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Abstract

We define a model of learning probabilistic acyclic circuitsusing value injection queries, in which
fixed values are assigned to an arbitrary subset of the wires and the value on the single output wire
is observed. We adapt the approach of using test paths from the Circuit Builder algorithm (Angluin
et al., 2009) to show that there is a polynomial time algorithm that uses value injection queries to
learn acyclic Boolean probabilistic circuits of constant fan-in and log depth. We establish upper and
lower bounds on the attenuation factor for general and transitively reduced Boolean probabilistic
circuits of test paths versus general experiments. We give computational evidence that a polynomial
time learning algorithm using general value injection experiments may not do much better than one
using test paths. For probabilistic circuits with alphabets of size three or greater, we show that the
test path lemmas (Angluin et al., 2009, 2008b) fail utterly.To overcome this obstacle, we introduce
function injection queries, in which the values on a wire maybe mapped to other values rather than
just to themselves or constants, and prove a generalized test path lemma for this case.

Keywords: nonadaptive learning algorithms, probabilistic circuits, causal Bayesian networks,
value injection queries, test paths

1. Introduction

Probabilistic networks are used as models in a variety of domains, for example, gene interaction
networks, social networks and causal reasoning. In a binary model of gene interaction, the state of
each gene is either active or inactive, and the state of each gene is determined as a function of the
states of some number of other genes, its inputs. In a probabilistic variant ofthe model, the activation
function specifies, for each possible combination of the states of the inputs, the probability that the
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gene will be active (Friedman et al., 2000). In the independent cascademodel of social networks, the
state of each agent is active or inactive and for each pair(u,v) of agents, there is a probability that
the activation ofu will causev to become active. Kempe, Kleinberg, and Tardos (2003, 2005) study
the problem of maximizing influence in this and related models of social networks. In a Bayesian
network there is an acyclic directed graph and a joint probability distribution over the node values
such that the joint distribution is the product of each of the marginal distributions for each node
given the values of the parents (in-neighbors) of the node.

A fundamental question is how much we can infer about the properties and structure of such
networks from observing and experimenting with their behaviors. Prior research gives evidence
from cryptography that there may be no polynomial time algorithm to learn Boolean functions
represented by acyclic circuits of constant fan-in and depthO(logn) when we can set only the
inputs of the circuit and observe only the output (Angluin and Kharitonov,1995). In this paper we
consider a different setting,value injection queries, in which we can fix the values on any subset
of wires in the target circuit, but still only observe the output of the circuit.

The concept of value injection queries was inspired by models of gene suppression and gene
overexpression in the study of gene interaction networks (Akutsu et al., 2003; Ideker et al., 2000)
and was introduced by Angluin et al. (2009). In a causal Bayesian network there is an additional
action do(X = x) that forces a nodeX to take on a valuex (Pearl, 2000). A value injection query
may also be viewed as a set of such actions, one for each wire fixed to a value.

Angluin et al. (2009) investigate the learnability of deterministic circuits using value injection
queries and behavioral equivalence queries. Polynomial time learning algorithms using just value
injection queries are given for two classes of acyclic circuits. Circuit Builder uses value injection
queries to learn acyclic deterministic circuits with constant-size alphabets, constant fan-in and depth
O(logn) up to behavioral equivalence in polynomial time. Another algorithm is given that learns
constant-depth acyclic Boolean circuits with NOT gates and unbounded fan-in AND, OR, NAND
and NOR gates up to behavioral equivalence in polynomial time using value injection queries. Neg-
ative results include an exponential lower bound on the number of value injection queries to learn
acyclic Boolean circuits of unbounded depth and unbounded fan-in, and theNP-hardness of learning
acyclic Boolean circuits of unbounded depth and constant fan-in using value injection queries.

In extending these results to analog circuits, Angluin et al. (2008b) consider circuits with
polynomial-size alphabets. They give evidence of the computational hardness of learning acyclic
circuits over a polynomial-size alphabet even if the depth is restricted toO(logn), motivating struc-
tural restrictions on the graphs of the circuits to achieve polynomial time learnability. They give the
Distinguishing Paths Algorithm, which uses value injection queries and learns acyclic deterministic
circuits that are transitively reduced and have polynomial-size alphabets,constant fan-in and un-
bounded depth up to behavioral equivalence in polynomial time. They also give a generalization to
circuits with a constant bound on shortcut width.

In this paper we seek to extend some of these positive learnability results to thecase of acyclic
probabilistic circuits. The key technique in the previous work has been the idea of atest path for
an arbitrary wirew in the circuit. Informally speaking, a test path is a directed path of wires from
w to the output wire in which each wire is an input of the next wire on the path, and the other
(non-path) inputs of wires on the path are fixed to constant values, thus isolating the wires along the
path from the rest of the circuit. Ideally, the choice of constant values is made in such a way as to
maximize the effect on the output of the circuit of changingw from one value to another. A test path
thus functions as a kind of “microscope” for viewing the effects of assigning different values to the
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wire w. The primary focus of this paper is to understand the properties of test paths in probabilistic
circuits, and the extent to which they can be used to give polynomial time algorithms for learning
probabilistic acyclic circuits.

In Section 2 we formally define our model of acyclic probabilistic circuits, value injection
queries and distribution injection queries, behavioral equivalence, andthe learning problem that
we consider. In Section 3 we establish some basic results about probabilisticcircuits and value and
distribution injection experiments. In Section 4 we review the test path lemma used inprevious
work to establish the ability of a learner to infer circuit behavior from a small subset of experiments
and show that it fails utterly in probabilistic circuits with alphabet size greater than two. However,
for Boolean probabilistic circuits, we show that the test path lemma holds with an attenuation factor
that depends on the structure of the circuit. (Lemma 10 treats general acyclic circuits and Corol-
lary 11 specializes the bound to transitively reduced circuits.) In Section 5 we apply the test path
lemma in the Boolean case to adapt the Circuit Builder algorithm (Angluin et al., 2009) to find
using value injection queries, with high probability, in time polynomial inn and 1/ε, a circuit that
is ε-behaviorally equivalent to a target acyclic Boolean probabilistic circuit of sizen with constant
fan-in and depth bounded by a constant times logn. In Section 6, we consider lower bounds on
the attenuation of paths; Theorem 16 shows that our bound is tight for transitively reduced circuits
and Theorem 18 gives a lower bound for the case of general acyclic circuits. In Section 7 we give
evidence that polynomial time algorithms using general value injection experiments may not do
significantly better than algorithms that use test paths. In Section 8 we introduce a stronger kind of
query, afunction injection query , and show that test paths with function injections overcome the
limitations of test paths for circuits with alphabets of size greater than two.

2. Model

We extend the circuit learning model (Angluin et al., 2008b, 2009) to probabilistic gates. An unusual
feature of this model is that circuits do not have distinguished inputs—since the learning algorithm
seeks to predict the output behavior of value injection experiments that override the values on an
arbitrary subset of wires, each wire is a potential input.

2.1 Probabilistic Circuits

A probabilistic circuit C of sizen≥ 1 hasn wires, of which one is the distinguishedoutput wire .
We call the set ofC’s wiresW, and these wires take values in a finitealphabet Σ with |Σ| ≥ 2. If
Σ = {0,1}, thenC is Boolean. The value on a wire is ordinarily determined by the output of an
associated probabilistic gate, whose distribution is a function of the values onother wires.

Formally, avalue distribution D is a probability distribution overΣ, that is, a map fromΣ to
the real interval[0,1] such that∑σ∈Σ D(σ) = 1. The probability ofσ is D(σ). Thesupport of D
is the set of valuesσ ∈ Σ such thatD(σ) > 0. When the support ofD is a singleton{σ}, we say
D is deterministic. For a nonempty set of valuesS⊆ Σ, the uniform distribution U(S) is the
distribution such thatU(S)(σ) = [σ ∈ S]/|S|, that is, has value 0 onσ 6∈ Sand 1/|S| for σ ∈ S.

A k-ary probabilistic gate function f maps eachk-tuple of values(σ1, . . . ,σk) ∈ Σk to a value
distribution. WhenC is Boolean, we can specifyf by a truth table giving the expected value for
each Boolean vector of inputs. A probabilistic gate function isdeterministic if it mapsk-tuples to
deterministic value distributions only.
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A probabilistic gate g of fan-in k pairs ak-ary probabilistic gate functionf with a k-tuple
(w1, . . . ,wk) ∈Wk of input wires. The gateg is deterministic if its gate functionf is deterministic.
Whenk = 0, the gateg has no inputs, and we can regard it as specifying a value distribution, or,
whenC is Boolean, a biased coin flip.

A probabilistic circuit C maps wires to probabilistic gates.C is deterministic if all of its gates
are deterministic. Thefan-in of C is the maximum fan-in overC’s gates. Thecircuit graph of C
has a node for each wire inW and a directed edge(u,w) if u is one of the input wires of the gate
associated withw. It is important to distinguish between wires in the circuit and edges in the circuit
graph. For example, if wireu is an input of wiresv andw, then there will be two directed edges,
(u,v) and(u,w), in the circuit graph.

Wire w is reachablefrom wire u if there is a directed path fromu to w in the circuit graph. A
wire isrelevant if the output wire is reachable from it. Thedepth of a wirew is the number of edges
in the longest simple path fromw to the output wire in the circuit graph. Thedepth of the circuit
is the maximum depth of any relevant wire. The circuit isacyclic if the circuit graph contains no
directed cycles. The circuit istransitively reduced if its circuit graph is transitively reduced, that
is, if it contains no edge(u,w) such that there is a directed path of length at least two fromu to w.
In this paper we assume all circuits are acyclic.

2.2 Experiments

In an experiment some wires are constrained to be particular values or value distributions and the
other wires are left free to take on values according to their gate functionsand the values of their
input wires. The behavior of a circuit consists of its responses to all possible experiments. For
probabilistic circuits we consider both value injection experiments and distribution injection exper-
iments.

A distribution injection experiment e is a function with domainW that maps each wirew
to a special symbol∗ or to a value distribution. Avalue injection experimente is a distribution
injection experiment for which every value distribution assigned is deterministic—that is, always
generates the same symbol. To simplify notation, we think of a value injection experiment as a
mapping fromW to (Σ∪ {∗}). If e is either kind of experiment, we say thate leavesw free if
e(w) = ∗; otherwise we say thate constrainsw to e(w). If e(w) is a single symbol, then we saye
fixesw to e(w).

We define a partial ordering≤ on the set containing∗ and all value distributionsD as follows:
D ≤ ∗ for every value distributionD, and for two value distributions,D1 ≤ D2 if the support ofD1

is a subset of the support ofD2. This ordering is extended to experiments on the same set of wires
W as follows:e1 ≤ e2 if for every w∈W, e1(w) ≤ e2(w). The intuitive meaning ofe1 ≤ e2 is that
e1 is at least as constraining ase2 for every wire.

If e is any experiment,w is a wire, anda is ∗ or an element ofΣ or a value distribution, then
the experimente|w=a is defined to be the experimente′ such thate′(w) = a ande′(u) = e(u) for all
u ∈ W such thatu 6= w. If e is any experiment then afree path in e is a path in the circuit graph
containing only wiresw that are free ine.

2.3 Behavior

Let C be a probabilistic circuit. Then a distribution injection experimente determines a joint dis-
tribution over assignments of elements ofΣ to all of the wires of the circuit, as follows. If wirew
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is constrained thenw is randomly and independently assigned a value inΣ drawn according to the
value distributione(w); in the case of a value injection experiment, this just assigns a fixed element
of Σ to w. If wire w is free and has probabilistic gate functionf , and its inputsu1, . . . ,uk have been
assigned the valuesσ1, . . . ,σk, thenw is randomly and independently assigned a value fromΣ ac-
cording to the value distribution determined by the gate function on these inputs,that is, according
to the value distributionf (σ1, . . . ,σk).

Constrained gates and gates of fan-in zero give the base cases for theabove recursive definition,
which assigns an element ofΣ to every wire because the circuit is acyclic. LetC(e,w) denote the
(marginal) value distribution of the assignments of values tow for the above process. Theoutput
distribution of the circuit, denotedC(e), is the distributionC(e,z), wherez is the output wire of the
circuit. Thebehavior of a circuitC is the function that maps value injection experimentse to output
distributionsC(e).

We note that even when the circuit is Boolean and the only non-deterministic gates are uniform
coin flips, the problem of exactly computingC(e) is #P-hard because we can arrange forC(e) to be
the fraction of assignments satisfying a given Boolean formula.

2.4 Example:C1

We give an example of a simple Boolean probabilistic circuit, which we also refer to later. The
2-input averaging gate functionA(b1,b2) outputs 1 with probability(b1 + b2)/2. Thus, if both
inputs are 0, the output is deterministically 0, if both inputs are 1, the output is deterministically 1,
and if its inputs disagree, the output is an unbiased coin flip,U({0,1}). Another characterization
of the averaging gate functionA is that it randomly and equiprobably selects one of its inputs and
copies it to the output.

We define a circuitC1 of 4 wires as follows:w4 = A(w2,w3), w3 = w1, w2 = w1, andw1 =
U({0,1}). The output wire isw4. C1 is depicted in Figure 1.

w1 = U({0,1})

w2 = w1 w3 = w1

w4 = A(w2,w3)

Figure 1: The circuitC1; w4 is the output wire.

To illustrate the behavior of this circuit, we consider two value injection experiments. Define the
experimente to leave every wire inC1 free, that is,e(wi) = ∗ for 1≤ i ≤ 4. Givene, we construct one
random outcome as follows. The wirew1 is assigned a value as the result of an unbiased coin flip—
say it is assigned 0. Then the values assigned tow2 andw3 are determined because they are each
the output of an identity gate withw1 as input: both are 0. Finally, because both its input wires have
been assigned values,w4 can be assigned a value according toA(0,0), which is deterministically
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0. It is easy to see that this is one of two possible outcomes for experimente; either all wires
are assigned 0 or all wires are assigned 1, and these each occur with probability 1/2. The output
distributionC1(e) is just an unbiased coin flip.

Now consider experimente′ = e|w2=1 that fixesw2 to 1 and leaves the other wires free. Once
again, the value ofw1 is determined by a coin flip—say it is assigned 0. Sincew2 is fixed to 1,
that is its assignment. Wirew3 is free, and is therefore assigned the value ofw1, that is 0. Now the
inputs ofw4 have been assigned values, so we considerA(1,0), which randomly and equiprobably
selects 0 or 1. If, instead, the coin flip forw1 had returned 1, all wires would be assigned 1. There
are three possible assignments to(w1,w2,w3,w4) for experimente′: (1,1,1,1) with probability 1/2,
(0,1,0,0) with probability 1/4 and(0,1,0,1) with probability 1/4. The output distributionC1(e′)
is a biased coin flip that is 1 with probability 3/4.

2.5 Behavioral Equivalence

Two circuitsC andC′ arebehaviorally equivalent if they have the same set of wires, the same out-
put wire and the same behavior, that is, for every value injection experiment e,C(e) =C′(e). We also
need a concept of approximate equivalence. The(statistical) distancebetween value distributions
D andD′ is d(D,D′) = (1/2)∑σ |D(σ)−D′(σ)|, which takes values in[0,1]. Note that whenD and
D′ are deterministic,d(D,D′) is 0 if D = D′ and 1 otherwise. Forε ≥ 0,C is ε-behaviorally equiv-
alent to C′ if they contain the same wires and the same output wire, and for every value injection
experimente, d(C(e),C′(e)) ≤ ε, whered is the statistical distance between value distributions.

In Lemma 2 we show that the behavioral equivalence ofC andC′ impliesC(e) = C′(e) for all
distribution injection experiments as well. However, behavioral equivalence is not sufficient to guar-
antee that two circuits have the same topology; even when all the gates are Boolean, deterministic
and relevant, the circuit graph of the target circuit may not be uniquely determined by its behavior
(Angluin et al., 2009).

2.6 Queries

The learning algorithm gets information about the target circuit by specifying a value injection ex-
perimente and observing the element ofΣ assigned to the output wire. Such an action is termed a
value injection query, abbreviated VIQ. A value injection query does not return complete informa-
tion about the value distributionC(e), but instead returns an element ofΣ selected according to the
distributionC(e). Thus, in order to approximate the distributionC(e), the learner must repeatedly
make value injection queries with experimente. In this case, the goal of learning is approximate
behavioral equivalence.

2.7 The Learning Problem

The learning problem isε-approximate learning: by making value injection queries to a target
circuit C drawn from a known class of probabilistic circuits, the goal is to find a circuit C′ that is
ε-behaviorally equivalent toC. The inputs to the learning algorithm are the names of the wires inC,
the name of the output wire and positive numbersε andδ, where the learning algorithm is required
to succeed with probability at least(1−δ).

We note that acyclic deterministic circuits are a subclass of acyclic probabilisticcircuits. If
the target circuitC is deterministic and we learn a probabilistic circuitC′ that is 1/3-behaviorally
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equivalent toC, then we can compute the behavior ofC on any value-injection experimente with
high probability by sampling the behavior ofC′(e). The negative results concerning learning deter-
ministic circuits using value injection queries shown by Angluin et al. (2009) carry over to learning
probabilistic circuits. In particular, forε = 1/3 andδ = 1/2, with no bound on fan-in or depth,
the worst-case expected number of value injection queries necessary to learn acyclic probabilistic
Boolean circuits is exponential, while with constant fan-in and no bound on depth, no polynomial
time algorithm can learn acyclic probabilistic Boolean circuits ifNP is not equal toBPP.

3. Preliminary Results

In this section we establish some basic results about probabilistic circuits, value injection experi-
ments and distribution injection experiments. The reader may choose to skip this section and return
to it as needed for proofs in subsequent sections.

We first note that ifC is a probabilistic circuit,e is a distribution injection experiment and either
e(w) is a value distribution ore deterministically fixes all the input wires ofw, then there is a value
distributionD such that the value ofw in C(e) is determined by a random choice according toD,
independent of the values chosen for any other wires. We make systematicuse of this observation
to reduce the number of experiments under consideration.

We start by considering two circuitsC1 andC2 over the same wires, and distribution injection
experimentse1 ande2 that agree on the distribution assigned to a wirew and that show a certain
distance betweenC1(e1) andC2(e2). The following lemma says that we may modifye1 ande2 to
fix w to a particular valueσ ∈ Σ while preserving (or increasing) the distance they show.

Lemma 1 Let C1 and C2 be probabilistic circuits on wires W with the same output wire, let w∈W
be a wire, let D be a value distribution, and let e1 and e2 be distribution injection experiments such
that e1(w) = e2(w) = D. Then there exists a valueσ ∈ support(D) such that

d(C1(e1|w=σ),C2(e2|w=σ)) ≥ d(C1(e1),C2(e2)).

Proof We have

d(C1(e1),C2(e2)) =
1
2 ∑

τ∈Σ

∣∣∣C1(e1)(τ)−C2(e2)(τ)
∣∣∣

=
1
2 ∑

τ∈Σ

∣∣∣∣∣∑ρ∈Σ
C1(e1|w=ρ)(τ)D(ρ)− ∑

ρ∈Σ
C2(e2|w=ρ)(τ)D(ρ)

∣∣∣∣∣

≤ 1
2 ∑

ρ∈Σ
D(ρ) ∑

τ∈Σ

∣∣∣C1(e1|w=ρ)(τ)−C2(e2|w=ρ)(τ)
∣∣∣

= ∑
ρ∈Σ

D(ρ)d(C(e1|w=ρ),C(e2|w=ρ)),

by the triangle inequality. Let

σ = argmax
ρ∈support(D)

d(C(e1|w=ρ),C(e2|w=ρ)),

so that

d(C(e1|w=σ),C(e2|w=σ)) ≥ d(C(e1),C(e2))
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by an averaging argument.

By successively replacing each value distribution by a particular value, we may convert a distri-
bution injection experiment that shows a certain distance between two circuits into a value injection
experiment that shows at least that distance between the two circuits.

Lemma 2 Let C1 and C2 be probabilistic circuits on wires W with the same output wire and let e be
a distribution injection experiment. Then there exists a value injection experiment e′ ≤ e such that

d(C1(e
′),C2(e

′)) ≥ d(C1(e),C2(e)).

Proof By induction on|V|, whereV ⊆W is the set of wires thate constrains to distributions that
are not deterministic. If|V| > 0, then letw∈V. By Lemma 1, there exists a valueσ ∈ Σ such that

d(C1(e|w=σ),C2(e|w=σ)) ≥ d(C1(e),C2(e)).

Sincee|w=σ constrains one fewer wire to a nonconstant distribution, the existence ofe′ follows from
the inductive hypothesis.

Thus, value injection experiments suffice to establish approximate behavioral equivalence with
respect to distribution injection experiments.

Corollary 3 If circuits C1 and C2 are ε-behaviorally equivalent with respect to value injection ex-
periments, then C1 and C2 areε-behaviorally equivalent with respect to distribution injection exper-
iments.

Suppose thatC is a probabilistic circuit ande1 ande2 are distribution injection experiments. For
each wirew, we say thate1 ande2 agreeonw if either

• e1 ande2 constrainw to the same distribution, or

• w is free ine1 ande2, ande1 ande2 agree on all ofw’s inputs.

It is clear that ife1 ande2 agree on a wirew, then the marginal distributions ofw in e1 ande2 are
identical, that is,C(e1,w) = C(e2,w).

Lemma 4 Let C be a probabilistic circuit on wires W and let e1 and e2 be distribution injection
experiments that agree on wires V⊆W. Then there exist distribution injection experiments e′

1 ≤ e1

and e′2 ≤ e2 such that for each wire w∈V, there exists a valueσ ∈ Σ such that e′1(w) = e′2(w) = σ,
and

d(C(e′1),C(e′2)) ≥ d(C(e1),C(e2)).

Proof By induction on the number of unfixed wiresw ∈ V. If there is such a wire, choosev by
the acyclicity of the circuit to be one that is not reachable from the others. If e1(v) = e2(v) = ∗,
thene1 ande2 agree on all ofv’s inputs, and by the choice ofv, all of v’s inputs are fixed. As
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such, we may assume without loss of generality thate1 ande2 in fact constrainv to the distribution
D = C(e1,v) = C(e2,v). By Lemma 1, there exists a valueσ ∈ support(D) such that

d(C(e1|v=σ),C(e2|v=σ)) ≥ d(C(e1),C(e2)).

The existence ofe′1 ande′2 follows from the inductive hypothesis.

The following lemma shows that constraining a wirew does not change the behavior of wires
that are not reachable fromw.

Lemma 5 Let C be a probabilistic circuit on wires W, let e be a distribution injection experiment,
let w∈W be a wire free in e, and let D be a value distribution. Then e and e|w=D agree on all wires
u∈W such that there is no free path from w to u in e.

Proof If u is constrained, then the conclusion follows. Otherwise, letu∈W be a wire free inesuch
that there is no free path fromw to u in e. Then no inputv of u has a free path fromw to v in e.
We proceed by induction on the length of the longest path tou. If this length is zero, thenu does
not have any inputs. Otherwise, the inductive hypothesis applies to all ofu’s inputs, on whicheand
e|w=D then must agree. It follows that they also agree onu.

If we consider the distance between the behavior of a circuit with a wire constrained to two
different value distributions, the following lemma allows us to move to a situation in which the wire
is constrained to two different value distributions whose supports are disjoint. In the special case
of Boolean circuits, the property of disjoint supports means that the resulting value distributions
are deterministic. Later we see that this fundamentally distinguishes between alphabet size two and
larger alphabets.

Lemma 6 Let C be a probabilistic circuit on wires W, let w∈W be a wire, and let D1,D2 be value
distributions. There exist value distributions D′

1,D
′
2 with support(D′

1)∩ support(D′
2) = /0 such that

for all experiments e,

d(C(e|w=D1),C(e|w=D2)) = d(D1,D2)d(C(e|w=D′
1
),C(e|w=D′

2
)).

Proof Intuitively, we coupleD1 andD2 so thatD1 = D2 as often as possible and letD̂i be the dis-
tribution ofDi given thatD1 6= D2. It can be shown that̂D1 andD̂2 have disjoint support. Formally,
we have

d(C(e|w=D1),C(e|w=D2)) =
1
2 ∑

σ∈Σ

∣∣∣C(e|w=D1)(σ)−C(e|w=D2)(σ)
∣∣∣

=
1
2 ∑

σ∈Σ

∣∣∣∣∣∑τ∈Σ
C(e|w=τ)(σ)(D1(τ)−D2(τ))

∣∣∣∣∣ .

If we let

D̂1(τ) = D1(τ)−min(D1(τ),D2(τ))

D̂2(τ) = D2(τ)−min(D1(τ),D2(τ)),
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then

d(C(e|w=D1),C(e|w=D2)) =
1
2 ∑

σ∈Σ

∣∣∣∣∣∑τ∈Σ
C(e|w=τ)(σ)(D̂1(τ)− D̂2(τ))

∣∣∣∣∣ .

Since∑τ∈Σ D̂1(τ) = 1−∑τ∈Σ min(D1(τ),D2(τ)) and likewise forD2,

d(D1,D2) =
1
2 ∑

τ∈Σ

∣∣∣D1(τ)−D2(τ)
∣∣∣

=
1
2 ∑

τ∈Σ

∣∣∣D̂1(τ)− D̂2(τ)
∣∣∣

= ∑
τ∈Σ

D̂1(τ) = ∑
τ∈Σ

D̂2(τ).

If d(D1,D2) > 0, then the distributionsD′
1 andD′

2 where

D′
1(τ) = D̂1(τ)/d(D1,D2)

D′
2(τ) = D̂2(τ)/d(D1,D2)

satisfy the requisite properties. Otherwise, any two distributions with disjoint support will do.

4. Test Paths

The concept of a test path has been central in previous work on learning deterministic circuits by
means of value injection queries (Angluin et al., 2008b, 2009). Atest path for a wirew, or w-test
path, is a value injection experiment in which the free gates form a directed path in the circuit graph
from w to the output wire. All the other wires in the circuit are fixed; this includes the inputs ofw.
A side wirewith respect to a test pathp is a wire fixed byp that is input to a free wire inp.

As an example, suppose thatΣ = {0,1} and the target circuit has a circuit graph as shown in
Figure 2. There are four directed paths fromw1 to the output wire:w1w5, w1w3w5, w1w2w4w5 and
w1w3w4w5. A w1-test path is a value injection experiment that sets the wires of one of these paths to
∗ and the other wires to 0 or 1, for example,∗011∗ or ∗∗0∗∗. For the test path∗011∗, the side wires
arew3 andw4, while for the test path∗∗0∗∗ the side wire isw3. The value injection experiments
∗∗∗∗∗ and∗01∗∗ are not test paths.

A test path may help the learning algorithm determine the effects of assigning different values
to the wirew. The test path lemmas (Angluin et al., 2008b, 2009) may be re-stated as follows.

Lemma 7 Let C be a deterministic circuit. If for some value injection experiment e, wirew free in
e and alphabet symbolsσ andτ it is the case that

C(p|w=σ) = C(p|w=τ)

for every test path p≤ e then also

C(e|w=σ) = C(e|w=τ).
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w1

w2 w3

w5

w4

Figure 2: A circuit graph;w5 is the output wire.

Nontrivial complications arise in attempting to carry over this test path lemma to general proba-
bilistic circuits, as we now show. The following lemma shows that for alphabets of size at least three,
there are transitively reduced probabilistic circuits for which the test-path lemma fails completely.

Lemma 8 If |Σ| ≥ 3, there exists a probabilistic circuit C, value injection experiment e, wire
w free in e and alphabet symbolsσ and τ such that although for every test path p≤ e for w,
d(C(p|w=σ),C(p|w=τ)) = 0, it is nevertheless the case that d(C(e|w=σ),C(e|w=τ)) = 1/2.

Proof Assume thatΣ = {0,1,2}, and define probabilistic gate functionsT andX as follows.

T(0) = T(1) = U({0,1})
T(2) = 2

X(b1,b2) = b1⊕b2 if b1,b2 ∈ {0,1}
X(b1,b2) = U({0,1}) if b1 = 2 orb2 = 2,

where⊕ is sum modulo 2. The gate functionT flips a coin on input 0 or 1, and passes 2 through
unaltered. The gate functionX is exclusive or if neither input is 2, and a coin flip otherwise.

The circuitC has 5 wires, connected as in Figure 3. The output wire isw5; note thatC is
transitively reduced.

Consider the experimente that leaves all the wires free. In this experiment, we haveC(e|w1=0) =
C(e|w1=1) = 0 becausew2 is a coin flip andw5 is the exclusive or of two copies of the coin flip. On
the other hand,C(e|w1=2) = U({0,1}) becausew4 = w3 = w2 = 2 andw5 is therefore a coin flip.
Thusd(C(e|w1=0),C(e|w1=2)) = 1/2.

However, the only test paths forw1 fix w3 and leave all other wires free, or fixw4 and leave all
other wires free, and the two cases are symmetric. Ifw3 is fixed to any value and all other wires are
free, thenw5 is a coin flip whenw1 = 2. If w3 is fixed to 2 and all other wires are free, thenw5 is also
a coin flip. Ifw3 is fixed tob∈ {0,1} and all other wires are free, then whenw1 ∈ {0,1}, w2 is a coin
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w1 = U({0,1})

w2 = T(w1)

w3 = w2 w4 = w2

w5 = X(w3,w4)

Figure 3: The circuitC; w5 is the output wire.

flip, andw5 is the exclusive or ofb and that coin flip, that is,w5 is also coin flip. Hence, for any test
pathp≤ e for w1, we haveC(p|w1=0) = C(p|w1=2) = U({0,1}) andd(C(pw1=0),C(pw1=2)) = 0.

For alphabetsΣ of size larger than 3, we can treat three of the symbols as 0, 1 and 2 in the above
construction, and the other symbols as “tilt,” where each function outputs a tiltvalue if any of its
inputs is a tilt value.

4.1 A Bound for Boolean Probabilistic Circuits

Surprisingly, the case of|Σ|= 2 is different; for Boolean probabilistic circuits there is a useful quan-
titative relationship between the difference exposed by an arbitrary experimenteand the differences
exposed by test pathsp≤ e. The bound we give depends on the structure of directed paths on free
wires ine.

Let ebe an experiment andw a wire. DefineΠ(e,w) to be the set of all directed paths fromw to
the output wire on free wires ine. Let S(e) be the set of wires that originate a free shortcut, that is,
the set of free wiresw such that there exists a pathp∈ Π(e,w) with two free wires to whichw is an
input. Define

κ(e,w) = ∑
p∈Π(e,w)

2|p∩S(e)|.

Thus,κ(e,w) is the sum over paths inΠ(e,w) of 2 raised to the number of wires on the path that
originate free shortcuts ine. If there are no wires that originate free shortcuts ine, then this is
just the number of free paths ine. As an example, if the target circuit has the circuit graph shown
in Figure 2 and the experimente leaves all wires free thenΠ(e,w1) contains the four pathsw1w5,
w1w3w5, w1w2w4w5 andw1w3w4w5, S(e) = {w1,w3}, andκ(e,w) is 2+4+2+4 = 12.

The following technical lemma gives a useful recurrence forκ(e,w).

Lemma 9 Let C be a probabilistic circuit, e be a distribution injection experiment, w and u be free
wires where w is an input to u, and D0 be a value distribution. Letβ = 2 if w ∈ S(e) and β = 1
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otherwise. Then

κ(e,w) = κ(e|u=D0,w)+κ(e|w=1,u) ·β.

Proof The first term of the sum counts paths that don’t containu, and the second counts paths that
do. Lete′ = e|u=D0 ande′′ = e|w=1. We have

κ(e,w) = ∑
p∈Π(e,w)

2|p∩S(e)|

= ∑
p∈Π(e,w)

u6∈p

2|p∩S(e)| + ∑
p∈Π(e,w)

u∈p

2|p∩S(e)|

= ∑
p∈Π(e′,w)

2|p∩S(e′)| + ∑
p∈Π(e′′,u)

2|p∩S(e′′)|β

= κ(e′,w)+κ(e′′,u) ·β,

since each pathp∋ u from w corresponds to the pathp\{w} from u.

Next is the key lemma relating the difference exposed bye to the differences exposed by pathsp≤ e
for Boolean probabilistic circuits.

Lemma 10 Let C be a Boolean probabilistic circuit, e be a distribution injection experiment,w be
a wire free in e and D1,D2 be value distributions. If there existsε ≥ 0 such that for all w-test paths
p≤ e,

d(C(p|w=D1),C(p|w=D2)) ≤ ε,

then
d(C(e|w=D1),C(e|w=D2)) ≤ κ(e,w) · ε.

Proof By induction onφ(e), the number of free wires ine. By Lemma 6, assume that support(D1)∩
support(D2) = /0. The critical feature of the Boolean case is that it follows thatD1 = 0 andD2 = 1
without loss of generality—it is important to the following proof thatD1 andD2 be deterministic.

If φ(e) = 1, then either
d(C(e|w=0),C(e|w=1)) = 0,

or w is the output,e is aw-test path, andκ(e,w) = 1. Otherwise, the inductive hypothesis is that the
lemma holds for all experimentse′ with φ(e′) < φ(e).

Except forw, the experimentse|w=0 ande|w=1 agree on all constrained wires, so by Lemmas 4
and 5, assume without loss of generality that every wire with no free path from w is in fact fixed.
SinceC is acyclic, there exists a free wireu 6= w whose only unfixed input isw. Let g be the gate
assigned byC to u and letB0 = g(e|w=0) andB1 = g(e|w=1), so that

C(e|w=0) = C(e|w=0,u=B0)

C(e|w=1) = C(e|w=1,u=B1).

By the triangle inequality,

d(C(e|w=0),C(e|w=1)) ≤ d(C(e|w=0,u=B0),C(e|w=1,u=B0))

+d(C(e|w=1,u=B0),C(e|w=1,u=B1)).
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Letting e′ = e|u=B0, any test pathp≤ e′ also satisfiesp≤ e sincee′ ≤ e. The experimente′ has one
fewer free wire, asu is free ine, so using the inductive hypothesis, we can bound the first term of the
sum byκ(e′,w) · ε. We now derive a bound onu-test paths so that the inductive hypothesis applies
to the second term as well. Letβ = 2 if w∈ S(e) andβ = 1 otherwise. Lete′′ = e|w=1 and suppose
p≤ e′′ is au-test path. Then

d(C(p|u=B0),C(p|u=B1))

≤ d(C(p|w=1,u=B0),C(p|w=0,u=B0))+d(C(p|w=0,u=B0),C(p|w=1,u=B1))

[by the triangle inequality]

= d(C(p|w=1,u=B0),C(p|w=0,u=B0))+d(C(p|w=0,u=∗),C(p|w=1,u=∗))

[by the definitions ofB0 andB1].

Sincew is an input tou, both p|w=∗,u=B0 and p|w=∗,u=∗ arew-test paths. Therefore, both terms of
the sum are bounded byε, and the first is nonzero only ifw is an input to some free wire inp other
thanu. It follows that

d(C(p|u=B0),C(p|u=B1)) ≤ βε,

and thus that

d(C(e′′|u=0),C(e′′|u=1)) ≤ κ(e′′,u) ·βε,

so by Lemma 9,

d(C(e|w=0),C(e|w=1)) ≤ κ(e′,w) · ε+κ(e′′,u) ·βε
= κ(e,w) · ε.

In the case of transitively reduced circuits,S(e) = /0, andκ(e,w) = π(e,w), whereπ(e,w) =
|Π(e,w)|, the number of directed paths on free wires ine from w to the output wire.

Corollary 11 Let C be a transitively reduced Boolean probabilistic circuit, e be a distributionin-
jection experiment, and w be a wire free in e. If there existsε ≥ 0 such that for all w-test paths
p≤ e,

d(C(p|w=0),C(p|w=1)) ≤ ε,

then

d(C(e|w=0),C(e|w=1)) ≤ π(e,w) · ε.

5. Learning Boolean Probabilistic Circuits

The amount of attenuation given by Lemma 10 allows us to adapt the Circuit Builder algorithm
(Angluin et al., 2009) to learn Boolean probabilistic circuits with constant fan-in and log depth in
polynomial time. For this class of circuits, the attenuation factorκ(e,w) is bounded by a polynomial
in n.
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Theorem 12 Given constants c and k there is a nonadaptive learning algorithm that with prob-
ability at least(1− δ) successfullyε-approximately learns any Boolean probabilistic circuit with
n wires, gates of fan-in at most k and depth at most clogn using value injection queries in time
bounded by a polynomial in n,1/ε and log(1/δ).

The rest of the section is devoted to proving this theorem. Let the target circuit be C with
Σ = {0,1} and let positive constantsδ, ε, k andc be given such that the fan-in ofC is bounded byk
and the depth ofC is bounded byclogn. For such a circuit,π(e,w) is bounded above bykclogn, so
the quantityκ(e,w) is bounded above by

κ(n) = kclogn ·2clogn = nc(logk+1) = nO(1).

We now describe our Probabilistic Circuit Builder algorithm (PCB). PCB is nonadaptive: first
it computes a setU of value injection experiments such that every test path is equivalent to some
experiment inU . It then repeats each value injection querye∈U enough times that with probability
at least(1−δ), the distributionC(e) is estimated with sufficient accuracy for everye∈U . Finally,
it uses these estimates to build a circuitC′ by repeatedly adding a sufficiently accurate gate all of
whose inputs are in the partially constructed circuit. If the estimates ofC(e) are all sufficiently
accurate, thenC′ is ε-behaviorally equivalent toC.

5.1 ConstructingU

In choosing the experimentsU , the goal is that for every potential test path,U includes an equiv-
alent experiment. The structure of the circuit, however, is not knowna priori, a difficulty that we
overcome by the same method as used by Angluin et al. (2009). LetU∗ be a universal set of value
injection experiments such that for every set ofkclogn wires and every assignment of symbols
from Σ∪{∗} to those wires, some experimente∈U∗ agrees with the values assigned to those wires.
There is a deterministic construction of such a setU∗ of size

2O(kclogn) logn = nO(kc)

in time polynomial in its size (Angluin et al., 2009). (For intuition, a set ofnO(kc) independent
random uniform assignments of∗, 0 and 1 to the wires has this property with high probability.) For
every wirew and test pathp for w, there is an experiment inU∗ that leaves the path wires ofp free
and fixes the side wires ofp to their values inp. Consequently,p and this experiment agree on
the output wire. In order to have experiments in which each free wire is alsoset to 0 and 1, for
b = 0,1 letUb contain every experimente|w=b such thate∈U∗ andw is free ine. The final set of
experiments isU = U∗∪U0∪U1.

5.2 EstimatingC(e) for e∈U

For eache∈U , PCB repeatedly makes a value injection query withe to estimate the value distribu-
tion C(e); let Ĉ(e) denote this estimate. By Hoeffding’s bound, we have that

m= O((nκ(n)/ε)2 log(|U |/δ))

trials per experimentesuffice to guarantee that with probability at least 1−δ, for all e∈U ,

d(C(e),Ĉ(e)) ≤ ε/(4nκ(n)). (1)
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Let e∈U∗ be a value injection experiment,w be a wire thate leaves free, andD be a value distribu-
tion. We define

Ĉ(e|w=D) = ∑
σ∈Σ

D(σ)Ĉ(e|w=σ).

Note that this is computed from the values ofĈ(e|w=σ) and does not require new experiments.
If (1) holds for alle∈U , then we have

d(C(e|w=D),Ĉ(e|w=D)) ≤ ∑
σ∈Σ

D(σ)d(C(e|w=σ),Ĉ(e|w=σ))

≤ ε/(4nκ(n)). (2)

5.3 Building the Circuit C′

PCB builds the circuitC′ one gate at a time. LetW′ denote the set of wires ofC′ that have already
been assigned a gate by PCB; initiallyW′ is empty. WhileW′ 6= W, PCB attempts to add another
gate toC′ by searching for a wirew∈ (W−W′) and a probabilistic gateg′ all of whose inputs are
in W′ such that for each experimente∈U∗ that leavesw free and fixes all inputs ofg′,

d(Ĉ(e),Ĉ(e|w=g′(e))) ≤ 2ε/(4nκ(n)).

If no such gate can be found orW′ = W, PCB outputsC′ and halts. We will later show that a gate
can be found as long asW 6= W′.

The search forg′ iterates over every wirew∈ (W−W′) and every choice of anr-tuple of distinct
wiresw1, . . . ,wr from W′ as the inputs ofw, where 0≤ r ≤ k. For each such choice, PCB attempts
to define a probabilistic gate functionf as follows. For each(σ1, . . . ,σr) ∈ Σr , PCB seeks a number
x∈ [0,1] such that ifDx is the distribution that is 1 with probabilityx and 0 with probability(1−x)
then

d(Ĉ(e),Ĉ(e|w=Dx)) ≤ 2ε/(4nκ(n))

for all experimentse∈U∗ that leavew free and fixwi to σi for i = 1, . . . , r. Since the left hand side
is a convex function ofx, every sucheconstrains the possible values ofx to an interval, and anyx in
the intersection of[0,1] and the intervals for all suchesuffices. If the intersection is empty, then the
attempt to definef fails; otherwise,f (σ1, . . . ,σr) is defined to beDx. If PCB succeeds in defining
f for all possibler-tuples(σ1, . . . ,σr), then the gateg′ with inputsw1, . . . ,wr and probabilistic gate
function f is assigned tow.

5.4 An Illustration

For some intuition about the operation of PCB, consider the probabilistic Boolean circuit shown in
Figure 4. Wiresw1 andw2 are determined by random coin flips,w3 is the AND ofw1 andw2, w4 is
the OR ofw1 andw2, andw5 is determined by the 3-input averaging gate applied tow1, w3 andw4.
The table shows the probability thatw5 = 1 for a selected set of value injection experiments.

Suppose that these experiments are contained inU when PCB attempts to add the first gate to
C′. Of course, PCB will only have repeated sampling estimates of these probabilities, but suppose
for a moment that the exact values were available. BecauseW′ is empty, the first gate added must
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w1 = U({0,1}) w2 = U({0,1})

w3 = w1 /\ w2 w4 = w1 \/ w2

w5 = A(w1,w3,w4)
# Experiment Pr[w5 = 1]
1. * * * * * 1/2
2. 0 * * * * 1/6
3. 1 * * * * 5/6
4. * * 0 * * 5/12
5. * * 1 * * 3/4
6. * 1 * 0 * 1/3
7. 0 1 * 0 * 0
8. 1 1 * 0 * 2/3
9. * 1 0 0 * 1/6

10. * 1 1 0 * 1/2

Figure 4: A Boolean circuit with output wirew5, and some of its behavior.

have no inputs and must be determined by a coin flip that is 1 with some probabilityx. In this group
of experiments, there are two constraints for wirew1 for the possible values ofx. Experiments 1,
2 and 3 give the constraint(1/6)(1− x)+ (5/6)x = 1/2, which impliesx = 1/2, and experiments
6, 7 and 8 give the constraint 0(1−x)+(2/3)x = 1/3, which also impliesx = 1/2, consistent with
the gate computingw1 in the target circuit. There are also two constraints on the possible values of
x for the wirew3. Experiments 1, 4 and 5 give the constraint(5/12)(1−x)+(3/4)x = 1/2, which
impliesx= 1/4, and experiments 6, 9 and 10 give the constraint(1/6)(1−x)+(1/2)x= 1/3, which
impliesx = 1/2. Thus there is no consistent value ofx that would allow the first gate to be chosen
for wire w3. Rather than exact values, PCB considers intervals determined by errortolerances, but
when these are small enough, the constraint intervals forw3 will not overlap, and PCB will not
choose the first gate for wirew3.

5.5 Correctness

With probability at least(1− δ), the estimateŝC(e) satisfy (1) for alle∈ U . We now assume
that the estimates satisfy these bounds and show that PCB successfully builds a circuitC′ that is
ε-behaviorally equivalent toC.

We first establish two lemmas connecting gates, paths and experiments. Givena Boolean prob-
abilistic circuitC and a probabilistic gateg, g is η-correct for wire w with respect toC if for every
value injection experimente that fixes the input wires forg we haved(C(e),C(e|w=g(e)))≤ η, where
g(e) denotes the value distribution determined byg when its inputs are fixed as ine. Recall thatφ(e)
denotes the number of free wires in experimente, and thereforeφ(e) ≤ n for all e.

Lemma 13 Let C and C′ be probabilistic circuits on wires W, and let e be a distribution injection
experiment. If for every wire w, the gate for w in C′ is η-correct for w with respect to C, then

d(C(e),C′(e)) ≤ φ(e) ·η.

Proof By induction onφ(e), the number of free wires ine. If φ(e) = 0, theneconstrains the output
wire, and trivially,d(C(e),C′(e)) = 0. Otherwise, the inductive hypothesis is that

d(C(e′),C′(e′)) ≤ φ(e′) ·η
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for all experimentse′ with fewer thanφ(e) free gates.
By Lemma 2, assume thate is in fact a value injection experiment. SinceC′ is acyclic, there

exists a free wirew in esuch that the inputs tow in C′ are fixed ine to somek-tuple(σ1, . . . ,σk)∈ Σk.
Let f denote the probabilistic gate function forw in C′, and letD denote the value distribution
f (σ1, . . . ,σk). Then we haveC′(e) = C′(e|w=D), and

d(C(e),C′(e)) ≤ d(C(e),C(e|w=D))+d(C(e|w=D),C′(e|w=D))

≤ η+(φ(e)−1) ·η
= φ(e) ·η

by the inductive hypothesis and the fact thatf is η-correct forw.

Corollary 14 Let C and C′ be probabilistic circuits on wires W where|W| = n. If for every wire w,
the gate g for w in C′ is η-correct for w with respect to C, then

d(C(e),C′(e)) ≤ n·η.

Proof By the definition of approximate behavioral equivalence and the boundφ(e) ≤ n.

Next we show that test paths are sufficient to determine whether a gate isη-correct for a wire in
C.

Lemma 15 Let C be a Boolean probabilistic circuit, w a wire and g′ a probabilistic gate. If for
every test path p for w that fixes all the inputs of g′, d(C(p),C(p|w=g′(p))) ≤ η/Kw, where Kw is the
maximum value ofκ(e,w) for C over all experiments e, then g′ is η-correct for w with respect to C.

Proof Let g be the actual gate thatC assigns tow. Let e be a value injection experiment that fixes
every input ofg′. Thene may not fix all ofg’s inputs, but becauseC is acyclic,g’s inputs are not
reachable fromw. By Lemmas 4 and 5, there exists an experimente′ ≤ e that fixesg’s inputs, with

d(C(e′),C(e′|w=g′(e′))) ≥ d(C(e),C(e|w=g′(e))).

Sincee′ fixes all ofg’s inputs,C(e′) = C(e′|w=g(e′)). It is given that for all test pathsp that fix all
inputs ofg′ that

d(C(p|w=g(p)),C(p|w=g′(p))) ≤ η/Kw,

so it follows by Lemma 10 that

d(C(e′|w=g(e′)),C(e′|w=g′(e′))) ≤ κ(e′,w) ·η/Kw ≤ η,

andg′ is η-correct forw.

To prove that PCB constructs a circuitC′ that isε-behaviorally equivalent to the target circuitC,
we show that for each wirew∈W, PCB assigns a gate that isε/n-correct forw in C.
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Assume thatW′ 6= W, that is, that not all wires have been assigned gates, and consider PCBas
it attempts to add another gate toC′. PCB looks for a wirew ∈ (W−W′) and probabilistic gate
g′ ∈ G with all of its inputs inW′ such that for each experimente∈U∗ that leavesw free and fixes
all inputs ofg′,

d(Ĉ(e),Ĉ(e|w=g′(e))) ≤ 2ε/(4nκ(n)).

If this search succeeds, then by (1),

d(C(e),Ĉ(e)) ≤ ε/(4nκ(n))d(Ĉ(e|w=g′(e)),C(e|w=g′(e))) ≤ ε/(4nκ(n)),

and thus by the triangle inequality we have

d(C(e|w=g′(e)),C(e)) ≤ ε/(nκ(n)),

It follows by Lemma 15 and the choice ofκ(n) thatg′ is ε/n-correct forw in C.
To see that the search for a gate will succeed as long asW′ 6= W, we note that becauseC is

acyclic, there is some wirew∈ (W−W′) such that all ofw’s inputs inC are inW′. Let g denote the
gate assigned byC to w, with inputsw1, . . . ,wr and probabilistic gate functionf . By the existence
of g, there is at least one feasible gate-wire assignment for PCB to make, ensuring the continued
progress of PCB. Consider any experimente∈ U∗ that leavesw free and fixes the inputs ofg to
(σ1, . . . ,σr). LetD be the value distributionf (σ1, . . . ,σr). ThenC(e) =C(e|w=D) and by (1) and (2)
we have

d(Ĉ(e),C(e)) ≤ ε/(4nκ(n))

d(C(e|w=D),Ĉ(e|w=D)) ≤ ε/(4nκ(n)),

so by the triangle inequality,

d(Ĉ(e),Ĉ(e|w=D)) ≤ 2ε/(4nκ(n)).

Therefore, PCB will continue to make progress until it has assigned a gateto every wire inW, and
every such gate will beε/n-correct for its wire inC, which means thatC′ will be ε-behaviorally
equivalent toC.

5.6 Running Time

To bound the running time of PCB we argue as follows. The setU of experiments is of cardinality
nO(kc) and can be constructed in time polynomial in its size. To estimateC(e), each experiment in
U is repeated

O((nκ(n)/ε)2 log(|U |/δ))

times; recall thatκ(n) = O(nc(logk+1)). PCB then chooses a gate for a wiren times. For each choice,
it must at worst iterate overO(n) wires in(W−W′), over allO(nk) choices ofk or fewer input wires
from W′, over all|Σ|k assignments of values to the input wires, and all experiments inU . Thus the
running time of PCB is polynomial inn, 1/ε and 1/δ.
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6. Lower Bounds on Path Attenuation

The path attenuation boundκ(n) is a significant factor in the running time of the PCB algorithm. In
this section we consider lower bounds on path attenuation for Boolean probabilistic circuits. The
following theorem shows that the bound ofπ(e,w) for transitively reduced Boolean probabilistic
circuits in Corollary 11 is tight infinitely often.

Theorem 16 There is an infinite set of transitively reduced probabilistic Boolean circuits such that
for each circuit C in the family, there exists a value injection experiment e and awire w free in e
such that

d(C(e|w=0),C(ew=1)) = 1

and for every test path p for w we have

d(C(p|w=0),C(p|w=1)) = 1/π(e,w).

Proof For each positive integerℓ, define the circuitCℓ to be a chain ofℓ copies of the circuitC1

in Figure 1 with wirew4 of one copy identified with wirew1 of the next copy. More formally, the
3ℓ+1 wires arew0,4 andwi, j for i = 1, . . . , ℓ and j = 2,3,4. The output wire iswℓ,4. The wirew0,4

has no inputs and is determined by an unbiased coin flip, that is,U({0,1}). The wireswi,2 andwi,3

are the outputs of deterministic identity gates with inputwi−1,4. The wirewi,4 = A(wi,2,wi,3) is the
result of applying the two-input averaging probabilistic gate functionA to the wireswi,2 andwi,3.
The circuitC3 is depicted in Figure 5.

To understand the operation of this circuit in response to a value injection experimente, we may
view each averaging gate as choosing one of its inputs to copy to its output. Starting at the output
wire, this determines a path back to the first wire whose value has been fixed, or to the wirew0,4

(which has no inputs) and the output of the circuit is the value of the wire so reached.
Define experimente to leave all of the wires free. Letw denote the wirew0,4. Clearly there are 2ℓ

paths on free gates ine from w to the output gate, that is,π(w,e) = 2ℓ. For experimenteevery possi-
ble path starts at wirew and we haveC(e|w=0) = 0 andC(e|w=1) = 1, sod(C(e|w=0),C(e|w=1)) = 1.
However, any test pathp for w must fix one of the wireswi,2 or wi,3 for eachi = 1, . . . , ℓ. Thus, there
is exactly one path that leads back to wirew, and this path is the one chosen by the averaging gates
with probability 1/2ℓ. Thus the result for any test pathp for w is d(C(p|w=0),C(p|w=1)) = 1/2ℓ =
1/π(e,w).

This lower bound also holds for general transitively reduced circuit topologies, as follows. (Note
that this result was incorrectly stated in the preliminary version of this paper (Angluin et al., 2008a).)

Theorem 17 Let G be a transitively reduced acyclic directed graph with a designated output node
z that is reachable from every node. For each node w there exists a Boolean probabilistic circuit
C whose circuit graph is G with output wire z such that for every value injection experiment e that
leaves w free and for every test path p≤ e for wire w we have

d(C(e|w=1),C(e|w=0)) ≥ π(e,w) ·d(C(p|w=1),C(p|w=0)).

Proof Let w be given. To constructC, each nodev of G is assigned a probabilistic gate whose
inputs are the in-neighbors ofv in G, as follows. For each nodev, let P(v) denote the number of
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w04 = U({0,1})

w12 = w04 w13 = w04

w14 = A(w12,w13)

w22 = w14 w23 = w14

w24 = A(w22,w23)

w32 = w24 w33 = w24

w34 = A(w32,w33)

Figure 5: The circuitC3; w3,4 is the output wire.
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distinct directed paths fromw to z that include nodev, and for each edge(u,v), let P(u,v) denote
the number of distinct directed paths fromw to z that include edge(u,v). If there are no paths from
w to z throughv (that is,P(v) = 0) then we let the probabilistic gate function forv be the constant
function 0. The probabilistic gate function forw is a coin flip,U({0,1}).

Otherwise, if nodev has inputsu1, . . . ,ur then it is assigned the probabilistic gate function
specified by

Av(b1, . . . ,br) =
r

∑
i=1

bi ·P(ui ,v)/P(v)

This generalizes the two-input averaging gateA, weighting inputui by the fraction of paths fromw
to zpassing throughv that also pass throughui . We may viewAv as performing a random weighted
selection of one of its inputs to copy to its output. The weights have been chosen so that each
directed path fromw to z is selected with probability 1/P(w).

Let e be any value injection experiment that leavesw free. If there is no path on free wires ine
from w to the output, thenπ(e,w) = 0, and the bound in the conclusion of the lemma holds trivially.
Otherwise, the output of the circuit in response toe is determined by tracing from the output wire,
following the choices of the averaging gates, until either the first wire fixedby e, or w, is reached.
Thus

d(C(e|w=1),C(e|w=0)) = π(e,w)/P(w),

because there areπ(e,w) paths fromw to the output wire ine. Let p≤ ebe any test path forw; now
there is just one choice of path that leads back tow, so

d(C(p|w=1),C(p|w=0)) = 1/P(w),

establishing the conclusion of the lemma.

Can the general bound in Lemma 10 be improved to the bound for transitively reduced circuits in
Corollary 11? The following example shows that the better bound is in general not attainable if the
circuit is not transitively reduced. It gives a family of circuits of depth 2ℓ for which the worst-case
ratio of the differences shown forw by an experimenteand the best path forw is (5/4)ℓπ(e,w).

Theorem 18 There exists an infinite set of Boolean probabilistic circuits D1,D2, . . . such that for
eachℓ there exists a value injection experiment e and a wire w free in e such thatπ(e,w) = 4ℓ and

d(Dℓ(e|w=0),Dℓ(e|w=1)) = (5/7)ℓ,

but for any test path p for w,

d(Dℓ(p|w=0),Dℓ(p|w=1)) = (1/7)ℓ.

Proof We first define a Boolean probabilistic circuitD1 and then connectℓ copies of it in series
to getDℓ. The wires ofD1 arew1, . . . ,w5. They are connected as in Figure 6; the output wire is
w5. Note that the edge(w1,w5) means that the circuit graph is not transitively reduced. The gate
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w1 = U({0,1})

w2 = w1 w3 = w1 w4 = w1

w5 = G(w1,w2,w3,w4)

Figure 6: The circuitD1; w5 is the output wire.

functionG is defined by giving its expected value as a function of its inputs:

E[G(w1,w2,w3,w4)] = ((1−w1)+2w2 +2w3 +2w4)/7.

Let ebe the experiment that leaves all five wires free. It is clear that

d(D1(e|w1=0),D1(e|w1=1)) = 5/7.

We now show that for any test pathp for w1,

d(D1(p|w1=0),D1(p|w1=1)) = 1/7.

The possible test pathsp for w1 either fix all ofw2,w3,w4 or all but one of them. Thus, as we change
from w1 = 0 to w1 = 1 in such a test path, the assignments to wires(w1,w2,w3,w4) change in one
of four possible ways:

(0,b2,b3,b4) to (1,b2,b3,b4)

(0,0,b3,b4) to (1,1,b3,b4)

(0,b2,0,b4) to (1,b2,1,b4)

(0,b2,b3,0) to (1,b2,b3,1)

Checking each of these possible changes against the definition ofG, we see that each change pro-
duces a difference of 1/7, as claimed. (This example can be modified to give a difference of 1 versus
1/5.) Thus, settingw = w1, the circuitD1 gives the base case of the claim in the lemma.

To constructDℓ, we takeℓ copies ofD1 and identify wirew5 in one copy with wirew1 in the
next copy, making the wirew5 of the final copy the output wire of the whole circuit. Letw denote
the wirew1 in the first such copy. Thenπ(e,w) = 4ℓ and

d(Dℓ(e|w=0),Dℓ(ew=1)) = (5/7)ℓ.

For any test pathp, the signal is attenuated by a factor of 1/7 for each level, and we have

d(Dℓ(p|w=0),Dℓ(p|w=1)) = 1/7ℓ.
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This construction can be generalized tok+ 1 wires for any oddk+ 1, which increases the
attenuation. In the base circuit there arek paths and an attenuation factor of 1/(2k−3), and the
worst-case ratio of differences for an experiment and its test paths inDℓ approaches 2ℓπ(e,w) ask
goes to infinity.

7. Exponential Dependence on Depth

The bounds on path attenuation show that test paths may be much less informative than general
value injection experiments, resulting in the exponential dependence of the number of experiments
and the running time of PCB on the depth of the target circuit. It is natural to ask whether we might
do better by using selected general experiments. In this section, we give computational evidence
to the contrary. The following result contrasts with the case of deterministic circuits, where the
Distinguishing Paths algorithm uses value injection queries to learn arbitrary transitively reduced
acyclic deterministic circuits of constant fan-in over polynomial size alphabets in polynomial time
(Angluin et al., 2008b).

Theorem 19 If BPP 6= NP and k≥ 4 then there is no polynomial time algorithm using value injec-
tion queries that approximately learns all acyclic transitively reduced Boolean probabilistic circuits
with fan-in bounded by k.

Proof SupposeL is a polynomial time algorithm that approximately learns the behavior of every
transitively reduced acyclic Boolean probabilistic circuit of fan-in bounded by 4 using value in-
jection queries. The hard computational problem we consider is the following: given a satisfiable
3-CNF formulaφ over the variablesx1, . . . ,xn with clausesc1, . . . ,cm, find an assignment to the
variables that satisfies significantly more than seven-eights of the clauses of the formula. Finding
such an assignment isNP-hard by a result of H̊astad (2001). We show how to transform the 3-CNF
formula φ into a pair of transitively reduced circuitsC0 andC1 with maximum fan-in 4 such that
value injection experiments show a difference that is exponentially small in the depth of the circuits
unless we can find a variable assignment that satisfies significantly more thanseven-eighths of the
clauses of the formula.

The efficiency of our construction depends on the existence of a family ofgraphs with an ex-
pansion property. Specifically, there exists a constantα < 1 such that for sufficiently largem, there
exists a directed graphGm on m nodes with constant out-degree 3 such that the second largest
eigenvalueλ2 of the transition matrix for a random walk onGm satisfiesλ2 ≤ α. Such a family
can be constructed by the probabilistic method and explicit constructions arealso known; these are
surveyed by Hoory, Linial, and Wigderson (2006). Letr be the smallest integer such thatαr ≤ 1/40.

Let ℓ be a positive integer. The two circuitsC0 andC1 differ only in their default assignments
to a subset of their wires, so we describe their common structure as follows.The circuit consists
of a stack ofℓ repetitions of a block consisting ofr expander layers above one gadget layer for a
total depth of(2r +1)ℓ. Figure 7 illustrates a block consisting of one expander layer (r = 1) above
a gadget layer. Recall thatx1, . . . ,xn are the variables ofφ andc1, . . . ,cm are the clauses ofφ.

A gadget layerhas three types of wires: inputs gIn1, . . . ,gInm, variables x1, . . . ,xn, and outputs
gOut1, . . . ,gOutm. The input wire gInj of each gadget layer except the initial one is identified with
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Gadget layer

Expander layer

gIn1 gIn2

x1

gOut1 = gIn1 /\ c1

gIn3

x2

gOut2 = gIn2 /\ c2

gIn4

x3

gOut3 = gIn3 /\ c3

x4

gOut4 = gIn4 /\ c4

eIn1 = gOut1 eIn2 = gOut2 eIn3 = gOut3 eIn4 = gOut4

eOut1 = A(...) eOut2 = A(...) eOut3 = A(...) eOut4 = A(...)

Figure 7: A block withr = 1 for the Boolean formulac1∧c2∧c3∧c4, wherec1 = x2∨x3∨x4 and
c2 = x1∨x3∨x4 andc3 = x1∨x2∨x4 andc4 = x1∨x2∨x3.

the corresponding output wire eOutj of the expander layer just below it. The variable wires xi of
each gadget layer have no inputs and default to the constant 0. Each output wire gOutj has four
inputs: the corresponding gadget input wire gInj and the three variable wires for the variables of
the clausec j of φ. Its gate function computes the conjunction of gInj and the value of the clausec j

given its three variable values.
Thus, if the learner sets the variable wires xi in a gadget layer according to a satisfying assign-

ment ofφ, the signals propagate from the gadget inputs gInj to their corresponding outputs gOutj
with perfect fidelity. Otherwise, any unsatisfied clause blocks the signal for the corresponding out-
put.

An expander layeraverages the outputs of the layer below to be the inputs for the layer above,
according to the expander graphGm. Each input eInj of an expander layer is set equal to the
corresponding output of the gadget or expander layer immediately below it.The three inputs to
eOutj are eInk for the three out-neighborsk of j in the expander graphGm. The gate function for
each eOutj is the three-input averaging gateA(x,y,z), which is 1 with probability(x+y+z)/3. The
output of the whole circuit is the first output wire of the final (topmost) expander layer.

The initial inputs are the input wires gInj of the initial gadget layer. They have no inputs; for
the circuitC0 they are all assigned the default value 0, and for the circuitC1 they are all assigned the
default value 1. Note thatC0 andC1 are transitively reduced and have a maximum fan-in of 4.

The challenge for the learner is to determine which ofC0 andC1 is the target circuit. If a
value injection experiment succeeds in setting the variable wires in every gadget layer to (possibly
different) satisfying assignments for the formulaφ and leaves all other wires free, then the output of
C0 is 0 and the output ofC1 is 1. If not all the clauses ofφ are satisfied, then this distance is reduced.
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Intuitively, the learner’s strategy must be to fix the variable wires in each gadget layer to prevent
the signal from the initial inputs from getting blocked; fixing the input or output wires of gadget or
expander layers would not help, because they would then have the same value regardless of their
inputs. Without a good variable assignment, however, the signal strength drops by a constant factor
for each layer, as we now show.

Let e be a value injection experiment. The experimente induces an assignment to the variables
of φ for each gadget layer, either by fixing the value of each variable wire orletting it default to 0.
The effect of an averaging gate is to select one of its inputs at random and copy the value of that input
to the output. Thus, the output of the circuit for experimente is in effect determined by a random
walk backward from the output wire until the walk reaches a wire whose value is fixed bye (and
the output is the fixed value), or a gadget layer output wire corresponding to an unsatisfied clause
(and the output is 0), or an initial input wire (and the output is the value of that wire.) Suppose that
for each gadget layere encodes a variable assignment that satisfies at most(9/10)m of the clauses
of φ. We show that the probability that the random walk hits an initial input wire is bounded above
by (39/40)ℓ√m.

Without loss of generality we may assume thate fixes no wires other than variable wires and
initial input wires, because any other fixed wires reduce the probability ofreaching an initial input.
For i = 1, . . . , ℓ, letWi be them×mdiagonal matrix with 1s for each satisfied clause in theith gadget
layer and 0s for each unsatisfied clause. LetB be the transition matrix for anr-step random walk
on Gm and lete1 = (1,0, . . . ,0). The probabilities of the random walk hitting the initial inputs are
given by the vectore1BWℓBWℓ−1 ·BW2BW1. By the following argument, for alli and vectorsv, we
have‖vBWi‖ ≤ (39/40)‖v‖.

Write v = cu+w, wherec is a scalar andu = (1, . . . ,1) andw is a vector such thatu⊥ w. Then
u is an eigenvector ofB with eigenvalue 1 and multiplyingw by B shrinks its length to at most the
second eigenvalue ofB times its original length. By Pythagoras,‖cu‖ ≤ ‖v‖ and‖w‖ ≤ ‖v‖. We
havevBWi = (cu+w)BWi . On one hand,‖cuBWi‖ = ‖cuWi‖ ≤

√
9/10‖cu‖ ≤ (19/20)‖v‖. On the

other hand,‖wB‖ ≤ (1/40)‖w‖ ≤ (1/40)‖v‖, because the second eigenvalue ofB is no larger than
1/40, and‖wBWi‖ ≤ (1/40)‖v‖, becauseWi does not increase theL2 norm. The resulting(39/40)ℓ

bound on theL2 norm of the probability vector gives a bound of(39/40)ℓ√mon theL1 norm, which
is an upper bound on the probability that any initial input is reached.

Suppose the learning algorithmL runs in time f (N,1/ε,1/δ), for some nondecreasing polyno-
mial f , whereN is the number of wires in the target circuit. LetN(ℓ) denote the number of wires
in C0 (or C1) as a function of the numberℓ of blocks in the stack. ThenN(ℓ) = O(ℓ(n+ rm)). We
chooseℓ sufficiently large that

((39/40)ℓ√m) f (N(ℓ),4,4) < 1/4,

clearlyN(ℓ) is bounded by a polynomial inmandn.
We randomly and equiprobably choose the target circuitC to beC0 or C1 and simulateL with

target circuitC andε = δ = 1/4. WhenL makes a value injection experimente, we check whether
any of the induced variable assignments ofe satisfies more than(9/10)m clauses ofφ. If so, we
output the assignment and halt. Otherwise, we use a random walk from the output wire in the circuit
C to give an output fore. If no experimente satisfies more than(9/10)m of the clauses ofφ, then
the probability that any of them reaches an initial input inC is less than 1/4. If none of them reaches
an initial input, thenL cannot distinguish betweenC0 andC1, and must output a circuit that is not
1/4-approximately behaviorally equivalent toC with probability at least 3/8 > 1/4, violating the
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requirements of approximate learning.

We conclude that ifBPP 6= NP, any polynomial time learning algorithm requires in expectation
exponentially many queries inℓ to learn the default settings of the initial inputs and therefore, PCB
is within a polynomial of optimal.

8. Non-Boolean Circuits Revisited

The sharp contrast in results for transitively reduced circuits with alphabet size at least three, for
which test paths may show no difference (Lemma 8) and those with alphabet size two, for which
test paths must show a significant difference (Lemma 10) motivate us to consider a generalization of
the kinds of experiments we consider, to function injection experiments. This generalization allows
us to extend the results of Lemma 10 to non-Boolean alphabets.

In a value injection experiment, each wire is either fixed to a constant value orleft free. In
a function injection experiment for a wirew, these possibilities are expanded to permit a trans-
formation of the value that the wirew would take if it were left free. As an example, consider a
transformation in which the values thatw could attain are linearly ordered and all values below a
certain threshold are mapped to the minimum value and all other values are mapped to the maxi-
mum value. It is conceivable that this kind of transformation could be feasible in some domains;
in any case, the theoretical consequences are quite interesting. We firstgive a general definition
of function injection, but in the results below we are primarily concerned with 2-partitions, that is,
transformations that are like the above example in that they partition the values into at most two
blocks and map each block to a fixed element of the block.

An alphabet transformation is a function f that maps symbols to distributions over symbols.
An alphabet transformation isdeterministic if it assigns only deterministic distributions, in which
case we think of it as a map from symbols to symbols. A deterministic alphabet transformation f
is ak-partition if there exists a partition ofΣ into at mostk disjoint nonempty setsΣi such that for
eachi there existsσi ∈ Σi such thatf (Σi) = {σi}. Note that ifk1 ≤ k2, everyk1-partition is also a
k2-partition.

A 1-partition is a constant function, achieving the same result as fixing the wire to a value
in a value injection experiment. We use 2-partitions to reduce the case of larger alphabets to the
binary case. Note that the 2-partitions of a binary alphabet include the identity and the two constant
functions, but not the negation function.

If D is a value distribution andf is an alphabet transformation, thenf (D) is the value distribution
in which

( f (D))(σ) = ∑
τ∈Σ

D(τ)( f (τ))(σ).

A function injection experiment is a mappinge with domainW that assigns to each wire the
symbol∗ or a symbol fromΣ or an alphabet transformationf . Thene leavesw free if e(w) = ∗, fixes
w if e(w) ∈ Σ, andtransforms w if e(w) is an alphabet transformationf . We extend the ordering≤
on experiments by stipulating that each alphabet transformationf ≤ ∗. A 2-partition experiment
is a function injection experiment in which every alphabet transformation is a 2-partition.

We now define the joint probability distribution on assignments of symbols fromΣ to wires de-
termined by a function injection experimente. If efixesw, thenw is just assignede(w). Otherwise,
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if the inputs ofw have been assigned the valuesσ1, . . . ,σk and f is the gate function forw, we
randomly and independently choose a symbolσ according to the value distributionf (σ1, . . . ,σk).
If w is free ine, thenσ is the symbol assigned tow; however, ife(w) is an alphabet transformation,
then a symbolτ is chosen randomly and independently according to the value distributione(σ) and
assigned tow. That is, whene(w) is an alphabet transformation, we generate the symbol forw
as though it were free, and then use the distributione(w) to transform that symbol. BecauseC is
acyclic, this process assigns a symbol to every wire ofC.

In a function injection query (FIQ), the learning algorithm gives a function injection exper-
iment e and receives a symbolσ assigned to the output wire ofC by the probability distribution
defined above. Afunctional test path for a wirew is a function injection experiment in which the
free and transformed wires are a directed path in the circuit graph fromw to the output wire, and all
other wires are fixed.

As an example of how functional test paths help in learning non-Boolean probabilistic circuits,
consider again the circuit in the proof of Lemma 8, depicted in Figure 3. We specify a functional test
pathp by p(w1) = p(w4) = p(w5) = ∗, p(w3) = 0 andp(w2) is the alphabet transformation 0→ 0,
1→ 0, and 2→ 2. Note that the alphabet transformation is a 2-partition. ThenC(p|w1=0) = 0 but
C(p|w1=2) = U({0,1}), so this functional test path witnesses a difference of 1/2, as large as the
experiment that leaves all the wires free. Test paths with functions allow usto carry over the results
of Lemma 10 to non-Boolean alphabets.

Lemma 20 Let C be a probabilistic circuit, e be a function injection experiment, w be a wire free
in e and D1,D2 be value distributions. If there existsε ≥ 0 such that for all functional w-test paths
p≤ e that are2-partitions,

d(C(p|w=D1),C(p|w=D2)) ≤ ε,

then
d(C(e|w=D1),C(e|w=D2)) ≤ κ(e,w) · ε.

Proof The obstacle in Lemma 10 is that when the alphabet is non-Boolean, we may assume only
thatD1 andD2 have disjoint support, not that they are deterministic. This obstacle can be overcome
by injecting a 2-partition atw. Let Σ1 = support(D1) andΣ2 = support(D2) and assumeΣ1∩Σ2 = /0.
Then

d(C(e|w=D1),C(e|w=D2)) ≤ ∑
ρ1∈Σ1
ρ2∈Σ2

D1(ρ1)D2(ρ2)d(C(e|w=ρ1),C(e|w=ρ2))

by the triangle inequality. Let

(σ,τ) = argmax
ρ1∈Σ1
ρ2∈Σ2

d(C(e|w=ρ1),C(e|w=ρ2))

so that

d(C(e|w=D1),C(e|w=D2)) ≤ d(D1,D2)d(C(e|w=σ),C(e|w=τ)).

Let f be an alphabet transformation that mapsΣ1 to σ andΣ2 to τ and all other symbols to eitherσ
or τ. Then f is a 2-partition, and

d(C(e|w=D1),C(e|w=D2)) ≤ d(C(e|w= f (D1)),C(e|w= f (D2))).
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Since f (D1) = σ and f (D2) = τ, the rest of the proof goes through.

Corollary 21 Let C be a transitively reduced probabilistic circuit, e be a function injection experi-
ment, w be a wire, and D1,D2 be value distributions. If there existsε ≥ 0 such that for all functional
w-test paths p≤ e,

d(C(p|w=D1),C(p|w=D2)) ≤ ε,

then
d(C(e|w=D1),C(e|w=D2)) ≤ π(e,w) · ε.

We expect that a further generalization of the Probabilistic Circuit Builder algorithm to use
function injection experiments can learn non-Boolean circuits of logarithmic depth and constant fan
in in polynomial time. The universal set would map wires to the set containing allalphabet symbols
from Σ and all 2-partitions ofΣ, of which there are fewer than|Σ|22|Σ|. Thus, the universal set will
still be of sizenO(1), suggesting that a polynomial time algorithm may be attainable in this case.

Certain other natural questions arise in response to the idea of function injection experiments.
We can define circuitsC andC′ to bestrongly behaviorally equivalent if C(e) = C′(e) for every
function injection querye. Does behavioral equivalence imply strong behavioral equivalence?Once
again, alphabet size determines the answer: no for alphabet size greater than two, yes for alphabet
size two.

Lemma 22 For Σ = {0,1,2}, there exist deterministic circuits C1 and C2 that are behaviorally
equivalent but not strongly behaviorally equivalent.

Proof In bothC1 andC2 there are two wiresw1 andw2, wherew2 is the output wire. In both circuits
the gate forw2 has inputw1 and deterministically maps 0 to 0 and maps 1 and 2 to 1. InC1, w1 is
the constant 1 andC2 it is the constant 2.

Then if e is the value injection experiment that leaves both wires free,C1(e) = 1 = C2(e). If e
fixes eitherw1 or w2, then alsoC1(e) = C2(e). ThusC1 is behaviorally equivalent toC2.

However, the 2-partition function injection experimente that leavesw2 free and maps the output
of w1 according to the transformation 0→ 0, 1→ 0, 2→ 2 yieldsC1(e) = 0 andC2(e) = 1. Thus
C1 is not strongly behaviorally equivalent toC2.

However, 2-partition function experiments suffice to establish strong behavioral equivalence.

Lemma 23 Let C and C′ be probabilistic circuits with the same alphabetΣ, the same set of wires
and the same output wire. If C(e) = C′(e) for every2-partition function experiment e then C and C′

are strongly behaviorally equivalent.

Proof By a generalization of the Probabilistic Circuit Builder algorithm to functional test paths.

Because in the Boolean case every 2-partition function injection query is a value injection query,
we then have the following.

Corollary 24 For Boolean probabilistic circuits C and C′, if C is behaviorally equivalent to C′ then
C is strongly behaviorally equivalent to C′.
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9. Discussion and Open Problems

These results concern general probabilistic acyclic gates, with no restriction other than fan-in on the
kinds of probabilistic gate functions considered. Particular domains may warrant specific assump-
tions about the gate functions, which may make the learning problems more tractable. For example,
for the problem of learning the structure of an independent cascade social network using exact value
injection queries, a query-optimal algorithm is presented by Angluin et al. (2008c). Note that social
networks may in general contain cycles, which complicates their analysis.

The Distinguishing Paths algorithm (Angluin et al., 2008b) learns transitivelyreduced acyclic
deterministic circuits over polynomial size alphabets with constant fan-in and no depth bound using
value injection queries in polynomial time, and relies on a version of the test pathlemma. Theo-
rem 19 shows that ifBPP 6= NP then this algorithm does not generalize to arbitrary transitively re-
duced Boolean probabilistic circuits, but there is a possibility that it might generalize to transitively
reduced Boolean probabilistic circuits with a polynomial bound on the total number of directed
paths in the circuit graph. A somewhat technical open question is whether inthe case of general
Boolean probabilistic circuits, the ability to inject the NOT function might reduce the maximum
path attenuation to just the number of paths, as it does in the case of the circuitin Figure 6.
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