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Abstract: In this paper, a second finite difference method on a graded grid is proposed for a Volterra
integro-differential equation with a weakly singular kernel. The proposed scheme is obtained by using
the two-step backward differentiation formula (BDF2) to discretize the first derivative term and the
first-order interpolation scheme to approximate the integral term. The analysis of stability is proved
and used to prove the convergence of our presented numerical method in the discrete maximum norm.
Finally, Numerical experiments are given to verify the theoretical results.
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1. Introduction

This article aims to study a second-order numerical method for the following Volterra integro-
differential equation (VIDE) with a weakly singular kernel

Lu = u'(x) + a(x)u(x) + fx (x =) " b(Ou(t)dt = f(x), x € Q := (0, L],
0

u(0) = u,

(1.1)

where @ € (0, 1). a(x), b(x), and f(x) are smooth functions, and u is an initial data. We assume that
there exist two positive constants 5, S8, such that

la()l < B, 1b(xX)| < B2, x€[0,L] (1.2)

To simplify the presentation, we assume that 81, 8, < 8%, where 8" is a positive constant. Based on the
above assumptions, the problem (1.1) has a unique solution, u(x), which satisfies the following lemma:
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Lemma 1.1. [I, Theorem 4.1] If f can be written f(x) = fi(x) + ¥*f,(x), where B > 0 and B +
1,2,...,N. Then there exist positive constants C, d such that

()| < Cd'T(k + Dx**, x>0, k=1,2,...,N, (1.3)

where 6 = min(2 — a, 1 + ).

It is well known that Volterra integro-differential equations widely exist in biology, finance, popula-
tion growth models and other fields (see, e.g., [2,3]). In recent years, there has been tremendous interest
in developing finite difference [4—6], finite element [7, 8], and spectral methods [9-11] for first-order
and second-order Volterra integro-differential equations. Among the existing numerical methods, most
of the researchers focus their attention on high-accuracy finite element methods and spectral methods.
Therefore, it is very necessary to study a class of high-order finite difference methods for VIDE(s).

As far as we know, linear multi-step methods with a uniform time grid are widely used in dis-
cretizing the first-order time derivative of partial differential equations (see [12, 13], for example). It
should be pointed out that the variable step-size linear multi-step methods allow us to take different
step-sizes for different scales, i.e., small step-sizes for the domain with solution rapidly varying and
large for the domain with solution slowly changing. Therefore, the variable step-size linear multi-step
methods demonstrate the prominent advantages of high accuracy compared to the constant step-size
linear multi-step methods. Recently, Liao and Zhang [14] developed the variable two-step backward
differentiation formula (BDF2) to discretize the time derivative of diffusion equations and gave a new
theoretical framework by using the positive semi-definiteness of BDF2 convolution kernels and a class
of orthogonal convolution kernels for the first time. Furthermore, Liao et al. [15] derived the stabil-
ity and convergence analysis of the second-order backward difference formula (BDF2) with variable
steps for the molecular beam epitaxial model without slope selection. Wang et al. [16] gave stabil-
ity and error estimates for time discretizations of linear and semi-linear parabolic equations by the
two-step backward differentiation formula (BDF2) method with variable step sizes. In [17], the au-
thors proposed linearly implicit backward differentiation formulas with variable step sizes to solve the
two-dimensional incompressible Navier Stokes equations.

Inspired by the above references [14—17], the main purpose of this paper is to develop a second-
order finite difference scheme for VIDE (1.1). This paper is organized as follows: In Section 2, we
proposes a finite difference scheme on a graded mesh by using the variable step-size BDF2 to discretize
the first derivative term and the linear interpolation technique to approximate the integral term and
prove the stability of our proposed numerical method. In Section 3, we will show how to improve
the point-wise accuracy to second order by selecting appropriate graded mesh parameters. Finally, the
theoretical results are verified by numerical experiments in Section 4.

2. Discretization scheme

Let QY := {0 = xp < x; < --- < xy = L} be a graded mesh (see [18]), where the grid points are given
by x; = L(ﬁ')y, i=0,1,--- ,Nand y € [1,00) is a given real number. Fori = 1,2,...,N, let h; =
X; — x;_1 be the i—th mesh step and 7 = max A; be the corresponding maximum step size. Furthermore,

1<i<N
i

we denote the i—th step-size ratios by r; = ;- - i =2,...,N. Obviously, rp., = 2me}vx1 rp=2"—1.
i- <i<N-
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Throughout this paper, for any continuous function g(x), let g; = g(x;), and C represents a positive
constant independent of the mesh parameter V.

Let P; ;g be the Lagrange interpolating polynomial of a function g over points x;, x;_1, . . ., X;—x. Then
the BDF2 formula can be given by

1 +2r r?
Dygi = (Pig) (x)) = ———Vg;— —————Vg; ;| f > 2, 2.1
28i i= (Ping) (xi) ) 8 T e 8! or i 2.1)

where Vg; := g; — g;-1. In addition, denote D,g; := Vg;/h;. Then, on the above graded mesh QN we
construct the following discretization scheme to approximate problem (1.1):

i
.ENuﬁV = Dzuﬁv + aiuﬁv + f (x; — ) (bu) (s)ds = f;,
; Tt ( ) (2.2)
u) = u,
where u) is the approximation solution of u(x) at point x = x; and

N N
bkuk - bk—luk_l
Iy

(E) (x) := bkukN +(x— xz) , X € (X1, X)) .

In the following numerical analysis, the method of the discrete orthogonal convolution (DOC) kernels
6?5_]. will play an important role. Firstly, we rewrite the BDF2 formula (2.1) into the following formal

Dagi= ) b, Ve for i1, (2.3)

k=1
where b, are defined by b, := 1/h;, and

. 1+2r, . r? .
pii= —— 2y N and b=0 for 2< i<i—1. 2.4
0T a4y VT Th(l ) P oresJ=t 24

The DOC kernels 6/ ; have the following the property (see [14])
Z@jjbjk Oy for V 1 <k <i,
where d; 1s the Kronecker delta symbol. Furthermore, we have

29 Dauj = ZVu,Zeﬁ ij ,=ui— Uiy, 1<i<N. (2.5)
j=1

We now introduce the following lemma for the DOC kernels 6'_ i

Lemma 2.1. [14, Lemma 2.3] For i > 1, the DOC kernels 6 j satisfy the following formula

6.,>0, ¥V 1>j>iand Ze;.'_j:hi. (2.6)

J=1
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Next, the stability result of the discretization scheme (2.2) is given as follows:

Lemma 2.2. Assume that h < (1 — @) /(168%). Then the discrete solution uﬁv of the discretization
scheme (2.2) satisfies the following formula

[|ugv| +ZZ@;‘_].|f,~), n>1
i=1 j=1
Proof. Firstly, for the integral term of (2.2), we have
i .
Z f (xj - s) (bu) (s)ds
f=1 Y X
J Xk
< Z bkukN f Xj— s “ds

Xk-1

2.7
<p {r<1]§1<)§|uN|f —s a’s+Z|kau,iv|f (2.7)

+

Vbl
Z i —s (s—xk)ds
k=1

< max [u}| + 25" max |u} | (xj —
1 — @ 1<k<) 1<k<j 0

< max |I/£k |
1 — @ 1<k<j

For i > 1, multiplying both sides of the discretization scheme (2.2) by the DOC kernels Hf_j and
summing j from 1 to i yields,

Z 9 [Dzu + a]u + Zf s bu (s)ds] = Z 9 (2.8)
=1

Applying Eq (2.5) to Eq (2.8), one has

uﬁv—uﬁl+205_jaju?’+20 Zf —s bu (s)ds-ZG (2.9)
j=1 =1 k=1

j=1

Multiplying both sides of the above equation (2.9) by 2u" and summing the resulting equality from 1
to n, one has

n
S -
i=1

|u0 | = Z ZuNZ 6. ifi— Zn] 2ul Zl: Qf_jajuiv
i=1 =1
_ Z o 26,5 [ (o) ) s
= =1 k=1 ¥ Xt
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Furthermore, we have

N

u,

2s|ugV|2+Zn:|2uN|Zi]9 17|+ B Z|2uN|Ze
j=1

i=1
+an:|2u§v|zi;0’ kzjlf -—s bu)(S)ds
i= Jj= =1 -

. i (2.10)
< uON|2+Z|2u7|Zej_j|]3|+ﬁ*Z|2us|Ze§_j|uJN
i=1 =1
N|Zg Pg]%uk
Set |uN | = max Ju ul | letting n = m in the inequality (2.10), we get
|uN| <|uév||uN|+|2umZZQ |f] + B |u N|ZG
oA @.11)
3ﬁ* m i i
+ —a |u%| Z |2us| Zgi‘f'
pay =1
Using Lemma 2.1 to Eq (2.11), one has
m i . m 653" m
|unN| < m| < |u |+22295—j|fj| +2,8*Z|u§v|h,-+ 7 faZ|uﬁv|hi
i=1 j=1 i=1 (212)

)Z .

i=1

s|u0|+2229 15|+ (

i=1 j=1

Ifh<(1-a)/(166"), we have

+4), 2@5 £l + ( =4 )Zl | - (2.13)
1

i=1 j=1

Based on the discrete Gronwall inequality [19, Lemma 3.2], we have

n i ' 165* n—1
N S[2|u6v|+4229§j|fj|)exp(l+(1_ﬁa)2hi]
i=1

i=1 j=1

S6‘[Iui¥l+ZZ jlf,]

i=1 j=1

which completes the proof. O
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3. Error analysis

Fori=0,1,--- ,N,lete; = u; — ufv be the absolution error between numerical solution uf\’ and exact
solution u(x) at point x = x;. Then the error equation can be written by

LY —u})=Ry;+ Ry, i=1,2,3,..,N, (3.1)
where R, ;, R,; are characterized by
Ry ; = Dyu; — u'(x;), (3.2)

- Z f A (x; = )7 [(Bu) (5) = (bu)(9)] ds. (3.3)
k=1 ¥ X1

Lemma 3.1. The truncation error R, ; and R,; estimations can be given by the following inequality:

Ri,| <N, i=1,2,
|R1’i| = C(h X0+ X 23) [ >3,
R,| < € max {N‘Y‘S,N‘z}, i>1.

Proof. For the truncation error R, j, it follows from Taylor’s expansion formula and Lemma 1.1 that

l XI 144
IRi| = ‘h_lfo ' (f)dt

Similarly, for i > 2, based on [14], one has

< f £72dt < Chy™' < CN77°. (3.4)
0

= |— _ 2 A 3 2
= 0+ l)hf (1 = xim)” u(ndt — 2h(1+ l)f (t — xi_0) u'” (t)dt

- m fxil (20t = xizy) + hio) u”” (t)dt| .

1+2r,-
k. -|
(3.5)

Furthermore, based on Eq (3.5), yields,

1+2r 5 53 f 51 15 53
< TE2 s 2 | plg e 2T 2y

21+r) 21 21+ 1) Jo 2(1+ry) ! (3.6)
< CR3hS™ + Chy™ < ChY™' (13 + 1) < ChY™!

and
1+ 2r ; . s+ 1
Ry < o T 0
2(1 + ,) 2(1+ 1y 2(1 + 1) (3.7)
< C(RxT + 2, x5). i23.
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For R,;, 1 <i < N, itis easy to obtain

> f - s)—a[x"_ il f = W (dr + f Y s) u”(r)dt] ds
=1 Y %=1 hy Xp—1 s
< Z IXk (x;j—s8)“ [fﬁ (t = xp—p) |u” ()| dt + IXk (t—5) Iu"(t)ldt] ds
k=1 Xk—1 Xk—1 s
< Z IXk (xi — S)_QZIXk (t — x-1) [ (1) drd's (3.8)
k=1 ¥ *k-1 X1

k

Xk i Xk
< 2max_f (t — xp—1) " (2)| dtz f (x; —85) “ds
I<ks<i )y | pa -

X

[Rosf =

X 2
2
< Cmax (f t‘s/z_ldt) < C max ()CZ/2 - x,fizl) ,

I<k<i\ Jy, 1<ksi

where we have used the following inequality:

b 1 b 2
f d(s)(s —a)ds < 3 [f \/¢>(s)ds] ,

for any decreasing function ¢ > 0 on [a, b], see [20]. When graded mesh parameter y < 2/6, Eq (3.8),
the following estimates can be given:

k ¥8/2 k-1 ¥5/272
|R2,i| < C{ngx_ [(ﬁ) - (T) ] <CN™, (3.9)
where the following inequality is used

a’-b’"<(@-bP, 0<p<l1,0<b<a.

PANCEE PSRN O
’ 1<k<i [\ N N

Conversely, if y > 2/6,

2

) (3.10)
0 _
<Copx (o™ ) <oV
where &, € (k;Nl, %) To sum up, this lemma is proved. O

Now, we derive the main result of this paper as follows:

Theorem 3.1. Let u, be the exact solution of problem (1.1) at the point x = x,, and uY be the solution
of problem (2.2) on the mesh Q. Then, under the condition h < (1 — @) /(165*), we have

CN™, y < 2/6,
max [u, — [ <JCN2logN, y=2/6, (3.11)
<n<

CN2, y > 2/6.
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Proof. Forn > 1, Lemma 2.2 and Eq (3.1) imply that

—uy| < CZZ@;’_J. [Rij+ Ryl < C(Py+ Q).

i=1 j=1

where

Po= 3 0 R,

i=1 j=1

=Y >0 R).

i=1 j=1

Based on Lemma 2.2 and Lemma 3.1, it is easy to obtain

Q<CmaxN7‘5 ZZQ <CmaxN7‘5N_},n21.

i-j =
i=1 j=1

Next, for P,, the following estimate can be obtained by exchanging the summation order

PnsZ|R1,|Zal ]_Z|R1]|h <Z|R1,|h +Z|R1]|h],

where the fact Z 0’ . < Ch; is used. Then it is easy to get the following estimations:

2 2
DR < CNY Y Ry < N,y
j=1 j=1
<CN"™(2/N) <CN7™,

and

Z|R1,|h <CZ (73 + b 203).

Furthermore, by using ; < TyN I j/N)y_l, yields,

Z|R1,|h on- Z[( )w 1)( 1)7(5—3)-'—(%)3()/—1) (%)ﬂ“)l

B-1 iy6=3y
5-3 5-3y] J

scz; o |G = D77+ (=27 =

J=

n j'y(S—S
<C Y (=197 + (= 2/ 7]

=3

n_ yo-3 n_ yé-3
<cy'? —[@37° 7+ (73] < cy? .

Jj=3 N J=3 N

Networks and Heterogeneous Media Volume 19, Issue 2
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If y <2/6, we have

<CN7°, (3.18)

If y = 2/6, by using 3, j~' < ["1dx <InN, yields,
j=3

n 0-3
]‘7

N SCN” f3 j'dt <CN?InN. (3.19)

=3
If y > 2/6, the following estimation will be obtained through the definition of the definite integral
jy(i 3

1 ] y6-3 1
Z = Zﬁ(ﬁ) < N2 f ¥93dx < CN2. (3.20)
3 0

According to Egs (3.14)—(3.20), the estimation of P, in Eq (3.12) can be obtained. The desirable result
can be followed by Eq (3.13).

]
4. Numerical results and discussion
In order to verify our theoretical results, we consider the following test problem [1]
u'(x) + u(x) + f (x =) " eu()dt = f(x), x€ Q:=(0,L], 4.1)
0
u(0) = p, 4.2)
where f = (2 —a) x'™* + %)ﬁ ~2@_ The exact solution of this problem is u(x) = x>~%¢~*. Since
the exact solution is given, the maximum absolute error and the convergence order are calculated as
follows:
EN
N . _ £
E —(ggzgﬂu —ul, p 10g2(E2N).

For different mesh parameters y, N and «, Table 1 shows the maximum absolute errors and convergence
orders. Itis shown from these numerical experiments that they complement the theoretical results given
in Theorem 3.1.

Networks and Heterogeneous Media Volume 19, Issue 2, 740-752.
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Table 1. The maximum errors and convergence orders

y=2
EN

y=3
EN

0.1

8.7481e-06
2.3645e-06
6.3633e-07
1.7087e-07
4.5833e-08

2.0699¢-06
5.1713e-07
1.2924e-07
3.2304e-08
8.0754e-09

2.00
2.00
2.00
2.00

3.5185e-06
8.7881e-07
2.1960e-07
5.4887e-08
1.3720e-08

2.00
2.00
2.00
2.00

3.8

5.7

0.3

210

2.1574e-05
6.6875e-06
2.0656e-06
6.3687e-07
1.9619e-07

1.9564e-06
4.8865e-07
1.2210e-07
3.0518e-08
7.6284e-09

2.00
2.00
2.00
2.00

2.8607e-06
7.1450e-07
1.7854e-07
4.4626e-08
1.1155e-08

2.00
2.00
2.00
2.00

3.40

5.10

0.5

212

4.9960e-05
1.7808e-05
6.3214e-06
2.2394e-06
7.9251e-07

1.9545e-06
4.8840e-07
1.2205e-07
3.0503e-08
7.6243e-09

2.00
2.00
2.00
2.00

2.2527e-06
5.6267e-07
1.4062e-07
3.5152e-08
8.7881e-09

2.00
2.00
2.00
2.00

vo

3.00

4.50

0.7

29

210
211
212

9.9815e-05
4.0911e-05
1.6689¢-05
6.7922e-06
2.7614e-06

2.0758e-06
5.2525e-07
1.3231e-07
3.3236e-08
8.3348e-09

1.98
1.99
1.99
1.99

1.5693e-06
3.9187e-07
9.7955e-08
2.4496e-08
6.1268e-09

2.00
2.00
2.00
2.00

vo

2.60

3.90

0.9

29
210

212
213

1.0708e-04
5.1652e-05
2.4483e-05
1.1510e-05
5.3894e-06

1.6942e-06
4.6535e-07
1.2550e-07
3.3382e-08
8.7848e-09

1.86
1.89
1.91
1.92

5.9577e-07
1.4805e-07
3.6917e-08
9.2226e-09
2.3062e-09

2.00
2.00
2.00
2.00

vo

2.20

3.30

5. Concluding remarks

Based on the variable step size BDF2, this paper proposes a second-order numerical method on the
graded mesh to solve a Volterra integro-differential equation with a weak singular kernel and gives
rigorous stability and convergence analysis for our presented numerical method. In the further work,
by using the analysis of BDF3 given in [21], we shall study a third-order numerical method for the
Volterra integro-differential equation with a weakly singular kernel.

Networks and Heterogeneous Media
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