be acceptable. For instance, for a bag-of-words representétion o

documents with 1dunique words and Foclasses this involves up to 1@oefficients to store the

parameter vector directly when tiggx,y) = ey ® ¢(x), where® is the tensor product ang is a

vector whosg-th entry is 1 and the rest are zero. The dimensionaligy o the number of classes.
Note that in the above caggx,y) corresponds to a sparse vector which has nonzero terms only

in the part corresponding ®. That is, by using the joint indef,y) with @(x,Y) ) = @(X)0yy

we may simply apply (3) to an extended index to obtain hashed versions of nadtigators. We

have

A= T e
i€gh(iy)=j

In some cases it may be desirable to compute a compressed vergipr),dhat is,@(x) first and
subsequently expand terms wigh In particular for strings this can be useful since it means that
we need not parsefor every potential value of. While this deteriorates the approximation in an
additive fashion it can offer significant computational savings since alh@ed to do is permute a
given feature vector as opposed to performing any summations.

3.4 Streams

Some features of observations arrive as a stream. For instance, wHempng estimation on
graphs, we may obtain properties of the graph by using an MCMC sampileradvantage is that
we need not store the entire data stream but rather just use summary statbistioed by hashing.

4. Analysis

We show that the penalty we incur from using hashing to compress the nofntmrdinates only
growslogarithmically with the number of objects and with the number of classes. While we are
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unable to obtain the excellef(s~!) rates offered by the count-min sketch, our approach retains
the inner product property thus making hashing accessible to linear estimation

4.1 Bias and Variance

A first step in our analysis is to compute bias and variance of the approximaiorof ¢(x).

Whenever needed we will wriﬁah(x) andRh(x, X') to make the dependence on the hash fundtion
explicit. Using (3) we have

Kxx)=F T ax T dx)

T ih(D=] i”:h(i")=]
=k(x,X) + @ (X) @ (X)Bn(i) hir ®)

whered is the Kronecker delta function. Taking the expectation with respect to titmna choice
of hash function$ we obtain the expected bias

EnlK'(6X)] = (1= 1) k(xx) + 55 @9 Y o (x)

Here we exploited the fact that for a random choice of hash functionsallision probability is%
uniformly over all pairg(i, j). Consequentlk(x,X) is a biased estimator of the kernel matrix, with
the bias decreasing inversely proportional to the number of hash bins.

The main change is @nk-1modification in the kernel matrix. Given the inherent high dimen-
sionality of the estimation problem, a one dimensional change does not iragjbaee a significant
effect on generalization.

Straightforward (and tedious) calculation which is completely analogous bt derivation

leads to the following expression for the varianceh‘{k{'r(x, X')] of the hash kernel:
Van K" (x,X)] = "2 (K 0K(X, ) + K% X) — 25 @)6E(K))
|

Key in the derivation is our assumption that the family of hash functions weleaéng with is
pairwise independent.

As can be seen, the variance decred3@s !) in the size of the values of the hash function.
This means that we have ﬁh{n‘%) convergence asymptotically to the expected value of the kernel.

4.2 Information Loss

One of the key fears of using hashing in machine learning is that hash awdliseom performance.
For example, the well-known birthday paradox shows that if the hashifummaps into a space of
sizen then withO(n%) features a collision is likely. When a collision occurs, information is lost,
which may reduce the achievable performance for a predictor.

Definition 1 (Information Loss) A hash function h causes information loss on a distribDXiith
a loss function L if the expected minimum loss before hashing is less than grteskpinimum
loss after hashing:
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Redundancy in features is very helpful in avoiding information loss. EBdemdancy can be
explicit or systemic such as might be expected with a bag-of-words otrsupeepresentation. In
the following we analyze explicit redundancy where a feature is mappedotortinore values in
the space of size. This can be implemented with a hash function by (for example) appending the
stringi € {1,...,c} to featuref and then computing the hash béi for thei-th duplicate.

The essential observation is that the information in a feature is only lost itipliahtes of the
feature collide with other features. Given this observation, it's unsumgribat increasing the size
of n by a constant multiple and duplicating features times makes collisions with all features
unlikely. It's perhaps more surprising that when keeping the size obnstantand duplicating
features, the probability of information loss candmwn

Theorem 2 For a random function mapping | features duplicated c times into a spaceeohsfor
all loss functions L and and distributions D on n features, the probability (theerandom function)
of no information loss is at least:

1-1[1—(1—c/n°+(Ic/n)9.

To see the implications consider= 10° andn = 10°. Without duplication, a birthday paradox
collision is virtually certain. However, i€ = 2, the probability of information loss is bounded by
about 0404, and forc = 3 it drops to about ©117.

Proof The proof is essentially a counting argument with consideration of the faioitinare dealing
with a hasHunctionrather than a random variable. It is structurally similar to the proof for afloo
filter (Bloom, 1970), because the essential question we address is:t T8v@déower bound on the
probability that all features have one duplicate not colliding with any ottegufe?”

Fix a featuref. We’ll argue about the probability that alduplicates off collide with other
features.

For feature duplicate leth; = h(f oi). The probability thab; = h(f’oi’) for some other feature
f’oi’ is bounded byl — 1)c/n because the probability for each other mapping of a collisiorfiis 1
by the assumption thatis a random function, and the union bound applied tqthel)c mappings
of other features yieldd — 1)c/n. Note that we do not care about a collision of two duplicates of
the same feature, because the feature value is preserved.

The probability that all duplicates< i < c collide with another feature is bounded g /n)°+
1—(1-c/n)°. To see this, let’ < c be the number of distinct duplicates bhfter collisions. The
probability of a collision with the first of these is boundedﬁlby]ic. Conditioned on this collision,
the probability of the next collision is at moé&%, where 1 is subtracted because the first
location is fixed. Similarly, for thé&h duplicate, the probability |§%}5” We can upper bound
each term a%, implying the probability of all’ duplicates colliding with other features is at most
(Ic/n)d. The probability that’ = cis the probability that none of the duplicatesfoollide, which
is (-1 > ((n—c)/n)C. If we pessimistically assume thelt< c implies that every duplicate

n°(n—c—1)!
collides with another feature, then

P(coll) < P(coll|c’ = c)P(c' = ¢) + P(c' #¢)
< (Ie/me+1—((—c)/1)".

Simplification gives(lc/n)°+ 1 — (1—c/n)° as claimed. Taking a union bound over laleatures,
we get that the probability any feature has all duplicates collide is boundéd by(1— c/n)¢ +
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(Ie/n)°). [ |

4.3 Rate of Convergence

As a first step note that any convergence bound only deplegdsithmically on the size of the
kernel matrix.

Theorem 3 Assume that the probability of deviation between the hash kernel and ésterpvalue
is bounded by an exponential inequality via

P Hﬁh(x,%) —Ep [Rh(x, x’)} ‘ > s] < cexp(—c’e?n)
for some constants ¢ depending on the size of the hash and the kernel used. In this casedhe er

€ arising from ensuring the above inequality, with probability at Iehstd, for m observations and
M classes (for a joint feature mag(X,y), is bounded by

£ < +/(2log(m+1) +2log(M + 1) — logd+logc— 2log 2) /nc.

Proof Apply the union bound to the kernel matrix of sizaM)?, that is, to allT :=m(m+1)M(M +
1)/4 unique elements. Solving

Tcexp(—c'e?n) =,

we get the bound oais

log(Tc)—logd

cn ©
Bounding log T ¢) from above
log(Tc) =logT +logc < 2log(m+1) 4 2log(M + 1) +logc — 2log 2
and plugging it into (6) yields the result. |

4.4 Generalization Bound

The hash kernel approximates the original kernel by big storage andutation saving. An inter-
esting question is whether the generalization bound on the hash kernetwilldh worsethan the
bound obtained on the original kernel.

Theorem 4 (Generalization Bound) For binary class SVM, e = (@(x), 9(X)) ,K = (@(x), ¢(X))
be the hash kernel matrix and original kernel matrix. Assume therdéselziz 0 such that b>
tr(K) —tr(K). LetF be the class of functions mapping fréén< Y to R given by 1x,y) = —yg(x),
where g is a linear function in a kernel-defined feature space with norm at tnoFor any size

m sample{(x1,Y1),..., Xm,Ym)} drawn i.i.d. from data distribution D oveX x Y and for any
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6 € (0,1) and anyy > 0, with probability at leastL — 8, we have

In(%)
P(y # sgn(g(x) ZlE.Jr— K)+3\ )
1nn 4 In(2)
< fTNi;EiJFW tl’( mym +3 ZFTi ) (8)

where&; = max{0,y—yig(%)}, and gx) = (W.Q(x,yi)).

Proof The standard Rademacher bound states that for anyrsggmple drawn i.i.d fronD, for
anyd € (0,1) and anyy > 0, with probability at least + &, the true error of the binary SVM ,whose
kernel matrix is denoted &€, can be bounded as follows:

P(y # sgng(x) <—ZlE.+ \/ K’+3\/ ) (9)

We refer the reader to Theorem 4.17 in Shawe-Taylor and Cristianifi4jZor a detailed proof.
The inequality (7) follows by letting’ = K. Becausér(K) < b+tr(K) < (vb+ /tr(K))?, we
haven—wx/tr(K) <y tr(K)+ v b. Plugging above inequality into inequality (7) gives inequal-
ity (8). So the theorem holds. |

The approximation quality depends on the both the feature and the hash noliisoon the defini-
tion of hash kernel (see (3)), the feature entries with the same hashwidlladd up and map to a
new feature entry indexed by the hash value. The higher collision of gtetes, the more entries
will be added up. If the feature is sparse, the added up entries are mesil; 5o the difference
of the maximum and the sum of the entries is reasonably small. In this case sthkdrael gives

a good approximation of the original kernel, s reasonably small. Thus the generalization error
does not increase much as the collision increases. This is verified in theregpt section in Ta-
ble 4—increasing the collision rate from 0.82% to 94.31% only slightly worsentest error (from
5.586% to 6.096%).

Moreover, Theorem 4 shows us the generalization bounds on the bastl knd the original
kernel only differ byO((my)~1). This means that when our data set is large, the difference can
be ignored. A surprising result as we shall see immediately is that in fact,fteeedce on the
generalization bound is always nearly zero regardless pf

4.5 The Scaling Factor Effect

An interesting observation on Theorem 4 is that, if we use a new featureimgagp= ap, where
ac [0,1), it will make the bias term in (5) small. As we decreasenough, the bias term can be
arbitrarily small. Indeed, it vanishes whag= 0. It seems that thus we can get a much tighter bound
according to Theorem 4—the term wittvanishes whea = 0. So is there an optimal scaling factor
athat maximizes the performance? It turns out that any noredomsn’t effect the performance at
all, although it does tighten the bound.

Let’s take a closer look at the hash kernel binary SVM, which can badbzed as

A w2
2

min 231+ 5 max(0.1-y (wigox. ) (10)
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Applying a new feature mapping= a@ gives

min 5\HWH2+ 3 max{0, 1 —y; (W, ¢(x;, i 11
W 2 i; ) yl ) Iayl)>}’ ( )

where\ = % andw = aw. A is usually determined by model selection. As we can see, given a
training data set, the solutions to (10) and (11) are exactly identical-fod. Whena=0,g(x) =0

for all x, w, and the prediction degenerates to random guessing. Moreovertbtigation bound

can be tighten by applying a smallnearly zero. This shows that hashing kernel SVM has nearly
the same generalization bound as the original SVM in theory.

5. Graphlet Kernels

Denote byG a graph with vertice¥ (G) and edge& (G). Several methods have been proposed to
perform classification on such graphs. Most recently, Przulj (2p83)osed to use the distribution
over graphlets, that is, subgraphs, as a characteristic property gfapbl. Unfortunately, brute
force evaluation does not allow calculation of the statistics for graphletg@®hsore than 5, since
the cost for exact computation scales exponentially in the graphlet size.

In the following we show that sampling and hashing can be used to make tlysiarm larger
subgraphs tractable in practice. For this denot&kyG an induced subgraph @, obtained by
restricting ourselves to only (S) C V(G) vertices ofG and let #(G) be the number of timeS
occurs inG. This suggests that the feature m@p— @(G), where@s(G) = #s(G) will induce a
useful kernel: adding or removing an edgsj) only changes the properties of the subgraphs using
the pair(i, j) as part of their vertices.

5.1 Counting and Sampling

Depending on the application, the distribution over the counts of subgrapiise significantly
skewed. For instance, in sparse graphs we expect the fully disdednsgbgraphs to be con-
siderably overrepresented. Likewise, whenever we are dealing withsatbmplete graphs, the
distribution may be skewed towards the other end (i.e., most subgraphs wohigete). To deal
with this, we impose weight8(k) on subgraphs containirigedgegE(S)|.

To deal with the computational complexity issue simultaneously with the issue efglating
the graph$Swe simply replace explicit counting with sampling from the distribution

P(SG) = c(G)B(IE(S)) (12)

wherec(G) is a normalization constant. Samples fro(8S) can be obtained by a Markov-Chain
Monte Carlo approach.

Lemma 5 The following MCMC sampling procedure has the stationary distribution (12).

1. Choose a random vertex, say i, of S uniformly.
2. Add avertex j from &S to § with probability S, G)B(|E(S;j)|).

Here § denotes the subgraph obtained by removing vertex i from S, janglt8e result of adding
vertex jto &
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Note that sampling oveyis easy: all vertices d& which do not share an edge wighi occur with
the same probability. All others depend only on the number of joining eddes.allows for easy
computation of the normalizatics{S, G).

Proof We may encode the sampling rule via

T(S//S ) = 7c(S, GIB(E(S)))

wherec(S,G) is a suitable normalization constant. Next we show fhatatisfies the balance
equations and therefore can be used as a proposal distribution withtaaooe probability 1.

T(SjISGP(S
T(SS;,G)P(S))
k*c(S, G)B(IE(S)))c(G)B(E(S))

= =1
k~1c(Sj.j, G)B(IE(S.ji))S(G)B(IE(S))])
This follows sinceS; ; = § and likewiseS; ji = S That is, adding and removing the same vertex
leaves a graph unchanged. |

In summary, we obtain an algorithm which will readily draw sam@&®m P(S|G) to characterize
G.

5.2 Dependent Random Variables

The problem with sampling from a MCMC procedure is that the random Jesayedependent
on each other. This means that we cannot simply appeal to Chernoffibauimen it comes to
averaging. Before discussing hashing we briefly discuss averdgependent random variables:

Definition 6 (Bernoulli Mixing) Denote by Z a stochastic process indexed &y with probabil-
ity measureP and letX, be thec-algebra on Z with t € Z\1,...,n— 1. Moreover, denote bf_

and P, the probability measures on the negative and positive indices t respectiMeg¢ymixing
coefficienf3 is

B(n,Px) := sup P(A) —P_ x P, (A)|.

If limn_B(n,P;) = 0 we call Z to be3-mixing.

That is,(n,Px) measures how much dependence a sequence has when cutting out atsggme
lengthn. Nobel and Dembo (1993) show how such mixing processes can bedreldie observa-
tions.

Theorem 7 Assume that® is B-mixing. Denote byP* the product measure obtained from
...PtxP1... Moreover, denote by , theo-algebra on 4, 7o, ..., Zin. Then the following holds:

sup |P(A) —P*(A)| <IB(n,P).
Ac3

This allows us to obtain bounds for expectations of variables drawn froether than P.
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Theorem 8 LetP be a distribution over a domait and denote by: X — H a feature map into a
Hilbert Space with@(x),®(X')) € [0,1]. Moreover, assume that there iamixing MCMC sampler
of P with distribution PMC from which we draw | observationswith an interleave of n rather
than sampling fronP directly. Averages with respect B'C satisfy the following with probability
at leastl —&:

1 2+ /log2
XNEE&I;(X)] 7 i;(P(Xin) RV

Proof Theorem 7, the bound dfy(x)||, and the triangle inequality imply that the expectations with
respect to B€ and P only differ by IB. This establishes the first term of the bound. The second
term is given by a uniform convergence result in Hilbert Spaces fritomf&and Smola (2006). &

<1B(n,P") +

Hence, sampling from a MCMC sampler for the purpose of approximating prmoeucts is sound,
provided that we only take sufficiently independent samples (i.e., a lamggbkmn) into account.
The translation of Theorem 8 into bounds on inner products is straigtafdrwince

[(xy) = (X.¥)|
< [x=X[HIA fly =Y I+ [fx =} [ly = Y]

5.3 Hashing and Subgraph Isomorphism

Sampling from the distribution over subgragbs G has two serious problems in practice which we
will address in the following: firstly, there are several graphs whichismmorphic to each other.
This needs to be addressed with a graph isomorphism tester, such as(Makigy, 1984). For
graphs up to size 12 this is a very effective method. Nauty works by emtisty a lookup table to
match isomorphic objects.

However, even after the graph isomorphism mapping we are still left withablsinumber of
distinct objects. This is where a hash map on data streams comes in harfgyiates the need to
store any intermediate results, such as the gr&ustheir unique representations obtained from
Nauty. Finally, we combine the convergence bounds from Theorem 8 veithuharantees available
for hash kernels to obtain the approximate graph kernel.

Note that the two randomizations have very different purposes: the samwér graphlets is
done as a way to approximate thetractionof features whereas the compression via hashing is
carried out to ensure that the representation is computationally efficient.

6. Experiments

To test the efficacy of our approach we applied hashing to the followiogl@ms: first we used it
for classification on the Reuters RCV1 data set as it has a relatively leagi@ré dimensionality.
Secondly, we applied it to the DMOZ ontology of topics of webpagesere the number of topics
is high. The third experiment—Biochemistry and Bioinformatics Graph Classditaises our
hashing scheme, which makes comparing all possible subgraph pairblgattacompare graphs
(Vishwanathan et al., 2007a). On publicly available data sets like MUTAGPArE as well as on

1. Dmoz L2 denotes non-parent topic data in the top 2 levels of the topicriceBrmoz L3 denotes non-parent topic
data in the top 3 levels of the topic tree.
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Data Sets #Train #Test #Labels
RCV1 781,265 23,149 2
Dmoz L2 4,466,703 138,146 575
Dmoz L3 4,460,273 137,924 7,100

Table 1: Text data sets. #X denotes the number of observations in X.

Algorithm Pre TrainTest Error %
BSGD 303.60s 10.38s 6.02
VW 303.60s 87.63s 5.39
VWC 303.60s 5.15s 5.39
HK Os 25.16s 5.60

Table 2: Runtime and Error on RCV1. BSGD: Bottou's SGD. VW: VowpabWiawithout cache.
VWC: Vowpal Wabbit using cache file. HK: hash kernel with feature disiem 2°. Pre: prepro-
cessing time. TrainTest: time to load data, train and test the model. Error: mifictdis rate.
Apart from the efficacy of hashing operation itself, the gain of speeds® @due to a multi-core
implementation—hash kernel uses 4-cores to access the disc for onlinkehage generation. For
learning and testing evaluation, all algorithms use single-core.

the biologically inspired data set DD used by Vishwanathan et al. (200uajnethod achieves the
best known accuracy.

In both RCV1 and Dmoz, we use linear kernel SVM with stochastic gradiesteht (SGD)
as the workhorse. We apply our hash kernels and random projecticrigptas, 2003) to the
SGD linear SVM. We don't apply the approach in Rahimi and Recht (280&)e it requires a
shift-invariant kernek(x,y) = k(x—y), such as RBF kernel, which is not applicable in this case.
In the third experiment, existing randomization approaches are not afplisimise enumerating
all possible subgraphs is intractable. Instead we compare hash ketimelxisting graph kernels:
random walk kernel, shortest path kernel and graphlet kerneBeegvardt et al. 2007).

6.1 Reuters Articles Categorization

We use the Reuters RCV1 binary classification data set (Lewis et al.,.2@84)265 articles are
used for training by stochastic gradient descent (SGD) and 23,14@audie used for testing. Con-
ventionally one would build a bag of words representation first and céécakact term frequency
/ inverse document frequency (TF-IDF) counts from the contentsch article as features. The
problem is that the TF calculation needs to maintain a very large dictionarygthootithe whole
process. Moreover, it is impossible to extract features online since tine eocabulary dictionary
is usually unobserved during training. Another disadvantage is thatlattguexact IDF requires
us to preprocess all articles in a first pass. This is not possible as agitiesas news may vary
daily.

However, it suffices to compute TF and IDF approximately as follows: usash features, we
no longer require building the bag of words. Every word producesh kay which is the dimension
index of the word. The frequency is recorded in the dimension index o key. Therefore,
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Algorithm | Dim Pre TrainTest orgTrainSize newTrainSize Error %
28 748.30s 210.23s 423.29Mb 1393.65Mb  29.35%
RP 2° 1079.30s 393.46s 423.29Mb 2862.90Mb  25.08%
210 1717.30s 860.95s 423.29Mb 5858.48Mb  19.86%
28 0s 22.82s NA NA  17.00%
HK 2° Os 24.19s NA NA  12.32%
210 0s 24.41s NA NA  9.93%

Table 3: Hash kernel vs. random projections with various feature diowadities on RCV1. RP:
random projections in Achlioptas (2003). HK: hash kernel. Dim: dimensiagh@hew features.
Pre: preprocessing time. TrainTest: time to load data, train and test the maddrainSize:
compressed original training feature file size. newTrainSize: computesse training feature file
size. Error: misclassification rate. NA: not applicable. In hash kereeétts no preprocess step, so
there is no original/new feature files. Features for hash kernel areupuilbline via accessing the
string on disc. The disc access time is taken into accoumtaimTest. Note that the TrainTest for
random projection time increases as the new feature dimension increasesaw/for hash kernel
the TrainTest is almost independent of the feature dimensionality.

Dim #Unique Collision% Error %

2%4 285614 0.82 5.586
222 278238 3.38 5.655
220 251910 12.52 5.594
218 174776 39.31 5.655
216 64758 77.51 5.763
214 16383 94.31 6.096

Table 4: Influence of new dimension on Reuters (RCV1) on collision ragg®(ted for both train-
ing and test set combined) and error rates. Note that there is no notipeatdemance degradation
even for a 40% collision rate.

every article has a frequency count vector as TF. This TF is a mucledesstor which requires no
knowledge of the vocabulary. IDF can be approximated by scanning besipart of the training
set.

A quantile-quantile plot in Figure 1 shows that this approximation is justified—¢{perdency
between the statistics on the subset (200k articles) and the full trainir@p€t 4rticles) is perfectly
linear.

We compare the hash kernel with Leon Bottou’s Stochastic Gradient BeSvé/? (BSGD),
Vowpal Wabbit (Langford et al., 2007) (VW) and Random Projecti®®B)((Achlioptas, 2003). Our
hash scheme is generating features online. BSGD is generating fedflinesamd learning them
online. VW uses BSGD'’s preprocessed features and creates fig#teres online. Caching speeds
up VW considerably. However, it requires one run of the original V\ilector this purpose. RP
uses BSGD’s preprocessed features and then creates the nevigutdgmeer dimension features.
Then it uses BSGD for learning and testing. We compare these algorithm€dth R Table 2.

2. Code can be found att p: // 1 eon. bot t ou. or g/ pr oj ect s/ sgd.
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Figure 1: Quantile-quantile plot of the DF counts computed on a subset (Zifiments) and the
full data set (800k documents). [t is the number of documents in a collection containing word
t.

Table 2. RP is not included in this table because it would be intractable to ruthitle same
feature dimensionality as HK for a fair comparison. As can be seen, tipegoessing time of
BSGD and VW is considerably longer compared to the time for training and testilego the TF-
IDF calculation which is carried out offline. For a fair comparison, we meathe time for feature
loading, training and testing together. It can also be seen that the spesliheffeature generation
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HLF (228) HLF (224 HF no hash | U base| P base
error mem| error mem | error mem mem| error| error
L2 [ 30.12 2G | 30.71 0.125G 31.28 2.25G (¥) 7.85G 99.83| 85.05
L3 | 5210 2G|53.36 0.125G 5147 1.73G(¥)| 96.95G| 99.99| 86.83

Table 5: Misclassification and memory footprint of hashing and baseline oetroDMOZ. HLF:
joint hashing of labels and features. HF: hash features only. no taelt model (not implemented
as too large, hence only memory estimates—we have 1,832,704 unique wblige: baseline of
uniform classifier. P base: baseline of majority vote. mem: memory used fanddel. Note: the
memory footprint in HLF is essentially independent of the number of classs u

HLF KNN Kmeans
228 224 S=3% 6% 9% | S=3% 6% 9%
L2 | 69.88 69.29 50.23 52.59 53.8142.29 4296 42.76
L3 | 47.90 46.64| 30.93 32.67 33.71 31.63 3156 31.53

Table 6: Accuracy comparison of hashing, KNN and Kmeans. HLF: joashing of labels and
features. KNN: apply K Nearest Neighbor on sampled training set aslssat. Kmeans: apply
Kmeans on sampled training set to do clustering and then take its majority classladqul class.
Sis the sample size which is the percentage of the entire training set.

is considerable compared to disk access. Table 2 shows that the testferioash kernel, BSGD
and VW are competitive.

In table 3 we compare hash kernel to RP with different feature dimensidasve can see,
the error reduces as the new feature dimension increases. Howeverrohn of hash kernel is
always much smaller (by about 10%) than RP given the same new dimensiamtefgsting thing
is that the new feature file created after applying RP is much bigger thanitfieabione. This is
because the projection maps the original sparse feature to a dense.féatuexample, when the
feature dimension is!®, the compressed new feature file size is already 5.8G. Hash kernel is much
more efficient than RP in terms of speed, since to compute a hash featureqoiires onlyO(dy;)
hashing operations, wherg; is the number of non-zero entries. To compute a RP feature one
requiresO(dn) operations, wherd is the original feature dimension and ands the new feature
dimension. And with RP the new feature is always dense even wisdrig, which further increases
the learning and testing runtime. Whey < d such as in text process, the difference is significant.
This is verified in our experiment (see in Table 3). For example, hastekéntluding Pre and
TrainTest) with 21° feature size is over 100 times faster than RP.

Furthermore, we investigate the influence of the new feature dimension arigblassification
rate. As can be seen in Table 4, when the feature dimension decreaseslligion and the error
rate increase. In particular, &*dimension causes almost no collisions. Nonetheles® dithen-
sion which has almost 40% collisions performs equally well on the problem. |&&is to rather
memory-efficient implementations.
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Data | Algorithm Dim Pre  TrainTest Error %
RP 2 779.98s 1258.12s  82.06%
RP 2 1496.22s 3121.66s  72.66%

L2 RP 2 2914.85s 8734.25s  62.75%
HK 27 0s 165.13s  62.28%
HK 28 0s 165.63s  55.96%
HK 29 0s 174.83s  50.98%
RP 2  794.23s 18054.93s  89.46%
RP 2 1483.71s 38613.51s  84.06%

L3 RP 2 2887.55s 163734.13s 77.25%
HK 27 0s 1573.46s  76.31%
HK 28 Os 1726.67s  71.93%
HK 29 0s 1812.98s  67.18%

Table 7: Hash kernel vs. random projections with various feature dimealgies on Dmoz. RP:
random projections in Achlioptas (2003). HK: hash kernel. Dim: dimensiaghe@hew features.
Pre: preprocessing time—generation of the random projected fealua@isTest: time to load data,
train and test the model. Error: misclassification rate. Note that the Traitiffestfor random
projections increases as the new feature dimension increases, wioeiteash kernel the TrainTest

is almost independent of the feature dimensionality. Moving the dimension Zfam 2° the in-
creasing in processing time of RP is not linear—we suspect this is becdths2’the RP model

has 256< 7100x 8 ~ 14MB, which is small enough to fit in the CPU cache (we are using a 4-cores
cpu with a total cache size of 16MB), while wit the model has nearly 28MB, no longer fitting

in the cache.

6.2 Dmoz Websites Multiclass Classification

In a second experiment we perform topic categorization using the DMQZ éopology. The task
is to recognize the topic of websites given the short descriptions progdetie webpages. To
simplify things we categorize only the leaf nodes (Top two levels: L2 or Togethevels: L3) as a
flat classifier (the hierarchy could be easily taken into account by addished features for each
part of the path in the tree). This leaves us with 575 leaf topics on L2 and W8 [2af topics on
L3.

Conventionally, assuminlyl classes andl features, trainingV different parameter vectors
requiresO(MI) storage. This is infeasible for massively multiclass applications. Howeyer, b
hashing data and labels jointly we are able to obtain an efficient joint repet®s which makes
the implementation computationally possible.

As can be seen in Table 5 joint hashing of features and labels is venytiggriadtems of mem-
ory usage and in many cases is necessary to make large multiclass categociaaputationally
feasible at all (naive online SVM ran out of memory). In particular, iggfeatures only produces
worse results than joint hashing of labels and features. This is likely duestm¢heased colli-
sion rate: we need to use a smaller feature dimension to store the classetgpgeiht vectors
explicitly.
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Figure 2: Test accuracy comparison of KNN and Kmeans on Dmoz withussample sizes. Left:
results on L2. Right: results on L3. Hash kerné®®j2esult is used as an upper bound.

Next we compare hash kernel with K Nearest Neighbor (KNN) and Kmed®unning the
naive KNN on the entire training set is very sléwence we introduce sampling to KNN. We first
sample a subset from the entire training set as search set and then dol&ddNication. To match
the scheme of KNN, we use sampling in Kmeans too. Again we sample from the &aliting set
to do clustering. The number of clusters is the minimal number of classes wdnehal least 90%
of the documents. Each test example is assigned to one of the clusterse daklevthe majority
class of the cluster as the predicted label of the test example. The acploain Figure 2 shows
that in both Dmoz L2 and L3, KNN and Kmeans with various sample sizes getdestacies of
30% to 20% off than the upper bound accuracy achieved by hash k€heetrend of the KNN and
Kmeans accuracy curve suggests that the bigger the sample size is, theclassy increment can
be achieved by increasing it. A numerical result with selected sample sizgmided in Table 6.

We also compare hash kernel with RP with various feature dimensionality orz Dieve RP
generates the random projected feature first and then does onlinmdeamu testing. It uses the
same 4-cores implementation as hash kernel does. The numerical ressi¢leitted dimensional-
ities is in Table 7. It can be seen that hash kernel is not only much fadtatdauhas much smaller
error than RP given the same feature dimension. Note that both hash&edriRP reduce the error
as they increase the feature dimension. However, RP can't achievestitweperror to what hash
kernel has in Table 5, simply because with large feature dimension RP is ie-the estimated
run time for RP with dimension'2 on dmoz L3 is 2000 days.

Furthermore we investigate whether such a good misclassification rate issabgipredicting
well only on a few dominant topics. We reorder the topic histogram in aecmelto ascending error
rate. Figure 3 shows that hash kernel does very well on the firsturdréd topics. They correspond
to easy categories such as language related sets "World/Italiano”, Méplahese”,"World/Deutsch”.

3. Infact the complexity of KNN i©(N x T), whereN, T are the size of the training set and the testing set. We estimate
the running time for the original KNN, in a batch processing manner iggdtie data loading time, is roughly 44
days on a PC with a 3.2GHz cpu.
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Figure 3. Left: results on L2. Right: results on L3. Top: frequencyntstior topics as reported
on the training set (the test set distribution is virtually identical). We see apnexpial decay in

counts. Bottom: log-counts and error probabilities on the test set. Note ¢hatribr is reasonably
evenly distributed among the size of the classes (besides a humber ompgrotasses which are
learned perfectly).

6.3 Biochemistry and Bioinformatics Graph Classification

For the final experiment we work with graphs. The benchmark data seiseeehere contain three
real-world data sets: two molecular compounds data sets, Debnath etAdl) é1@ PTC (Toivonen

et al., 2003), and a data set for protein function prediction task (D) Pobson and Doig (2003).

In this work we used the unlabeled version of these graphs, see, donpds, Borgwardt et al.

(2007).

All these data sets are made of sparse graphs. To capture the strddhgeymaphs, we sam-
pled connected subgraphs with varying number of nodes, fiea¥ ton=9. We used graph
isomorphism techniques, implemented in Nauty (McKay, 1984) for getting andeadly-labeled
isomorph of each sampled subgraph. The feature vector of each ex@rg) is composed of
the number of times each canonical isomorph was sampled. Each graphmgaled 10000 times
for each ofn = 4,5...9. Note that the number of connected unlabeled graphs grows expdigentia
fast with the number of nodes, so the sampling is extremely sparse for lalgesvofn. For this
reason we normalized the counts so that for each data set each fdapuresatisfies > @(x) > 0.
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DataSets| RW SP  GKS GK HK HKF

MUTAG |0.719 0.813 0819 0822 0.855 0.865
PTC 0554 0.554 0594 0597 0.606 0.635
DD >24h >24h 0745 >24h 0799 0.841

Table 8: Classification accuracy on graph benchmark data sets. Rifémamalk kernel, SP: short-
est path kernel, GKS = graphlet kernel sampling 8497 graphlets, Giphégt kernel enumerating
all graphlets exhaustively, HK: hash kernel, HKF: hash kernel wituiee selection.>24h’ means
computation did not finish within 24 hours.

Feature All Selection
STATS ACC AUC | ACC AUC
MUTAG | 0.855 0.93| 0.865 0.912
PTC 0.606 0.627| 0.635 0.670
DD 0.799 0.81|0.841 0.918

Table 9: Non feature selection vs feature selection for hash kernel. Wieaures. Selection:
feature selection; ACC: accuracy; AUC: Area under ROC.

We compare the proposed hash kernel (with/without feature selectionjamdom walk kernel,
shortest path kernel and graphlet kernel on the benchmark data-sats.Table 8 we can see that
the hash Kernel even without feature selection still significantly outpeddhe other three kernels
in terms of classification accuracy over all three benchmark data sets.

The dimensionality of the canonical isomorph representation is quite high any features
are extremely sparse, a feature selection step was taken that remowgddesaispected as non-
informative. To this end, each feature was scored by the absolute viteanfrrelation with the
target. Only features with scores above median were retained. As caebensTable 9 feature
selection on hash kernel can furthermore improve the test accuraey@adnder ROC.

7. Discussion

In this paper we showed that hashing is a computationally attractive techmicle allows one to
approximate kernels for very high dimensional settings efficiently by melaasparse projection
into a lower dimensional space. In particular for multiclass categorization thiesval the differ-

ence in terms of being able to implement problems with thousands of classesflicgn large

amounts of data and features.
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