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Abstract

We define a model of learning probabilistic acyclic circuiging value injection queries, in which
fixed values are assigned to an arbitrary subset of the wirg$ree value on the single output wire
is observed. We adapt the approach of using test paths fr@@itbuit Builder algorithm (Angluin

et al., 2009) to show that there is a polynomial time algonithat uses value injection queries to
learn acyclic Boolean probabilistic circuits of constaartin and log depth. We establish upper and
lower bounds on the attenuation factor for general and itreely reduced Boolean probabilistic
circuits of test paths versus general experiments. We gingatational evidence that a polynomial
time learning algorithm using general value injection ekpents may not do much better than one
using test paths. For probabilistic circuits with alphahstsize three or greater, we show that the
test path lemmas (Angluin et al., 2009, 2008b) fail uttefly.overcome this obstacle, we introduce
function injection queries, in which the values on a wire rhaymapped to other values rather than
just to themselves or constants, and prove a generalizepatslemma for this case.

Keywords: nonadaptive learning algorithms, probabilistic circuitausal Bayesian networks,
value injection queries, test paths

1. Introduction

Probabilistic networks are used as models in a variety of domains, for exaggple interaction
networks, social networks and causal reasoning. In a binary médehe interaction, the state of
each gene is either active or inactive, and the state of each gene is detkamia function of the
states of some number of other genes, its inputs. In a probabilistic varidwetimfodel, the activation
function specifies, for each possible combination of the states of the inpeitsrdhability that the
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gene will be active (Friedman et al., 2000). In the independent casuvadiel of social networks, the
state of each agent is active or inactive and for each(paw) of agents, there is a probability that
the activation ofi will causev to become active. Kempe, Kleinberg, and Tardos (2003, 2005) study
the problem of maximizing influence in this and related models of social netwbrks Bayesian
network there is an acyclic directed graph and a joint probability distributven the node values
such that the joint distribution is the product of each of the marginal distriitior each node
given the values of the parents (in-neighbors) of the node.

A fundamental question is how much we can infer about the propertiestaraduse of such
networks from observing and experimenting with their behaviors. Pregameh gives evidence
from cryptography that there may be no polynomial time algorithm to learn Baolenctions
represented by acyclic circuits of constant fan-in and dé€ptlogn) when we can set only the
inputs of the circuit and observe only the output (Angluin and Kharitod®695). In this paper we
consider a different settingalue injection queries in which we can fix the values on any subset
of wires in the target circuit, but still only observe the output of the circuit.

The concept of value injection queries was inspired by models of germ@esgion and gene
overexpression in the study of gene interaction networks (Akutsu etC8l3; 2deker et al., 2000)
and was introduced by Angluin et al. (2009). In a causal Bayesianonktiiere is an additional
action dg¢X = x) that forces a nod¥X to take on a valua (Pearl, 2000). A value injection query
may also be viewed as a set of such actions, one for each wire fixed boea va

Angluin et al. (2009) investigate the learnability of deterministic circuits usitgevajection
gueries and behavioral equivalence queries. Polynomial time learniagthafgs using just value
injection queries are given for two classes of acyclic circuits. Circuit Builgses value injection
gueries to learn acyclic deterministic circuits with constant-size alphabettarwfan-in and depth
O(logn) up to behavioral equivalence in polynomial time. Another algorithm is givahléarns
constant-depth acyclic Boolean circuits with NOT gates and unboundeid faND, OR, NAND
and NOR gates up to behavioral equivalence in polynomial time using valwtiamj@ueries. Neg-
ative results include an exponential lower bound on the number of valusiorjequeries to learn
acyclic Boolean circuits of unbounded depth and unbounded fandrthaiNP-hardness of learning
acyclic Boolean circuits of unbounded depth and constant fan-in using injection queries.

In extending these results to analog circuits, Angluin et al. (2008b) censidcuits with
polynomial-size alphabets. They give evidence of the computational éssdif learning acyclic
circuits over a polynomial-size alphabet even if the depth is restrict&dlomn), motivating struc-
tural restrictions on the graphs of the circuits to achieve polynomial time legitpaThey give the
Distinguishing Paths Algorithm, which uses value injection queries and leaynBadeterministic
circuits that are transitively reduced and have polynomial-size alphatmetstant fan-in and un-
bounded depth up to behavioral equivalence in polynomial time. They Bls@generalization to
circuits with a constant bound on shortcut width.

In this paper we seek to extend some of these positive learnability resultscagb®f acyclic
probabilistic circuits. The key technique in the previous work has been #zedfatest path for
an arbitrary wirew in the circuit. Informally speaking, a test path is a directed path of wires from
w to the output wire in which each wire is an input of the next wire on the patth,tla@ other
(non-path) inputs of wires on the path are fixed to constant values, tiatng the wires along the
path from the rest of the circuit. Ideally, the choice of constant values éenmasuch a way as to
maximize the effect on the output of the circuit of changiwnfyjom one value to another. A test path
thus functions as a kind of “microscope” for viewing the effects of assgdifferent values to the
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wire w. The primary focus of this paper is to understand the properties of tés eprobabilistic
circuits, and the extent to which they can be used to give polynomial time algwarifir learning
probabilistic acyclic circuits.

In Section 2 we formally define our model of acyclic probabilistic circuits, @ahjection
queries and distribution injection queries, behavioral equivalencethantearning problem that
we consider. In Section 3 we establish some basic results about probabilistits and value and
distribution injection experiments. In Section 4 we review the test path lemma ugedvious
work to establish the ability of a learner to infer circuit behavior from a smaiset of experiments
and show that it fails utterly in probabilistic circuits with alphabet size greater twvo. However,
for Boolean probabilistic circuits, we show that the test path lemma holds wittiemuation factor
that depends on the structure of the circuit. (Lemma 10 treats generditagyeuits and Corol-
lary 11 specializes the bound to transitively reduced circuits.) In Sectioa &pply the test path
lemma in the Boolean case to adapt the Circuit Builder algorithm (Angluin et &@9)20 find
using value injection queries, with high probability, in time polynomiahiand 1/, a circuit that
is e-behaviorally equivalent to a target acyclic Boolean probabilistic cirdusize n with constant
fan-in and depth bounded by a constant timeslo¢n Section 6, we consider lower bounds on
the attenuation of paths; Theorem 16 shows that our bound is tight faitivaty reduced circuits
and Theorem 18 gives a lower bound for the case of general acydigts. In Section 7 we give
evidence that polynomial time algorithms using general value injection expasmeay not do
significantly better than algorithms that use test paths. In Section 8 we ing@dstconger kind of
guery, afunction injection query, and show that test paths with function injections overcome the
limitations of test paths for circuits with alphabets of size greater than two.

2. Model

We extend the circuit learning model (Angluin et al., 2008b, 2009) to foitibac gates. An unusual
feature of this model is that circuits do not have distinguished inputs—siedeaming algorithm
seeks to predict the output behavior of value injection experiments theide/¢he values on an
arbitrary subset of wires, each wire is a potential input.

2.1 Probabilistic Circuits

A probabilistic circuit C of sizen > 1 hasn wires, of which one is the distinguishexuitput wire.
We call the set o€’s wiresW, and these wires take values in a fird@habet ~ with |Z| > 2. If
> ={0,1}, thenC is Boolean The value on a wire is ordinarily determined by the output of an
associated probabilistic gate, whose distribution is a function of the valuethenwires.

Formally, avalue distribution D is a probability distribution oveE, that is, a map fronx to
the real interval0, 1] such thaty ;.5 D(0) = 1. The probability ofo is D(o). The support of D
is the set of values € X such thatD(o) > 0. When the support dD is a singleton{c}, we say
D is deterministic. For a nonempty set of valu&sC %, the uniform distribution U(S) is the
distribution such that) (S)(o) = [0 € §/|9, that is, has value 0 oo ¢ Sand /|S| foro € S

A k-ary probabilistic gate function f maps eaclk-tuple of valueg oy, ...,0x) € ¥ to a value
distribution. WherC is Boolean, we can speciff/ by a truth table giving the expected value for
each Boolean vector of inputs. A probabilistic gate functioddterministic if it mapsk-tuples to
deterministic value distributions only.
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A probabilistic gate g of fan-in k pairs ak-ary probabilistic gate functiori with a k-tuple
(wi,...,Wk) € WX of input wires. The gateg is deterministic if its gate functionf is deterministic.
Whenk = 0, the gateg has no inputs, and we can regard it as specifying a value distribution, or,
whenC is Boolean, a biased coin flip.

A probabilistic circuit C maps wires to probabilistic gateS.is deterministic if all of its gates
are deterministic. Th&an-in of C is the maximum fan-in oveC’s gates. Theircuit graph of C
has a node for each wire W and a directed edges, w) if u is one of the input wires of the gate
associated withw. It is important to distinguish between wires in the circuit and edges in theitcircu
graph. For example, if wire is an input of wiresr andw, then there will be two directed edges,
(u,v) and(u,w), in the circuit graph.

Wire w is reachablefrom wire u if there is a directed path fromto w in the circuit graph. A
wire isrelevant if the output wire is reachable from it. Thieepth of a wirew is the number of edges
in the longest simple path fromv to the output wire in the circuit graph. Tlikepth of the circuit
is the maximum depth of any relevant wire. The circuiticyclic if the circuit graph contains no
directed cycles. The circuit isansitively reduced if its circuit graph is transitively reduced, that
is, if it contains no edgéu, w) such that there is a directed path of length at least two fudow.

In this paper we assume all circuits are acyclic.

2.2 Experiments

In an experiment some wires are constrained to be particular values erdiatubutions and the
other wires are left free to take on values according to their gate funaiuthshe values of their
input wires. The behavior of a circuit consists of its responses to aflijpesexperiments. For
probabilistic circuits we consider both value injection experiments and distriburjection exper-
iments.

A distribution injection experiment e is a function with domairw that maps each wires
to a special symbot or to a value distribution. Avalue injection experimente is a distribution
injection experiment for which every value distribution assigned is determinigiat is, always
generates the same symbol. To simplify notation, we think of a value injectioniege as a
mapping fromW to (XU {x}). If eis either kind of experiment, we say thaleavesw free if
e(w) = x; otherwise we say tha constrainsw to e(w). If e(w) is a single symbol, then we say
fixesw to e(w).

We define a partial ordering on the set containing and all value distribution® as follows:
D < « for every value distributiod, and for two value distribution); < D, if the support oD
is a subset of the support B. This ordering is extended to experiments on the same set of wires
W as follows:e; < e if for everyw € W, e;(w) < ex(w). The intuitive meaning oé; < e, is that
e is at least as constraining asfor every wire.

If eis any experimenty is a wire, anda is x or an element ok or a value distribution, then
the experimené|y,—, is defined to be the experimegitsuch tha€ (w) = a and€ (u) = e(u) for alll
u € W such thatu £ w. If eis any experiment then faee path in e is a path in the circuit graph
containing only wiresv that are free ire.

2.3 Behavior

Let C be a probabilistic circuit. Then a distribution injection experimedetermines a joint dis-
tribution over assignments of elementsofo all of the wires of the circuit, as follows. If wires
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is constrained thew is randomly and independently assigned a valug @vawn according to the
value distributiore(w); in the case of a value injection experiment, this just assigns a fixed element
of Z tow. If wire wis free and has probabilistic gate functibnand its inputsus, ..., ux have been
assigned the values, ..., ok, thenw is randomly and independently assigned a value feoat-
cording to the value distribution determined by the gate function on these inipatss, according

to the value distributiorf (01, ... ,0k).

Constrained gates and gates of fan-in zero give the base casesdbotherecursive definition,
which assigns an element bfto every wire because the circuit is acyclic. IGfie,w) denote the
(marginal) value distribution of the assignments of valuew for the above process. Thitput
distribution of the circuit, denote@(e), is the distributiorC(e, z), wherezis the output wire of the
circuit. Thebehavior of a circuitC is the function that maps value injection experimegiis output
distributionsC(e).

We note that even when the circuit is Boolean and the only non-determinigtis gige uniform
coin flips, the problem of exactly computije) is #P-hard because we can arrange@ge) to be
the fraction of assignments satisfying a given Boolean formula.

2.4 Example:Cy

We give an example of a simple Boolean probabilistic circuit, which we also teflater. The
2-inputaveraging gate functionA(by, by) outputs 1 with probabilityb; + by) /2. Thus, if both
inputs are 0, the output is deterministically 0, if both inputs are 1, the outputesndiaistically 1,
and if its inputs disagree, the output is an unbiased coinWid0,1}). Another characterization
of the averaging gate functiohis that it randomly and equiprobably selects one of its inputs and
copies it to the output.

We define a circuiC; of 4 wires as follows:wy = A(Wo,W3), W3 = Wi, Wy = Wy, andw; =
U({0,1}). The output wire isvs. C; is depicted in Figure 1.

Figure 1: The circuiCs; wy is the output wire.

To illustrate the behavior of this circuit, we consider two value injection experisn®efine the
experimeneto leave every wire iy free, thatisg(w;) = x for 1 <i < 4. Givene, we construct one
random outcome as follows. The wing is assigned a value as the result of an unbiased coin flip—
say it is assigned 0. Then the values assighashtandws are determined because they are each
the output of an identity gate withy as input: both are 0. Finally, because both its input wires have
been assigned values, can be assigned a value accordingA{®, 0), which is deterministically
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0. It is easy to see that this is one of two possible outcomes for experigneither all wires
are assigned 0 or all wires are assigned 1, and these each occur eitibitity 1/2. The output
distributionC;y (e) is just an unbiased coin flip.

Now consider experimerd = €|,,—1 that fixesw, to 1 and leaves the other wires free. Once
again, the value ofv;, is determined by a coin flip—say it is assigned 0. Singds fixed to 1,
that is its assignment. Wings is free, and is therefore assigned the valuarpfthat is 0. Now the
inputs ofw, have been assigned values, so we consid#y0), which randomly and equiprobably
selects 0 or 1. If, instead, the coin flip fat had returned 1, all wires would be assigned 1. There
are three possible assignmentgwa, w», W3, ws) for experiment’: (1,1,1, 1) with probability 1/2,
(0,1,0,0) with probability 1/4 and(0, 1,0, 1) with probability 1/4. The output distributiolC; (¢)
is a biased coin flip that is 1 with probability 3.

2.5 Behavioral Equivalence

Two circuitsC andC’ arebehaviorally equivalentif they have the same set of wires, the same out-
put wire and the same behavior, that is, for every value injection experiey@fe) = C'(e). We also
need a concept of approximate equivalence. (Batistical) distancebetween value distributions
D andD’ isd(D,D’) = (1/2) 54 |D(0) — D'(0)|, which takes values if0, 1]. Note that wherD and
D’ are deterministicd(D,D’) is 0 if D = D’ and 1 otherwise. Far> 0, C is e-behaviorally equiv-
alent to C' if they contain the same wires and the same output wire, and for every vgdation
experiment, d(C(e),C'(e)) < g, whered is the statistical distance between value distributions.

In Lemma 2 we show that the behavioral equivalenc€ ahdC’ impliesC(e) = C'(e) for all
distribution injection experiments as well. However, behavioral equivalenuot sufficient to guar-
antee that two circuits have the same topology; even when all the gates@eaBadeterministic
and relevant, the circuit graph of the target circuit may not be uniquegriiéned by its behavior
(Angluin et al., 2009).

2.6 Queries

The learning algorithm gets information about the target circuit by spegifgimalue injection ex-
perimente and observing the element Bfassigned to the output wire. Such an action is termed a
value injection query, abbreviated VIQ. A value injection query does not return complete informa
tion about the value distributid@(e), but instead returns an element®$elected according to the
distributionC(e). Thus, in order to approximate the distributiGfe), the learner must repeatedly
make value injection queries with experimentin this case, the goal of learning is approximate
behavioral equivalence.

2.7 The Learning Problem

The learning problem is-approximate learning: by making value injection queries to a target
circuit C drawn from a known class of probabilistic circuits, the goal is to find a i€uthat is
e-behaviorally equivalent t€. The inputs to the learning algorithm are the names of the wir€s in
the name of the output wire and positive numkeandd, where the learning algorithm is required
to succeed with probability at leagt — d).

We note that acyclic deterministic circuits are a subclass of acyclic probabdistigits. If
the target circuiC is deterministic and we learn a probabilistic cira@itthat is 1/3-behaviorally
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equivalent taC, then we can compute the behavior®bn any value-injection experimestwith
high probability by sampling the behavior 6f(e). The negative results concerning learning deter-
ministic circuits using value injection queries shown by Angluin et al. (2008yaaver to learning
probabilistic circuits. In particular, fog = 1/3 andd = 1/2, with no bound on fan-in or depth,
the worst-case expected number of value injection queries necessaayri@tgclic probabilistic
Boolean circuits is exponential, while with constant fan-in and no boundepthdno polynomial
time algorithm can learn acyclic probabilistic Boolean circuitsi is not equal tBPP.

3. Preliminary Results

In this section we establish some basic results about probabilistic circuitg, gdction experi-
ments and distribution injection experiments. The reader may choose to skipdtisand return
to it as needed for proofs in subsequent sections.

We first note that iC is a probabilistic circuiteis a distribution injection experiment and either
e(w) is a value distribution oe deterministically fixes all the input wires of, then there is a value
distributionD such that the value of in C(e) is determined by a random choice accordindto
independent of the values chosen for any other wires. We make systemsatif this observation
to reduce the number of experiments under consideration.

We start by considering two circui@, andC, over the same wires, and distribution injection
experimentse; ande, that agree on the distribution assigned to a wirand that show a certain
distance betwee@;(e;) andCy(e;). The following lemma says that we may modé#y ande; to
fix w to a particular value € > while preserving (or increasing) the distance they show.

Lemma 1l Let G and G be probabilistic circuits on wires W with the same output wire, let W
be a wire, let D be a value distribution, and let @d e be distribution injection experiments such
that e (w) = ex(w) = D. Then there exists a valuwee supportD) such that

d(Ca(e1|w=0),C2(€2lw=0)) = d(Cs(e1),C2(€2))-

Proof We have
1
d(Ci(er),Co(e2)) = 5
22

_1
2'[6

Ca(en)(1) ~Cale) (1)

Ca(€1lw=p)(1)D(p) — ;Cz(ezw_p)(T)D(p)'
pe pe

< ;p;mp)%

- %D(p)d(C(elfwzp)7C(92|W:p))a
pe

Ca(etlup) (1) ~ Cal€zlu=p) (V)|

by the triangle inequality. Let

o= argmax d(C(e1|w=p),C(e2|w=p)),
pesupportD)

so that

d(C(e1lw=0),C(€2lw=0)) = d(C(e1),C(e2))
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by an averaging argument. [ |

By successively replacing each value distribution by a particular valeenay convert a distri-
bution injection experiment that shows a certain distance between two cirdoigsvalue injection
experiment that shows at least that distance between the two circuits.

Lemma 2 Let G and G be probabilistic circuits on wires W with the same output wire and let e be
a distribution injection experiment. Then there exists a value injection expergns e such that

d(Cy(€),Co(€) > d(Ca(e),Ca(8)).

Proof By induction on|V|, whereV C W is the set of wires that constrains to distributions that
are not deterministic. IV| > 0, then letw € V. By Lemma 1, there exists a valges X such that

d(Cyi(elw=0),C2(€lw=0)) = d(Cs(€),Cz(e)).
Sincee|y—g constrains one fewer wire to a nonconstant distribution, the existergédibws from

the inductive hypothesis. [ |

Thus, value injection experiments suffice to establish approximate beHasguigalence with
respect to distribution injection experiments.

Corollary 3 If circuits C; and G are e-behaviorally equivalent with respect to value injection ex-
periments, then Cand G are e-behaviorally equivalent with respect to distribution injection exper-
iments.

Suppose that is a probabilistic circuit anéy ande, are distribution injection experiments. For
each wirew, we say thag; ande, agreeonw if either

e e, ande, constrainw to the same distribution, or
e wis free ine; ande,, ande; ande, agree on all ofv's inputs.

It is clear that ife; ande, agree on a wirav, then the marginal distributions @f in e, ande, are
identical, that isC(e1,w) = C(e, w).

Lemma 4 Let C be a probabilistic circuit on wires W and let and e be distribution injection
experiments that agree on wires’VW. Then there exist distribution injection experimerjtsies;
and & < e, such that for each wire w V, there exists a value € X such that &w) = &(w) = o,
and

d(C(€1),C(&})) = d(C(er),C(e2))-
Proof By induction on the number of unfixed wiresc V. If there is such a wire, chooseby

the acyclicity of the circuit to be one that is not reachable from the othérs,(\) = ex(v) = x,
thene; ande, agree on all olv's inputs, and by the choice of all of v's inputs are fixed. As
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such, we may assume without loss of generality gaatnde; in fact constrairv to the distribution
D =C(e1,v) =C(ez,Vv). By Lemma 1, there exists a valges suppor{D) such that

d(C(etlv=0),C(€2lv=0)) > d(C(e1),C(e2)).

The existence o, andé, follows from the inductive hypothesis. [ ]

The following lemma shows that constraining a wivaloes not change the behavior of wires
that are not reachable from

Lemma 5 Let C be a probabilistic circuit on wires W, let e be a distribution injection ekpent,
let we W be a wire free in e, and let D be a value distribution. Then e dpdeagree on all wires
u € W such that there is no free path fromwto u in e.

Proof If uis constrained, then the conclusion follows. Otherwiseay letV be a wire free ire such
that there is no free path from to uin e. Then no inputv of u has a free path froowto vin e.
We proceed by induction on the length of the longest path ti this length is zero, then does
not have any inputs. Otherwise, the inductive hypothesis applies towaidl wfputs, on whicte and
elw—p then must agree. It follows that they also agreeion |

If we consider the distance between the behavior of a circuit with a wiretned to two
different value distributions, the following lemma allows us to move to a situation iohwthe wire
is constrained to two different value distributions whose supports arardisjo the special case
of Boolean circuits, the property of disjoint supports means that the reguitilue distributions
are deterministic. Later we see that this fundamentally distinguishes betwéabelsize two and
larger alphabets.

Lemma 6 Let C be a probabilistic circuit on wires W, let&W be a wire, and let B, D, be value
distributions. There exist value distributiong @’ with suppor{D}) N supportD’,) = 0 such that
for all experiments e,

d(C(elw-p,),C(elw-p,)) = d(D1,D2)d(C(elw-p;), C(€lw=p;))-

Proof Intuitively, we coupleD; andD; so thatD; = D, as often as possible and Bt be the dis-
tribution of D; given thatD; # D». It can be shown thdd; andD» have disjoint support. Formally,
we have

A(C(elu-0,).Cle-0.)) = 5 3 [Cleh-0,)(0) - Cleln-0,)(0)

1
“2

%C(e\w:r)(ﬁ)(Dl(T) - Dz(T))| :

If we let
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then

d(C(elv-o,) Clew-0)) = 5 5

oc

;C(elw:r)(ﬁ)(/D\l(T) - DAz(T))| :

Sincey es D1(T) = 1— Yes Min(D1(1), D2(1)) and likewise forD,,

1
d(Dl,Dz) — 5 Z
Te

-3
— gﬁ(r): gfzm.

If d(D1,D2) > 0, then the distributionB} andD;, where

D1 (1) — Dg(T)‘

D1(1)— 5\2(1-)‘

D3(1) = D1(1)/d(Ds, D2)
D5(t) = D(1)/d(D1, D2)

satisfy the requisite properties. Otherwise, any two distributions with disjoppat will do. B

4. Test Paths

The concept of a test path has been central in previous work on lgaseterministic circuits by
means of value injection queries (Angluin et al., 2008b, 2009%esA path for a wirew, or w-test
path, is a value injection experiment in which the free gates form a directed path a@irttuit graph
from w to the output wire. All the other wires in the circuit are fixed; this includes tpat® ofw.
A side wire with respect to a test pathis a wire fixed byp that is input to a free wire imp.

As an example, suppose that= {0,1} and the target circuit has a circuit graph as shown in
Figure 2. There are four directed paths framto the output wire w;ws, Wy Wsws, WiWow4ws and
W1WaWaWs. A wi-test path is a value injection experiment that sets the wires of one of thibsapa
x and the other wires to 0 or 1, for exampk®11x or xx0«x. For the test path011x, the side wires
arews andw,, while for the test path«0xx the side wire isvs. The value injection experiments
xxkxx and«0Lxx are not test paths.

A test path may help the learning algorithm determine the effects of assignfegedif values
to the wirew. The test path lemmas (Angluin et al., 2008b, 2009) may be re-stated assollow

Lemma 7 Let C be a deterministic circuit. If for some value injection experiment e, wiiree in
e and alphabet symbotsandrt it is the case that

C(Plw=o) = C(Plw=1)

for every test path g e then also

C(elw=c) = C(Elw=1)-
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Figure 2: A circuit graphyvs is the output wire.

Nontrivial complications arise in attempting to carry over this test path lemma toajgmeba-
bilistic circuits, as we now show. The following lemma shows that for alphalisizeat least three,
there are transitively reduced probabilistic circuits for which the test-patimbefails completely.

Lemma 8 If |Z| > 3, there exists a probabilistic circuit C, value injection experiment e, wire
w free in e and alphabet symbatsand t such that although for every test path<pe for w,
d(C(p|lw=0),C(plw=1)) = O, it is nevertheless the case thaie|w—q¢),C(€lw=1)) = 1/2.

Proof Assume thak = {0, 1,2}, and define probabilistic gate functiomsandX as follows.

T(0)=T(1)=U({0,1})

T(2)=2
X(b1,bp) =bs @by if by,by € {0,1}
(bl,bz) = U({O 1}) if b1 =2 Ol'bz = 2

where® is sum modulo 2. The gate functidnflips a coin on input 0 or 1, and passes 2 through
unaltered. The gate functiofiis exclusive or if neither input is 2, and a coin flip otherwise.

The circuitC has 5 wires, connected as in Figure 3. The output wirgsisnote thatC is
transitively reduced.

Consider the experimesgthat leaves all the wires free. In this experiment, we l&\&, o) =
C(elw,=1) = 0 becausev, is a coin flip andws is the exclusive or of two copies of the coin flip. On
the other handC(ejw,—2) = U({0,1}) becausens = wz = wp = 2 andws is therefore a coin flip.
Thusd(C(e|w,~0),C(€lw=2)) = 1/2.

However, the only test paths far fix ws and leave all other wires free, or fixy and leave all
other wires free, and the two cases are symmetriw; I fixed to any value and all other wires are
free, thenws is a coin flip wherwy = 2. If ws is fixed to 2 and all other wires are free, thegis also
acoin flip. Ifws is fixed tob € {0, 1} and all other wires are free, then whene {0,1}, w, is a coin
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Figure 3: The circuiC; ws is the output wire.

flip, andws is the exclusive or ob and that coin flip, that isys is also coin flip. Hence, for any test
pathp < e for wy, we haveC(plu,—0) = C(Plw;—2) = U ({0, 1}) andd(C(puy—0),C(Pwy2)) = O.

For alphabet& of size larger than 3, we can treat three of the symbols as 0, 1 and 2 indbe ab
construction, and the other symbols as “tilt,” where each function outputs\alile if any of its
inputs is a tilt value. |

4.1 A Bound for Boolean Probabilistic Circuits

Surprisingly, the case ¢E| = 2 is different; for Boolean probabilistic circuits there is a useful quan-
titative relationship between the difference exposed by an arbitraryimgrte and the differences
exposed by test paths< e. The bound we give depends on the structure of directed paths on free
wires ine.

Let e be an experiment and a wire. Defind1(e,w) to be the set of all directed paths fromto
the output wire on free wires ia Let S(e) be the set of wires that originate a free shortcut, that is,
the set of free wirewss such that there exists a pgthe (e, w) with two free wires to whictw is an
input. Define

K(e,w) = z 2lpns(e)|
pel(ew)

Thus,k(e,w) is the sum over paths i (e,w) of 2 raised to the number of wires on the path that
originate free shortcuts ime. If there are no wires that originate free shortcutsjirthen this is
just the number of free paths @ As an example, if the target circuit has the circuit graph shown
in Figure 2 and the experimentieaves all wires free thefi(e,w;) contains the four paths;ws,
W1 W3Ws, W1WoWaWs andwiwWawaws, S(e) = {wi, w3}, andk(e,w) is 24+ 4+2+4=12.

The following technical lemma gives a useful recurrencexfe w).

Lemma 9 Let C be a probabilistic circuit, e be a distribution injection experiment, w and trde
wires where w is an input to u, andpbe a value distribution. Lef =2 if w € S(e) andp =1
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otherwise. Then
K(e,W) = K(€|u=py, W) + K(€lw=1,U) - B.

Proof The first term of the sum counts paths that don't contaiand the second counts paths that
do. Lete = e|,—p, and€’ = €|y—1. We have

K(e’ W) — z 2\pm8(e)\

pel(ew)
- z 2lpns(e)l Z 2lpnse)|
pel(ew) pel(ew)

ugp uep
-y 2SEly 3 2sel
pel(e,w) pel(e’,u)

=k(€,w)+k(e',u)-B,
since each patp > u from w corresponds to the path\ {w} from u. [ ]

Next is the key lemma relating the difference exposed toythe differences exposed by paths. e
for Boolean probabilistic circuits.

Lemma 10 Let C be a Boolean probabilistic circuit, e be a distribution injection experimarite
a wire free in e and B, D, be value distributions. If there exists> 0 such that for all w-test paths
p<e,
d(C(plw=p,),C(Plw=0,)) <&,
then
d(C(elw=n,),Clelw=n,)) < K(eW) .

Proof By induction ong(e), the number of free wires i@ By Lemma 6, assume that supg@t) N
supportD,) = 0. The critical feature of the Boolean case is that it follows hat= 0 andD, = 1
without loss of generality—it is important to the following proof tliat andD, be deterministic.

If @(e) =1, then either

d(C(elw=0),C(€lw=1)) =0,
or wis the outpute is aw-test path, and(e,w) = 1. Otherwise, the inductive hypothesis is that the
lemma holds for all experimeng with @(€') < @(e).

Except forw, the experiments|,,—o ande|y—1 agree on all constrained wires, so by Lemmas 4
and 5, assume without loss of generality that every wire with no free pathviris in fact fixed.
SinceC is acyclic, there exists a free wite# w whose only unfixed input is. Letg be the gate
assigned by to u and letBy = g(€jw—0) andB; = g(€|w=1), So that

C(elw=0) = C(€|w=0,u=8,)
C(elw=1) = C(€lw=1,u=8,)-

By the triangle inequality,

d(C(€elw=0),C(€lw=1)) < d(C(Elw=0,u=Bo),C(Elw=1,u=8,))
+ d(C(€elw=1,u=80 ), C(Elw=1,u=8,))-
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Letting € = €|u_g,, any test patlp < € also satisfiep < esince€ < e. The experiment’ has one
fewer free wire, asiis free ine, so using the inductive hypothesis, we can bound the first term of the
sum byk(€,w) -€. We now derive a bound amtest paths so that the inductive hypothesis applies
to the second term as well. LBt= 2 if w € S(e) andp = 1 otherwise. Let’ = e|y—1 and suppose

p < € is au-test path. Then

d(C(plu=8,),C(Plu=8,))
< d(C(plw=1,u=Bo), C(Plw=0,u=8,)) + d(C(Plw=0,u=8, ) C(Plw=1u=8,))
[by the triangle inequality]

= d(C(plw=1,u=Bo)> C(Plw=0,u=By)) + d(C(Plw=0.u=+), C(Plw=1,u=+))
[by the definitions 0By andBy].

Sincew is an input tou, both plw—. u—g, and plw=«u—+ arew-test paths. Therefore, both terms of
the sum are bounded lgy and the first is nonzero only ¥ is an input to some free wire ip other
thanu. It follows that

d(C( p|U:Bo)aC( p|U:Bl)) S Bsa
and thus that

d(C(€"[u=0),C(€|u=1)) < K(€",u) - e,
so by Lemma 9,

d(C(elw-0),C(elw-1)) < K(€,W)-e+K(€",u) Be

K
K(ew)-e.

In the case of transitively reduced circui&e) = 0, andk(e,w) = 11(e,w), whereTi(e,w) =
|M(e,w)|, the number of directed paths on free wiregifinom w to the output wire.

Corollary 11 Let C be a transitively reduced Boolean probabilistic circuit, e be a distribuitien
jection experiment, and w be a wire free in e. If there existsO such that for all w-test paths
p<e,

d(C(plw=0),C(Plw=1)) <&,

then
d(C(elw=0),Clelw-1)) < TH(EW) ‘.

5. Learning Boolean Probabilistic Circuits

The amount of attenuation given by Lemma 10 allows us to adapt the CircuiteBuildorithm

(Angluin et al., 2009) to learn Boolean probabilistic circuits with constantifieend log depth in
polynomial time. For this class of circuits, the attenuation fakterw) is bounded by a polynomial
inn.
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Theorem 12 Given constants ¢ and k there is a nonadaptive learning algorithm that with-pro
ability at least(1 — &) successfullg-approximately learns any Boolean probabilistic circuit with
n wires, gates of fan-in at most k and depth at mdego using value injection queries in time
bounded by a polynomial in i/¢ andlog(1/9).

The rest of the section is devoted to proving this theorem. Let the targeitdireC with
> ={0,1} and let positive constands €, k andc be given such that the fan-in 6fis bounded bk
and the depth of is bounded bylogn. For such a circuiti(e,w) is bounded above bkf'°9", so
the quantityk (e,w) is bounded above by

K(n) _ kclogn . 2c|ogn _ nc(Iogk+1) _ nO(l)‘

We now describe our Probabilistic Circuit Builder algorithm (PCB). PCB isauaptive: first
it computes a sat) of value injection experiments such that every test path is equivalent to some
experiment irJ. It then repeats each value injection queryU enough times that with probability
at least(1— 9), the distributionC(e) is estimated with sufficient accuracy for every U. Finally,
it uses these estimates to build a cirdDitby repeatedly adding a sufficiently accurate gate all of
whose inputs are in the partially constructed circuit. If the estimaté3(ef are all sufficiently
accurate, the@@' is e-behaviorally equivalent tG.

5.1 ConstructingU

In choosing the experiments$, the goal is that for every potential test pdthjncludes an equiv-
alent experiment. The structure of the circuit, however, is not knawniori, a difficulty that we
overcome by the same method as used by Angluin et al. (2009)J,Lle¢ a universal set of value
injection experiments such that for every setkofogn wires and every assignment of symbols
from ZU {x} to those wires, some experiment U, agrees with the values assigned to those wires.
There is a deterministic construction of such al$ebf size

20(kc|og n) Iogn _ nO(kc)
in time polynomial in its size (Angluin et al., 2009). (For intuition, a senB8f9 independent
random uniform assignments ©f0 and 1 to the wires has this property with high probability.) For
every wirew and test patlp for w, there is an experiment ld, that leaves the path wires pffree
and fixes the side wires gf to their values inp. Consequentlyp and this experiment agree on
the output wire. In order to have experiments in which each free wire issafsto 0 and 1, for
b=0,1 letUp contain every experime®,_p such thae € U, andw is free ine. The final set of
experiments i$) = U, UUgUUs.
5.2 EstimatingC(e) for ec U

For eache € U, PCB repeatedly makes a value injection query witb estimate the value distribu-
tion C(e); letC(e) denote this estimate. By Hoeffding’s bound, we have that

m= O((nk(n)/¢)?log(|U|/3))
trials per experimeng suffice to guarantee that with probability at least @, for allec U,

d(C(e).C(e)) < &/(4nk(n)). (1)
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Lete e U, be a value injection experiment,be a wire that leaves free, an be a value distribu-

tion. We define
C(elw-n) %D C(elw-o)

Note that this is computed from the vaIuesCAIQfe|W:o) and does not require new experiments.
If (1) holds for alle € U, then we have

d(C(elw=n) e\w— ) < %D C(elw=o), 6(e’w a))
< &/(4nk(n)). (2)

5.3 Building the Circuit C’

PCB builds the circui€’ one gate at a time. L&/’ denote the set of wires @' that have already
been assigned a gate by PCB; initiallf is empty. WhileW’ £ W, PCB attempts to add another
gate toC’ by searching for a wirev € (W —W'’) and a probabilistic gatg’ all of whose inputs are
in W’ such that for each experimeat U, that leavesv free and fixes all inputs af,

d(C(e),Clelu=g(e)) < 2¢/(4nK(n)).

If no such gate can be found @ =W, PCB output<C’ and halts. We will later show that a gate
can be found as long &8 # W'.

The search fog' iterates over every wire € (W —W') and every choice of antuple of distinct
wireswy, ..., w; from W’ as the inputs ofv, where 0< r < k. For each such choice, PCB attempts
to define a probabilistic gate functidnas follows. For eaclos,...,0,) € ', PCB seeks a number
x € [0,1] such that ifDy is the distribution that is 1 with probabilityand 0 with probability(1 — x)
then

d(C(e).Clelw-p,)) < 2¢/(4nk(m))

for all experiments € U, that leavew free and fixw; to g; fori = 1,...,r. Since the left hand side
is a convex function ox, every sucle constrains the possible valuesxb an interval, and anyin
the intersection of0, 1] and the intervals for all suahsuffices. If the intersection is empty, then the
attempt to defind fails; otherwise,f(01,...,0;) is defined to béy. If PCB succeeds in defining
f for all possibler-tuples(oy,...,o;), then the gatg’ with inputswy, ..., w; and probabilistic gate
function f is assigned taov.

5.4 An lllustration

For some intuition about the operation of PCB, consider the probabilistic Boaiecuit shown in
Figure 4. Wiresv; andws, are determined by random coin flipgs is the AND ofw; andw,, wy is
the OR ofw; andw,, andws is determined by the 3-input averaging gate appliedtov; andwg.
The table shows the probability that = 1 for a selected set of value injection experiments.
Suppose that these experiments are containétwhen PCB attempts to add the first gate to
C'. Of course, PCB will only have repeated sampling estimates of these fitdbsbbut suppose
for a moment that the exact values were available. Becalise empty, the first gate added must
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@ # Experiment Pwvs = 1]
l *k k%% 1/2
2 Ox*** 1/6
3 1****  5/6
4. **0** 5/12
6 *1*0*  1/3
7 01*0* O
8 11*0* 2/3
9. *100* 1/6
10. *110* 1/2

Figure 4: A Boolean circuit with output wings, and some of its behavior.

have no inputs and must be determined by a coin flip that is 1 with some probabillityhis group

of experiments, there are two constraints for wirefor the possible values of Experiments 1,

2 and 3 give the constrairl/6)(1— x) + (5/6)x = 1/2, which impliesx = 1/2, and experiments

6, 7 and 8 give the constraintD— x) + (2/3)x = 1/3, which also impliex = 1/2, consistent with

the gate computings in the target circuit. There are also two constraints on the possible values of
x for the wirews. Experiments 1, 4 and 5 give the constrg®it12)(1—x) + (3/4)x = 1/2, which
impliesx=1/4, and experiments 6, 9 and 10 give the constr@dif®)(1—x)+ (1/2)x=1/3, which
impliesx = 1/2. Thus there is no consistent valuexahat would allow the first gate to be chosen
for wire wz. Rather than exact values, PCB considers intervals determined byt@am@nces, but

when these are small enough, the constraint intervalsviowill not overlap, and PCB will not
choose the first gate for wirgs.

5.5 Correctness

With probability at least1 — 9), the estimateé(e) satisfy (1) for alle e U. We now assume
that the estimates satisfy these bounds and show that PCB successfulyyauitduitC’ that is
e-behaviorally equivalent tG.

We first establish two lemmas connecting gates, paths and experiments.a@eehean prob-
abilistic circuitC and a probabilistic gatg, g is n-correct for wire w with respect tcC if for every
value injection experimergthat fixes the input wires fay we haved(C(e), C(€lw—g(e))) <N, where
g(e) denotes the value distribution determinedjwhen its inputs are fixed as @ Recall thatp(e)
denotes the number of free wires in experimerand thereforey(e) < nfor all e.

Lemma 13 Let C and C be probabilistic circuits on wires W, and let e be a distribution injection
experiment. If for every wire w, the gate for w ihi€n-correct for w with respect to C, then

d(C(e),C'(e)) < @(e)-n.

Proof By induction ong(e), the number of free wires ia If @(e) = 0, thene constrains the output
wire, and trivially,d(C(e),C’(e)) = 0. Otherwise, the inductive hypothesis is that

d(C(€),C'(€)) <q(€)-n
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for all experiment® with fewer thang(e) free gates.

By Lemma 2, assume thatis in fact a value injection experiment. Sin€éis acyclic, there
exists a free wirevin esuch that the inputs wwin C’ are fixed ineto somek-tuple (o1, ...,0k) € 3k,
Let f denote the probabilistic gate function farin C’, and letD denote the value distribution
f(o1,...,0k). Then we hav€’(e) = C'(ejw-p), and

d(C(e),C'(e)) < d(C(e),C(elw=p)) +d(C(elw=p),C'(elw=n))
<n+(e(e)—1)-n
=@(e)n

by the inductive hypothesis and the fact tlfids n-correct forw. |

Corollary 14 Let C and Cbe probabilistic circuits on wires W whef&/| = n. If for every wire w,
the gate g for w in Cis n-correct for w with respect to C, then

d(C(e).C'(e) <n-n.
Proof By the definition of approximate behavioral equivalence and the bad< n. [ |
Next we show that test paths are sufficient to determine whether a ggtisect for a wire in
C.

Lemma 15 Let C be a Boolean probabilistic circuit, w a wire and @ probabilistic gate. If for
every test path p for w that fixes all the inputs 6fd{C(p),C(plw—g(p))) < N/Kw, Where K, is the
maximum value af(e,w) for C over all experiments e, thenig n-correct for w with respect to C.

Proof Let g be the actual gate th@tassigns tav. Let e be a value injection experiment that fixes
every input ofg’. Thene may not fix all ofg’s inputs, but becausg is acyclic,g’s inputs are not
reachable fromv. By Lemmas 4 and 5, there exists an experingrt e that fixesg’s inputs, with

d(C(e()aC(e(|W:g’(e’))) > d(c(e)7c(e‘w:g’(e)))-

Sinceé fixes all ofg's inputs,C(€') = C(€/|w—g(e))- It is given that for all test pathp that fix all
inputs ofg’ that

d(C(p|w:g(p)),c(p|W:g/(p))) < ﬂ/Kw,

so it follows by Lemma 10 that

d(C(e(’w:g(e’))>C(e(|w:g'(e’))) < K(e{>W) ’ r]/KW <n,

andd’ is n-correct forw. |

To prove that PCB constructs a circGitthat ise-behaviorally equivalent to the target circGit
we show that for each wirer € W, PCB assigns a gate thatgign-correct forwin C.
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Assume thatW’ # W, that is, that not all wires have been assigned gates, and considea$?CB
it attempts to add another gate@ PCB looks for a wirew € (W —W'’) and probabilistic gate
g € G with all of its inputs inW’ such that for each experimeat U, that leavesv free and fixes
all inputs ofg/,

d(C(e).Clelw-g(e)) < 2¢/(4nK(n)).
If this search succeeds, then by (1),

d(C(e),C(e)) < &/(4nk(n))d(C(Elw—g/e)): ClElw=g(e))) < &/ (4nK(N)),

and thus by the triangle inequality we have

d(C(elw—g(e)),C(e)) < &/(NK(N)),

It follows by Lemma 15 and the choice rfn) thatd' is €/n-correct forw in C.

To see that the search for a gate will succeed as lon\y’ag W, we note that because is
acyclic, there is some wine € (W —W’) such that all ofv's inputs inC are inW’. Letg denote the
gate assigned bg to w, with inputsws, ..., w; and probabilistic gate functioh. By the existence
of g, there is at least one feasible gate-wire assignment for PCB to makeingnthe continued
progress of PCB. Consider any experimerd U, that leavesw free and fixes the inputs af to
(01,...,0r). LetD be the value distributiofi(oy, ...,0r). ThenC(e) = C(elw—p) and by (1) and (2)
we have

d(C(e),C(e)) < &/(4nk(n))
d(C(elw-p),Clelw-n)) < &/(4nK(n)),

IN

so by the triangle inequality,
d(C(e),C(elw_p)) < 2¢/(4nK(n)).

Therefore, PCB will continue to make progress until it has assigned dageatery wire inW, and
every such gate will be/n-correct for its wire inC, which means that’ will be e-behaviorally
equivalent tcC.

5.6 Running Time

To bound the running time of PCB we argue as follows. TheaJsef experiments is of cardinality
n®k9 and can be constructed in time polynomial in its size. To estiBéey, each experiment in
U is repeated

O((nk(n)/€)*log(|U|/3))

times; recall thak (n) = O(n¢°9k+1))  PCB then chooses a gate for a wirtmes. For each choice,
it must at worst iterate oved(n) wires in (W —W’), over allO(n¥) choices ok or fewer input wires
from W', over all|Z|¥ assignments of values to the input wires, and all experiments ifihus the
running time of PCB is polynomial in, 1/€ and /.
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6. Lower Bounds on Path Attenuation

The path attenuation bourkdn) is a significant factor in the running time of the PCB algorithm. In
this section we consider lower bounds on path attenuation for Booleaahiligtic circuits. The
following theorem shows that the bound mfe,w) for transitively reduced Boolean probabilistic
circuits in Corollary 11 is tight infinitely often.

Theorem 16 There is an infinite set of transitively reduced probabilistic Boolean circuith shat
for each circuit C in the family, there exists a value injection experiment e anideaw free in e
such that

d(C(elw=0),C(ew=1)) =1
and for every test path p for w we have

d(C(p‘W:0)7C(p|W:1)) = 1/1-[(9’ W)'

Proof For each positive integet, define the circuiC, to be a chain of copies of the circuiC;
in Figure 1 with wirew, of one copy identified with wirev; of the next copy. More formally, the
30+ 1 wires areng4 andw; j fori =1,...,/ andj = 2,3,4. The output wire isv, 4. The wirewg 4
has no inputs and is determined by an unbiased coin flip, that({€), 1}). The wiresw; , andw; 3
are the outputs of deterministic identity gates with ingut; 4. The wirew; 4 = A(W; 2,w; 3) is the
result of applying the two-input averaging probabilistic gate funcAdo the wiresw; » andw; 3.
The circuitCs is depicted in Figure 5.

To understand the operation of this circuit in response to a value injectp@Etiente, we may
view each averaging gate as choosing one of its inputs to copy to its outpuingttrthe output
wire, this determines a path back to the first wire whose value has beendixaxthe wirewp 4
(which has no inputs) and the output of the circuit is the value of the wireached.

Define experimergto leave all of the wires free. Let denote the wirevp 4. Clearly there are®2
paths on free gates afrom w to the output gate, that is{w, e) = 2. For experimeng every possi-
ble path starts at wirey and we hav€(e|y—o) = 0 andC(e|w-1) =1, sod(C(€|w-0),C(elw=1)) = 1.
However, any test patp for w must fix one of the wirew; » orw; 3 for eachi = 1,...,¢. Thus, there
is exactly one path that leads back to wiveand this path is the one chosen by the averaging gates
with probability 1/2°. Thus the result for any test paghfor w is d(C(p|w=0),C(plw=1)) = 1/2' =
1/m(e,w). [

This lower bound also holds for general transitively reduced circuitltapes, as follows. (Note
that this result was incorrectly stated in the preliminary version of this p&mgli(in et al., 2008a).)

Theorem 17 Let G be a transitively reduced acyclic directed graph with a designatedibatale
Z that is reachable from every node. For each node w there exists ad@opiebabilistic circuit
C whose circuit graph is G with output wire z such that for every value injecigeriment e that
leaves w free and for every test patk<ge for wire w we have

d(C(elw=1),C(€elw=0)) > (€, W) - d(C(plw=1), C(Plw=0))-

Proof Letw be given. To construct, each nodes of G is assigned a probabilistic gate whose
inputs are the in-neighbors ofin G, as follows. For each node let P(v) denote the number of

1900



LEARNING AcYCLIC PROBABILISTIC CIRCUITS USING TEST PATHS

w04 = U({0,1})

Figure 5: The circuiCs; ws 4 is the output wire.
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distinct directed paths fromw to z that include noder, and for each edggu,v), let P(u,v) denote
the number of distinct directed paths framto z that include edgéu,v). If there are no paths from
w to z throughv (that is,P(v) = 0) then we let the probabilistic gate function fobe the constant
function 0. The probabilistic gate function faris a coin flip,u ({0,1}).

Otherwise, if nodev has inputsuy,...,uU; then it is assigned the probabilistic gate function
specified by

Ao, by) = _ibi P(uLY)/P(Y)

This generalizes the two-input averaging gateveighting inputy; by the fraction of paths fromv

to z passing through that also pass through. We may viewA, as performing a random weighted
selection of one of its inputs to copy to its output. The weights have beenrcisosthat each
directed path fromw to zis selected with probability P(w).

Let e be any value injection experiment that leaveBee. If there is no path on free wiresén
from w to the output, them(e,w) = 0, and the bound in the conclusion of the lemma holds trivially.
Otherwise, the output of the circuit in responseis determined by tracing from the output wire,
following the choices of the averaging gates, until either the first wire fised or w, is reached.
Thus

d(C(elw=1),C(€elw=0)) = (€, W) /P(w),

because there arée, w) paths fromw to the output wire ire. Let p < e be any test path fow; now
there is just one choice of path that leads back,teo

d(C(plw=1),C(plw=0)) = 1/P(w),
establishing the conclusion of the lemma. |
Can the general bound in Lemma 10 be improved to the bound for transitdiiged circuits in
Corollary 11? The following example shows that the better bound is in geamgrattainable if the

circuit is not transitively reduced. It gives a family of circuits of deptif@& which the worst-case
ratio of the differences shown fer by an experimeng and the best path favis (5/4)‘Ti(e,w).

Theorem 18 There exists an infinite set of Boolean probabilistic circuits Dy, ... such that for
each/ there exists a value injection experiment e and a wire w free in e sucmtaat) = 4° and

d(De(€w=0), De(elw=1)) = (5/7)",
but for any test path p for w,
d(De(Plw=0), De(Plw=1)) = (1/7)".
Proof We first define a Boolean probabilistic circiy and then connedt copies of it in series

to getD,. The wires ofD; arews,...,ws. They are connected as in Figure 6; the output wire is
ws. Note that the edgéw;, ws) means that the circuit graph is not transitively reduced. The gate
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T;'g)i@

Figure 6: The circuiDy; ws is the output wire.

functionG is defined by giving its expected value as a function of its inputs:
E[G(w1,W2,W3,Wy)] = ((1— W) + 2Wo 4 2W3 + 2Wy) /7.
Let e be the experiment that leaves all five wires free. It is clear that
d(D1(ew,~0), D1(€w,=1)) = 5/7.
We now show that for any test paghfor wy,
d(Da(plw;=0), D1(Plwy=1)) = 1/7.

The possible test patigsfor wy either fix all ofw,, ws, w, or all but one of them. Thus, as we change
fromw; = 0 tow; = 1 in such a test path, the assignments to wiresw., ws, ws) change in one
of four possible ways:

(0, by, bg, ba) 0 (1, by, bs, ba)
(0,0, bs, bs) o (1,1, bg, by)
(0,b2,0,bs) 0 (1, b, 1, by)
(0, by, bs, 0) to (1, by, b, 1)

Checking each of these possible changes against the definit®nveé see that each change pro-
duces a difference of/Z, as claimed. (This example can be modified to give a difference of 1s/ersu
1/5.) Thus, settingv = ws, the circuitD; gives the base case of the claim in the lemma.

To constructD,, we takel copies ofD; and identify wirews in one copy with wirew; in the
next copy, making the wiress of the final copy the output wire of the whole circuit. betdenote
the wirew; in the first such copy. Ther(e,w) = 4‘ and

d(De(€lw=0), De(Bw-1)) = (5/7)".
For any test patlp, the signal is attenuated by a factor gf7Ifor each level, and we have

d(D¢(plw=o0), De(Plw-1)) = 1/7".
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This construction can be generalizedka- 1 wires for any oddk + 1, which increases the
attenuation. In the base circuit there &rpaths and an attenuation factor of(2k — 3), and the
worst-case ratio of differences for an experiment and its test patbs approaches‘@ie,w) ask
goes to infinity.

7. Exponential Dependence on Depth

The bounds on path attenuation show that test paths may be much less inferthati general
value injection experiments, resulting in the exponential dependence ofithieem of experiments
and the running time of PCB on the depth of the target circuit. It is naturaktavasther we might
do better by using selected general experiments. In this section, weajiveutational evidence
to the contrary. The following result contrasts with the case of deterministiaitsy where the
Distinguishing Paths algorithm uses value injection queries to learn arbiteasitively reduced
acyclic deterministic circuits of constant fan-in over polynomial size alptsabegpolynomial time

(Angluin et al., 2008Db).

Theorem 19 If BPP # NP and k> 4 then there is no polynomial time algorithm using value injec-
tion queries that approximately learns all acyclic transitively reduced Baof@obabilistic circuits
with fan-in bounded by k.

Proof Suppose. is a polynomial time algorithm that approximately learns the behavior of every
transitively reduced acyclic Boolean probabilistic circuit of fan-in bouhtdg 4 using value in-
jection queries. The hard computational problem we consider is the followjimgn a satisfiable
3-CNF formulag over the variablexy, ..., X, with clausescy,...,cy, find an assignment to the
variables that satisfies significantly more than seven-eights of the clagesformula. Finding
such an assignmentéP-hard by a result of Eistad (2001). We show how to transform the 3-CNF
formula @ into a pair of transitively reduced circui@ andC; with maximum fan-in 4 such that
value injection experiments show a difference that is exponentially small iretbih of the circuits
unless we can find a variable assignment that satisfies significantly morsetam-eighths of the
clauses of the formula.

The efficiency of our construction depends on the existence of a famdyaphs with an ex-
pansion property. Specifically, there exists a congtaqitl such that for sufficiently largen, there
exists a directed grapB,, on m nodes with constant out-degree 3 such that the second largest
eigenvalue\, of the transition matrix for a random walk dBy, satisfiesh, < a. Such a family
can be constructed by the probabilistic method and explicit constructiomdsar&nown; these are
surveyed by Hoory, Linial, and Wigderson (2006). Léke the smallest integer such tleét< 1/40.

Let ¢ be a positive integer. The two circui® andC; differ only in their default assignments
to a subset of their wires, so we describe their common structure as folldvescircuit consists
of a stack of? repetitions of a block consisting ofexpander layers above one gadget layer for a
total depth of(2r + 1)¢. Figure 7 illustrates a block consisting of one expander layer 1) above
a gadget layer. Recall th&i, . .., x, are the variables apandcy, ..., cy, are the clauses @i

A gadget layerhas three types of wires: inputs gln..,gln,,, variables x, ..., Xy, and outputs
gOut,...,gOut,. The input wire gin of each gadget layer except the initial one is identified with
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Expander layer

[ \
gOut1 =gin1 A c1
\#‘b

Gadget layer

Figure 7: A block withr = 1 for the Boolean formula; A ¢ A C3 A Ca, Wherecs = X2 VX3V Xq and
C =X VX3VXgandcz =X VXo VXs andcs = X1V Xo V X3.

the corresponding output wire eQuif the expander layer just below it. The variable wire®k
each gadget layer have no inputs and default to the constant 0. Egmit wire gOut has four
inputs: the corresponding gadget input wire gamd the three variable wires for the variables of
the clausee; of @. Its gate function computes the conjunction of ghmd the value of the clausg
given its three variable values.

Thus, if the learner sets the variable wirgsrxa gadget layer according to a satisfying assign-
ment of, the signals propagate from the gadget inputs girtheir corresponding outputs gQut
with perfect fidelity. Otherwise, any unsatisfied clause blocks the signéhé corresponding out-
put.

An expander layeraverages the outputs of the layer below to be the inputs for the layer above,
according to the expander gra@. Each input elp of an expander layer is set equal to the
corresponding output of the gadget or expander layer immediately belovhd.three inputs to
eOut are el for the three out-neighboisof j in the expander grapGny,. The gate function for
each eOutis the three-input averaging gatéx, y, z), which is 1 with probabilityx+y+2) /3. The
output of the whole circuit is the first output wire of the final (topmost) exjea layer.

Theinitial inputs are the input wires glnof the initial gadget layer. They have no inputs; for
the circuitCy they are all assigned the default value 0, and for the ci@uibey are all assigned the
default value 1. Note th&ly andC; are transitively reduced and have a maximum fan-in of 4.

The challenge for the learner is to determine whichCgfand C; is the target circuit. If a
value injection experiment succeeds in setting the variable wires in eveggglayer to (possibly
different) satisfying assignments for the formgland leaves all other wires free, then the output of
Cois 0 and the output dZ; is 1. If not all the clauses @fare satisfied, then this distance is reduced.
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Intuitively, the learner’s strategy must be to fix the variable wires in eadgejdayer to prevent
the signal from the initial inputs from getting blocked; fixing the input or otitpues of gadget or
expander layers would not help, because they would then have the séumer@gardless of their
inputs. Without a good variable assignment, however, the signal streragib by a constant factor
for each layer, as we now show.

Let e be a value injection experiment. The experimemduces an assignment to the variables
of ¢ for each gadget layer, either by fixing the value of each variable witettimg it default to 0.
The effect of an averaging gate is to select one of its inputs at randdogay the value of that input
to the output. Thus, the output of the circuit for experimeig in effect determined by a random
walk backward from the output wire until the walk reaches a wire whofigeva fixed bye (and
the output is the fixed value), or a gadget layer output wire correspgnd an unsatisfied clause
(and the output is 0), or an initial input wire (and the output is the value oftiva.) Suppose that
for each gadget layexencodes a variable assignment that satisfies at (8p$0)m of the clauses
of @. We show that the probability that the random walk hits an initial input wire is\ded above
by (39/40)¢,/m.

Without loss of generality we may assume tkdixes no wires other than variable wires and
initial input wires, because any other fixed wires reduce the probabilitgathing an initial input.
Fori=1,...,¢, letW be themx mdiagonal matrix with 1s for each satisfied clause inithggadget
layer and Os for each unsatisfied clause. Rdte the transition matrix for an-step random walk
on G and lete; = (1,0,...,0). The probabilities of the random walk hitting the initial inputs are
given by the vectoe;BW,BW,_1 - BWoBW,. By the following argument, for all and vectors/, we
havel|vBW|| < (39/40) V.

Write v = cu+w, wherecis a scalar and = (1,...,1) andw is a vector such that | w. Then
uis an eigenvector dB with eigenvalue 1 and multiplying by B shrinks its length to at most the
second eigenvalue d times its original length. By Pythagora&ul| < ||v|| and||w|| < |v||. We
havevBW = (cu+w)BW. On one hand|cuBW|| = ||cuW|| < 1/9/10||cu|| < (19/20)|v||. On the
other hand||wB|| < (1/40)||w|| < (1/40)||v||, because the second eigenvalu®as$ no larger than
1/40, and||wBW|| < (1/40)||v||, becaus&\ does not increase the norm. The resulting39/40)"
bound on thé., norm of the probability vector gives a bound(@8/40)‘/mon theL; norm, which
is an upper bound on the probability that any initial input is reached.

Suppose the learning algorithioruns in timef (N, 1/¢,1/8), for some nondecreasing polyno-
mial f, whereN is the number of wires in the target circuit. Llié{¢) denote the number of wires
in Cp (or Cy) as a function of the numbérof blocks in the stack. TheN(¢) = O(¢(n+rm)). We
choos¢ sufficiently large that

((39/40)"/m) f(N(¢),4,4) < 1/4,

clearlyN(?) is bounded by a polynomial im andn.

We randomly and equiprobably choose the target cilCui beCy or C; and simulate. with
target circuitC ande = 6 = 1/4. WhenL makes a value injection experimexntwe check whether
any of the induced variable assignmentedatisfies more tha®/10)m clauses ofp. If so, we
output the assignment and halt. Otherwise, we use a random walk fromtihé wire in the circuit
C to give an output foe. If no experiment satisfies more thaf®/10)m of the clauses o§, then
the probability that any of them reaches an initial inputiis less than 14. If none of them reaches
an initial input, therL cannot distinguish betwedZy andC;, and must output a circuit that is not
1/4-approximately behaviorally equivalent @with probability at least 88 > 1/4, violating the
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requirements of approximate learning. |

We conclude that iBPP # NP, any polynomial time learning algorithm requires in expectation
exponentially many queries ito learn the default settings of the initial inputs and therefore, PCB
is within a polynomial of optimal.

8. Non-Boolean Circuits Revisited

The sharp contrast in results for transitively reduced circuits with algthsibe at least three, for
which test paths may show no difference (Lemma 8) and those with alphabdtwe, for which
test paths must show a significant difference (Lemma 10) motivate us twleoageneralization of
the kinds of experiments we consider, to function injection experiments. €hsrglization allows
us to extend the results of Lemma 10 to non-Boolean alphabets.

In a value injection experiment, each wire is either fixed to a constant valleftdree. In
a function injection experiment for a wing, these possibilities are expanded to permit a trans-
formation of the value that the wine would take if it were left free. As an example, consider a
transformation in which the values thatcould attain are linearly ordered and all values below a
certain threshold are mapped to the minimum value and all other values aredhiapghe maxi-
mum value. It is conceivable that this kind of transformation could be fEagitsome domains;
in any case, the theoretical consequences are quite interesting. Wgviirst general definition
of function injection, but in the results below we are primarily concerned wiplar@itions, that is,
transformations that are like the above example in that they partition the vatoestimost two
blocks and map each block to a fixed element of the block.

An alphabet transformation is a functionf that maps symbols to distributions over symbols.
An alphabet transformation geterministic if it assigns only deterministic distributions, in which
case we think of it as a map from symbols to symbols. A deterministic alphabstdrarationf
is ak-partition if there exists a partition al into at mostk disjoint nonempty sets; such that for
eachi there existo; € %; such thatf (%) = {o;j}. Note that ifk; < ky, everyk;-partition is also a
ko-partition.

A 1-partition is a constant function, achieving the same result as fixing thee tovim value
in a value injection experiment. We use 2-partitions to reduce the case of &pi@bets to the
binary case. Note that the 2-partitions of a binary alphabet include thetidend the two constant
functions, but not the negation function.

If D is a value distribution anélis an alphabet transformation, théfD) is the value distribution
in which

(f(D))(0) = EED(T)(f(T))(G)-

A function injection experiment is a mappinge with domainW that assigns to each wire the
symbolx or a symbol fron® or an alphabet transformatidn Theneleavesw free if e(w) = , fixes
wif e(w) € %, andtransforms w if e(w) is an alphabet transformatidn We extend the ordering
on experiments by stipulating that each alphabet transformétiorn. A 2-partition experiment
is a function injection experiment in which every alphabet transformation ipart&ion.

We now define the joint probability distribution on assignments of symbols Edowires de-
termined by a function injection experimeatlf e fixesw, thenw is just assigned(w). Otherwise,
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if the inputs ofw have been assigned the values...,ox and f is the gate function fow, we
randomly and independently choose a symbaiccording to the value distribution(oy, ..., 0k).

If wis free ine, theno is the symbol assigned t; however, ife(w) is an alphabet transformation,
then a symbot is chosen randomly and independently according to the value distrite{tiorand
assigned tav. That is, whene(w) is an alphabet transformation, we generate the symbalvfor
as though it were free, and then use the distribuém) to transform that symbol. Becau€eis
acyclic, this process assigns a symbol to every wir€.of

In a function injection query (FIQ), the learning algorithm gives a function injection exper-
iment e and receives a symbal assigned to the output wire &f by the probability distribution
defined above. Aunctional test path for a wirew is a function injection experiment in which the
free and transformed wires are a directed path in the circuit graphvirtamthe output wire, and all
other wires are fixed.

As an example of how functional test paths help in learning non-Boolezrapilistic circuits,
consider again the circuit in the proof of Lemma 8, depicted in Figure 3. Wifypa functional test
pathp by p(wi) = p(ws) = p(Ws) = %, p(wz) = 0 andp(ws) is the alphabet transformation-9 0,
1— 0, and 2— 2. Note that the alphabet transformation is a 2-partition. T®@iw,—o0) = 0 but
C(plw,=2) = U({0,1}), so this functional test path witnesses a difference /&, &s large as the
experiment that leaves all the wires free. Test paths with functions alloéavagsry over the results
of Lemma 10 to non-Boolean alphabets.

Lemma 20 Let C be a probabilistic circuit, e be a function injection experiment, w be a wée fr
in e and B, D, be value distributions. If there exists> 0 such that for all functional w-test paths
p < e that are2-partitions,
d(C(plw=p,),C(Plw=p,)) <¥,
then
d(C(elw=p,).C(elw-n,)) < K(e.W)E.

Proof The obstacle in Lemma 10 is that when the alphabet is non-Boolean, we megeasaly
thatD1 andD, have disjoint support, not that they are deterministic. This obstacle carebesome
by injecting a 2-partition atv. LetX; = suppor{D1) andX, = supportD2) and assumg&; N3, = 0.
Then

d(C(elw=b,),C(ew-p,)) < D1(p1)D2(p2)d(C(€lw=p, ), C(Elw=p))
P1€21
p2€2>

by the triangle inequality. Let

(0,1)=arg fgaﬂ(c(e!w:pl)ac(e\w:pz))
bacTs
so that
d(C(€e|w=b,),C(€lw=p,)) < d(D1,D2)d(C(€w=0),C(Elw=1))-

Let f be an alphabet transformation that mapgo o andZ, to T and all other symbols to either
ort. Thenf is a 2-partition, and

d(C(€elw=p,),C(elw=b,)) < d(C(€lw=f(D,)) C(Elw=1(D»)))-

1908



LEARNING AcYCLIC PROBABILISTIC CIRCUITS USING TEST PATHS

Sincef(D1) = o andf(D;) =T, the rest of the proof goes through. [ |

Corollary 21 Let C be a transitively reduced probabilistic circuit, e be a function injectioregxp
ment, w be a wire, and DD, be value distributions. If there exists> 0 such that for all functional
w-test paths < e,

d(C(plw=b,),C(Plw-D,)) <&,

then
d(C(ew-p,),C(elw-p,)) < TI(e,W)-£.

We expect that a further generalization of the Probabilistic Circuit Buildgorahm to use
function injection experiments can learn non-Boolean circuits of logarithngthdend constant fan
in in polynomial time. The universal set would map wires to the set containiradpdihbet symbols
from X and all 2-partitions o, of which there are fewer thg&|?2*!. Thus, the universal set will
still be of sizen®1), suggesting that a polynomial time algorithm may be attainable in this case.

Certain other natural questions arise in response to the idea of functiatianjexperiments.
We can define circuit€ andC’ to bestrongly behaviorally equivalentif C(e) = C'(e) for every
function injection querg. Does behavioral equivalence imply strong behavioral equivaleDoe®
again, alphabet size determines the answer: no for alphabet sizer gheatéwo, yes for alphabet
size two.

Lemma 22 For ¥ = {0,1,2}, there exist deterministic circuits;Gand G that are behaviorally
equivalent but not strongly behaviorally equivalent.

Proof In bothC; andC, there are two wires, andw,, wherew, is the output wire. In both circuits
the gate fom, has inputw; and deterministically maps 0 to 0 and maps 1 and 2 to T;Jnwvy is
the constant 1 an@; it is the constant 2.

Then if eis the value injection experiment that leaves both wires figég) = 1 =Cy(e). If e
fixes eithemv; or wy, then alsaCi(e) = Cy(e). ThusC; is behaviorally equivalent tGs.

However, the 2-partition function injection experimerhat leavesv, free and maps the output
of wy according to the transformation-8 0, 1— 0, 2— 2 yieldsC;(e) = 0 andCy(e) = 1. Thus
C; is not strongly behaviorally equivalent @. |

However, 2-partition function experiments suffice to establish strongvil@iahequivalence.

Lemma 23 Let C and C be probabilistic circuits with the same alphal¥&tthe same set of wires
and the same output wire. If(€) = C'(e) for every2-partition function experiment e then C and C
are strongly behaviorally equivalent.

Proof By a generalization of the Probabilistic Circuit Builder algorithm to functionst paths.l

Because in the Boolean case every 2-partition function injection quenryaisia wnjection query,
we then have the following.

Corollary 24 For Boolean probabilistic circuits C and’Cif C is behaviorally equivalent to'Ghen
C is strongly behaviorally equivalent td.C
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9. Discussion and Open Problems

These results concern general probabilistic acyclic gates, with no tiestri¢her than fan-in on the
kinds of probabilistic gate functions considered. Particular domains mapmapecific assump-
tions about the gate functions, which may make the learning problems more leaétabexample,
for the problem of learning the structure of an independent cascad® setwork using exact value
injection queries, a query-optimal algorithm is presented by Angluin et@D3&). Note that social
networks may in general contain cycles, which complicates their analysis.

The Distinguishing Paths algorithm (Angluin et al., 2008b) learns transitiezlyced acyclic
deterministic circuits over polynomial size alphabets with constant fan-in axepth bound using
value injection queries in polynomial time, and relies on a version of the testgratha. Theo-
rem 19 shows that iBPP = NP then this algorithm does not generalize to arbitrary transitively re-
duced Boolean probabilistic circuits, but there is a possibility that it mightrgéime to transitively
reduced Boolean probabilistic circuits with a polynomial bound on the total eurmbdirected
paths in the circuit graph. A somewhat technical open question is whetliee icase of general
Boolean probabilistic circuits, the ability to inject the NOT function might redueenfaximum
path attenuation to just the number of paths, as it does in the case of theicif€igjtire 6.
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